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Abstract
This paper proposes a novel Linear Pro-
gramming (LP) based algorithm, called Dy-
namic Tree-Block Coordinate Ascent (DT-
BCA), for performing maximum a posteri-
ori (MAP) inference in probabilistic graph-
ical models. Unlike traditional message pass-
ing algorithms, which operate uniformly on
the whole factor graph, our method dynam-
ically chooses regions of the factor graph
on which to focus message-passing efforts.
We propose two criteria for selecting regions,
including an efficiently computable upper-
bound on the increase in the objective pos-
sible by passing messages in any particular
region. This bound is derived from the the-
ory of primal-dual methods from combinato-
rial optimization, and the forest that maxi-
mizes the bounds can be chosen efficiently us-
ing a maximum-spanning-tree-like algorithm.
Experimental results show that our dynamic
schedules significantly speed up state-of-the-
art LP-based message-passing algorithms on
a wide variety of real-world problems.

1. Introduction
Performing maximum a posteriori (MAP) inference in
probabilistic models such as Markov and Conditional
Random Fields (MRFs and CRFs) is a fundamental
problem in Machine Learning, and plays an important
role in the solution of many labeling problems in Com-
puter Vision such as image segmentation, stereo and
optical flow. MAP inference is often formulated as the
problem of minimizing the energy of the probabilistic
model, which is the negative logarithm of the posterior
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distribution. Although computing the MAP solution
in general models is known to be an NP-hard prob-
lem, significant advances have been made in obtaining
good approximate solutions. In particular, formula-
tions based on Linear Programming (LP) relaxations
have inspired fast convergent message-passing algo-
rithms for MAP inference. Despite recent advances,
models using internet-scale datasets, high-resolution
images and video, and large-scale learning remain com-
putationally demanding beyond practical limits (with-
out significant investment in hardware). These models
have motivated research on faster inference algorithms.
Energy-Oblivious Methods. Many recently pro-
posed LP-based algorithms such as Tree-reweighted
message passing (Wainwright et al., 2005; Kol-
mogorov, 2006), Max-sum diffusion (Werner, 2007),
MPLP (Globerson & Jaakkola, 2007), and Tree-based
coordinate descent (Sontag & Jaakkola, 2009) oper-
ate by passing messages uniformly on the whole fac-
tor graph using a particular schedule. These methods
have schedules that depend only on the structure of
the probabilistic model and not on its posterior dis-
tribution (energy). In other words, they are energy-
oblivious. Furthermore, these schedules are static; i.e.,
they remain fixed during the operation of the algo-
rithm. This is a suboptimal strategy since it can—
and often does—lead to wasted computation: effort
is expended on regions of the graph where additional
(messages) computation cannot lead to significant im-
provement in solution quality.
Energy-Aware Methods. The last decade has seen
the increasing use of efficient max-flow based algo-
rithms for minimizing certain classes of energy func-
tions (Boykov et al., 2001; Kolmogorov & Zabih, 2004).
This has primarily been due to their low running
time compared to message-passing algorithms (Szeliski
et al., 2006). It has also been shown that flow-based
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algorithms, like message-passing algorithms, work by
reparameterizing the energy functions (Kohli & Torr,
2007). In this interpretation, flow can be seen as a en-
coding of the messages, and the sequence of paths used
for passing flow can be seen as particular schedules for
message passing (Tarlow et al., 2011b).

We believe that the reason for better performance
of flow-based algorithms (compared to conventional
message-passing algorithms like BP and TRW-S) lies
in their use of sophisticated energy-aware dynamic
schedules. These schedules are energy-aware in the
sense that they depend not only on the structure of
the factor graph but also on the exact form and values
of the energy function; and they are dynamic in the
sense that the schedule is not fixed beforehand, but is
computed at run-time and changes in each iteration.

Contributions. We believe dynamic, energy-aware
schedules are crucial to the development of the next
generation of computationally efficient algorithms. In
this work, we develop a novel method for choosing re-
gions of the problem graph on which to focus inference
efforts. We propose two region-scoring functions – Lo-
cal Primal-Dual Gap (LPDG) and Weak Tree Agree-
ment score (WTA) – that are based on the theory
of Primal-Dual methods from combinatorial optimiza-
tion. These two scoring functions are natural gener-
alizations of complementary slackness conditions and
virtual arc consistency in the primal-dual LP formula-
tion of MAP. LPDG is an upper-bound on the increase
in the objective possible by passing messages in any
particular region. Most importantly, both score can
be computed with low overhead, and the forest that
maximizes the score can be chosen efficiently using a
maximum-spanning-tree-like algorithm. Experimental
results show that our dynamic schedules significantly
speed up state-of-the-art LP-based message-passing al-
gorithms on a wide variety of real-world problems.

2. Related Work
Our work is perhaps most directly related to mes-
sage scheduling approaches that have been applied
to max-product belief propagation, such as Resid-
ual Belief Propagation (RBP) (Elidan et al., 2006)
and its followups (Sutton & McCallum, 2007). Also
related is Chandrasekaran et al. (2007), which con-
siders dynamic tree-based schedules for continuous-
valued graphical models. Though Tree-Block Coor-
dinate Ascent (TBCA) algorithms have their roots in
max-product, the algorithms and scheduling consider-
ations are actually quite different. Perhaps most im-
portantly, unlike in ordinary max-product, the update
for TBCA depends on the entire block that is chosen.
Thus, while the motivations of our work are similar to

those of RBP, we focus on methods that are applicable
to the LP-based message passing algorithms.

Another related algorithm is the Augmenting DAG al-
gorithm (Werner, 2007). This algorithm uses a a mea-
sure similar to ours (WTA) in order to choose param-
eters to update. There are two important differences:
first, Augmenting DAG requires a search at each iter-
ation to choose an update; and second, the update is
not a full block-coordinate ascent step over the sub-
set of variables involved in the update. In our work,
we avoid running a search at each iteration (which re-
duces overhead), and we make a full block-coordinate
ascent update. Finally, there are other algorithms such
as TRW-S (Kolmogorov, 2006) that operate using a
static update schedule. Implementations of these al-
gorithms have been optimized to run very quickly, but
they make no attempt to identify regions of the graph
to update. As we show later, in certain cases this leads
to an order of magnitude more updates than necessary.

3. Preliminaries
Notation. For any positive integer n, let [n] be short-
hand for the set {1, 2, . . . , n}. We consider a set of
discrete random variables X = {x1, x2, . . . , xn}, each
taking value in a finite label set, xi ∈ Xi. For a set
A ⊆ [n], we use xA to denote the tuple {xi | i ∈ A},
and XA to be the joint label space ×i∈AXi. For ease
of notation, we use xij as a shorthand for x{i,j}.

MAP. Let G = (V, E) be a graph defined over these
variables, i.e. V = [n], E ⊆

(V
2

)
, and let θA : XA →

R, ∀A ∈ V ∪ E be functions defining the cost/energy
at each node and edge for the labeling of variables in
scope. Let ~E = {(i → j), (j → i) | {i, j} ∈ E} be a set
holding directed edges for each undirected edge. The
goal of MAP inference can then be succinctly written
as: minX∈XV

∑
i∈V θi(xi) +

∑
(i,j)∈E θij(xi, xj).

Schlesinger’s LP. It is well-known (Wainwright &
Jordan, 2008) that the above discrete optimization
problem can be written as a linear programming prob-
lem over the so-called marginal polytope M(G):

min
µ∈M(G)

θ · µ (1)

M(G) =

{
µ
∣∣∣ ∃p(X ) s.t.

µi(xi) =
∑
XV\i

p(X )
µ(xi, xj) =

∑
XV\i,j

p(X )

}
,

where θ · µ
.=

∑
i∈V θi(xi)µi(xi) +∑

(i,j)∈E θij(xi, xj)µij(xi, xj), p(X ) is a Gibbs
distribution that factorizes over the graph G, and µ is
a vector holding node and edge marginal distributions,
i.e., µ = {µi(·), µe(·) | i ∈ V, e ∈ E}.

Problem (1) is NP-hard to solve in general and the
standard LP relaxation of the MAP problem (1),
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min
µ

θ · µ max
h,y

1 · h

s.t.
X
xA

µA(xA) = 1, s.t. hA ∈ R, ∀A ∈ V ∪ EX
xi

µij(xi, xj) = µj(xj), yij→j(xj) ∈ R, ∀(i→ j) ∈ ~E

µi(xi) ≥ 0, hi ≤ θ̃i(xi)
.
= θi(xi) +

X
e|e∈E,i∈e

yji→i(xi) ∀i ∈ V, xi ∈ Xi

µij(xi, xj) ≥ 0. hij ≤ θ̃ij(xi, xj)
.
= θij(xi, xj)− yij→j(xj)− yji→i(xi), ∀{i, j} ∈ E , xi, xj .

Figure 1. Linear programming relaxation. Both the primal and dual LPs are shown.

also known as Schlesinger’s bound (Schlesinger, 1976;
Werner, 2007), is given by minµ∈L(G) θ · µ, with

L(G) =

{
µ ≥ 0

∣∣∣∣∣
∑
xi
µi(xi) = 1,∑

xi,xj
µij(xi, xj) = 1,∑

xi
µij(xi, xj) = µj(xj)

}
, (2)

where µ is now a vector of local pseudomarginals,
which are forced to be “edge-consistent”, meaning
that the marginalized edge beliefs agree with the
node beliefs (marginalization constraints). Optimizing
over (2) is possible in polytime, and by L(G) ⊇M(G)
this provides a lower bound on the optimal objective.

3.1. Dual Formulation and Reparameterization
Fig. 3 shows both the primal and dual programs cor-
responding to the LP-relaxation over L(G). Vector θ̃
used in Fig. 3 is called a reparameterization of θ; its
components are defined as

θ̃i(xi)
.= θi(xi) +

∑
e|e∈E,i∈e

yji→i(xi), (3)

θ̃ij(xi, xj)
.= θij(xi, xj)− yij→j(xj)− yji→i(xi). (4)

Intuitively, θ̃A(xA) can be thought of as the new cost
for state xA at node/edge A after incorporating the
dual variables {yji→i(xi)}. Energy is preserved under
reparameterization, i.e., for any labeling X , we have∑
A∈V∪E θ̃A(xA) =

∑
A∈V∪E θA(xA). Note, however,

that this does not imply that θ̃A(xA) = θA(xA).

3.2. Weak Tree Agreement
The stopping criterion for message passing-based LP
algorithms is given by the weak tree agreement (WTA)
condition (Kolmogorov, 2006). Its equivalent for the
dual problem in Fig. 3 is known as Virtual Arc Consis-
tency (VAC) (Cooper et al., 2008). A reparameterized
vector θ̃ is said to satisfy WTA if there exist non-empty
subsets Di ⊆ Xi for each node i ∈ V such that

θ̃i(xi) = h∗i ∀i ∈ V, xi ∈ Di (5a)

min
xj∈Dj

θij(xi, xj) = h∗ij ∀(i→ j) ∈ ~E , xi ∈ Di (5b)

where we denoted h∗A = minxA
θ̃A(xA). If |Di| = 1 for

all i ∈ V then the WTA condition is equivalent to the

strong tree agreement (Wainwright & Jordan, 2008);
and the labeling encoded by sets Di is then the global
minimum of the energy.

3.3. Tree Block Coordinate Ascent
In this paper we follow the tree block coordinate as-
cent (TBCA) scheme of Sontag & Jaakkola (2009)
for maximizing the dual objective. In each itera-
tion of this scheme we first select a subset of edges
T ⊆ E that form a forest. We then we fix all dual
variables yji→i(xi) outside T and update remaining
dual variables yji→i(xi), {i, j} ∈ T using the sequen-
tial tree-block update algorithm of Sontag & Jaakkola
(2009). It requires 2|T |1 edge-reparameterization op-
erations2 and produces an optimal reparameterization
for forest T , i.e. a reparamaterization that maxi-
mizes the dual objective function under the restriction
above. Clearly, in this approach the dual objective∑
i∈V hi +

∑
(i,j)∈E hij (which is a lower bound on the

energy) never decreases. This scheme has the same
convergence guarantee as the TRW-S algorithm (Kol-
mogorov, 2006): the sequence of vectors θ̃t has a limit
point θ̃∗ that satisfies the WTA condition (assuming
that each edge is covered by T every constant number
of iterations and the sequence of θ̃t is bounded).

Remark 1. The scheme above is actually slightly
different from the overall scheme described by Sontag
& Jaakkola (2009) in section 4.1. Namely, at each
iteration Sontag et al . propose to “split” θ̃ between
overlapping trees, perform the block update for each
tree in parallel, and then combine the reparameterized
vectors. In contrast, we select a single forest T at each
step and fully assign all covered unary and pairwise
potentials to T . Note, however, that in the end of
section 4.1 Sontag et al . mention that “sequential” tree
block updates (which we believe to coincide with the
scheme that we use) empirically converge more quickly
than the parallel updates they used.

1Fig. 2 in (Sontag & Jaakkola, 2009) may appear to use
3|T | distance transform operations, but the max operation
used for computing δji(xi) in Fig. 2 is the same as the max
operation in step 2, so we do not need to compute it again.

2Following the notation of Felzenszwalb & Huttenlocher
(2004), we refer to these as Distance Transforms.
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4. Measuring Local Agreement
We now present two methods for identifying regions
to pass messages on. At a high level, our goal is to
come up with measures that identify how locally con-
sistent a region of the graph is. We will then pass
messages on regions that are locally inconsistent. Our
two measures are: a) Local Primal Dual Gap (LPDG),
which was first proposed by Batra et al. (2011) and
is derived from the complementary slackness condi-
tions in the primal-dual LPs; and b) a score based on
the Weak Tree Agreement (WTA) conditions of Kol-
mogorov (2006).

4.1. Local Primal Dual Gap
Complementary Slackness. Let {µ∗i (·), µ∗ij(·, ·)}
and {h∗i , h∗ij , y∗ij→j(·), y∗ji→i(·)} be a pair of optimal
primal and dual solutions of the LPs in Fig. 3. Let
θ̃i(·), θ̃ij(·, ·) be the reparameterized node/edge vec-
tors corresponding to these dual variables (as given
by (3),(4)). The complementary slackness condition
(Bertismas & Tsitsiklis, 1997) for this pair of LPs is:

µA(xA) ·
(
θ̃A(xA)−min

x̂A

θ̃A(x̂A)
)

= 0, (6)

where A ∈ V∪E . Batra et al. (2011) defined LPDG for
a node/edge as a generalization of this complementary
slackness condition:

Definition (Local Primal-Dual Gap). Given
a reparameterized cost vector θ̃ and a (pos-
sibly non-optimal) integral primal labeling
X p = {xp1, x

p
2, . . . , x

p
n}, the local primal-dual gap

l(A) for each node/edge A ∈ V ∪ E is:

l(A) = θ̃A(xpA)︸ ︷︷ ︸
primal

−min
xA

θ̃A(xA)︸ ︷︷ ︸
dual

. (7)

Comparing (6) and (7), we can see that intuitively
LPDG quantifies by how much the complementary
slackness condition is violated, and attributes viola-
tions to individual potentials. More precisely, we state
the following properties of LPDG:

Proposition 1 Distributed Primal-Dual Gap: If P =∑
A∈V∪E θA(xpA) is the energy of the primal labeling,

and D = 1·h the dual value, then the sum of LPDG for
all cliques is the primal-dual gap, i.e.,

∑
A∈V∪E l(A) =

P −D.
Proposition 2 Slackness: If LPDG for no node/edge
is strictly positive, i.e. maxA∈V∪E l(A) = 0, then com-
plementary slackness conditions hold and the LP is
tight, i.e. we have found the MAP solution.
Proof Sketches. Prop. 1 just utilizes that hA =
minxA

θ̃(xA) (for the dual) and conservation of to-
tal energy under reparameterization (for the primal).
Prop. 2 follows from complementary slackness.

4.2. WTA edge measure
While the LPDG measure is quite simple and easy to
compute, it can easily overestimate the “usefulness” of
an edge. If, for example, the LP relaxation of the en-
ergy is not tight then some edges will always have non-
zero LPDG value, so the algorithm will try to perform
reparameterizations even in regions where the WTA
condition has been reached. We now define an alter-
native measure which is inspired by the WTA condi-
tion (5) and can potentially overcome this problem.

This alternative measure is based on a subset of labels
Di ⊆ Xi for each node i. One way to compute these
subsets would be to choose, for each hyperedge A, the
labelings xA such that θ̃A(xA) is sufficiently close to
hA (say, within some ε ≥ 0). However, this requires a
significant computation effort. To avoid such compu-
tations, we choose Di for node i locally by including
labels that were assigned to this node during the last
R iterations. Note, we only count iterations in which
node i was actually involved in reparamterizations, i.e.
covered by the forest T in which the messages were
passed. We then set

wta(i, j) = ei + ej + max(eij , eji), (8)

ei and eij are temporal local agreement measures:

ei = max
xi∈Di

θ̃i(xi)−min
xi

θ̃i(xi), and (9)

eij = max
xi∈Di

min
xj∈Dj

θ̃ij(xi, xj)− min
xi,xj

θ̃ij(xi, xj). (10)

5. Dynamic TBCA
Our proposed algorithm Dynamic Tree-Block Coordi-
nate Ascent (DTBCA) uses the sequential TBCA for-
mulation described in Section 3. The pseudo-code for
the method is listed as Algorithm 1. At each iteration,
we first isolate the set of nodes and edges in the graph
whose scores have been invalidated by the updates
in the previous iteration. The local consistency mea-
sures (presented in Section 4) for these ‘dirty’ nodes
and edges are then recomputed. The exact procedure
for determining the set of dirty nodes and edges is
discussed section in Section 5.1. Add-To-History
stores in Di the most recent R settings of xpi . The set-
ting R = 1 gives us the LPDG measure, while larger
values of R imply the WTA measure. After combining
node and edge scores into a single undirected score per
edge, we choose a forest by running a modified version
of Kruskal’s maximum weight spanning tree algorithm.
Kruskal’s algorithm sorts edges by descending weight
then greedily adds the largest weight edge that does
not create a cycle. Typically the algorithm proceeds
until n − 1 edges have been used, but we instead ter-
minate early if we reach an edge score of less than ε
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Algorithm 1 Dynamic Tree-Block Coordinate Ascent
V̂ ← V {Dirty nodes}
Ê ← E {Dirty edges (see Sec. 5.1 for details)}
R← RUN-LPDG ? 1 : RW T A {History size}
for t = 1 : tmax do

for i ∈ V̂ do {Node scores}
xp

i ← arg minxi
θ̃i(xi)

Add-To-History(xp
i , Di, R)

ei ← maxxi∈Di
θ̃i(xi)−minxi

θ̃i(xi)
end for
for (i, j) ∈ Ê do {Directed edge scores}
hij ← minxi,xj

θ̃ij(xi, xj)

eij ← maxxi∈Di
minxj∈Dj

θ̃ij(xi, xj)− hij

eji ← maxxj∈Dj
minxi∈Di

θ̃ij(xi, xj)− hij

end for
for (i, j) ∈ E do {Undirected edge scores}
wij ← max(eij , eji) + ei + ej

end for
T ← Kruskal-Forest(w)

θ̃ ← Reparameterize-Forest(T, θ̃)
end for

(= 10−10). This modified Kruskal’s algorithm is re-
ferred to as Kruskal-Forest in Algorithm 1.

Finally, given the forest T , we apply TBCA updates on
maximal trees in T . Updates on distinct trees do not
interact and thus can be performed in parallel without
affecting the resulting reparameterization.

5.1. Caching
An important property of DTBCA is that it may op-
erate on only a small fraction of the edges in the graph
at each iteration. Our formulation is amenable to
caching many computations. In particular, we only
need to update ei if θ̃i changed in the previous itera-
tion, and we only need to update eij and eji if either
edge (i, j) was used in T in the previous iteration or if
one of the sets Di or Dj changed in the previous itera-
tion. Further, we only consider edges with nonzero wij
in Kruskal-Forest, so the sort operation typically
only needs to be performed on a small subset of edges.

Label history sets D are typically small, so unless pair-
wise potentials admit fast distance transforms (e.g.,
Potts models), the dominant overhead is the mini-
mizations in computing eij that require considering
|Xi| · |Xj | entries in θ̃ij . One of these is required per it-
eration per dirty edge; the minimization can be shared
between the eij and eji computation.

6. Experiments
Problem Instances. We tested our algorithm on
the problems of stereo vision, object-category segmen-
tation and protein design. These problems have been
extensively studied and are known to yield difficult dis-
crete optimization instances of a large scale (hundreds
of thousands of nodes and almost a million edges). Our
experiments show that our proposed TBCA methods
solve the LP relaxation faster than baseline schemes

for all the above problems.

We also conducted a “Dynamic Segmentation” exper-
iment that simulates a branch-and-bound or A∗ ap-
proach for tightening loose relaxations. Specifically, we
first solve a particular relaxation to convergence, then
branch on certain variables taking certain states. This
requires solving a slightly-updated problem by warm-
starting from the converged messages. Our proposed
TBCA methods solve the updated problem faster than
baselines because they are able to identify the regions
in the graphs that are affected by the conditioning.

Baseline Methods. We compare the performance
of our methods to standard-TBCA, which uses ex-
actly the same message passing implementation as
our methods (TBCA-LPDG, TBCA-WTA) and differs
only in the schedule of the messages. Thus the rela-
tive performance difference can be directly attributed
to the different scheduling choices.

To demonstrate the practical impact or our method,
we compare the performance of our method with the
well known and widely used TRW-S (Kolmogorov,
2006) and MPLP (Globerson & Jaakkola, 2007) al-
gorithms, both of which are fixed-schedule block co-
ordinate ascent methods with the block being dual
variables corresponding to individual nodes and edges.
For both these methods, we used the implementa-
tions made publicly available by the respective au-
thors. From an implementation perspective, these
two baseline are fundamentally different. The TRW-
S implementation is orders of magnitude faster than
MPLP, which was prohibitively slow on larger prob-
lems. However, it is important to tease out the differ-
ence between implementation optimizations and “in-
herent efficiency” of various algorithms. One way to
do this is to count the number of Distance Trans-
forms and we measure the number of calls to a na-
tive distance transform() function for each base-
line. Note that this does include the dominant opera-
tions needed to compute the region-scoring measures.

Evaluation Metrics. We evaluate the performance
of different methods in two ways: 1) dual-objective vs
time and 2) dual-objective vs # distance transforms.
Dual objective at each iteration is a lower-bound on
the MAP value, and a larger value indicates a tighter
relaxation. At each iteration, integral primal label-
ing are generated by node-decoding, i.e. independently
minimizing the reparameterized energy vectors. The
energy of the primal is an upper bound on the MAP
and when the primal-dual gap is smaller than a thresh-
old (10−4), we report that the MAP solution has been
found. All experiments were performed on a 64-bit
8-Core Macbook Pro with 8GB RAM.
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Figure 2. Stereo experiments. (a) Dual objective versus
time for Tsukuba problem, which is a 288x384 pixel, 16
label Potts model with pairwise strength λ = 20. (b) Dual
objective versus number of distance transforms for same
problem. (c-d) Same comparisons, but on Venus problem.

Convergence Heuristics. For the image labeling
problems on grid graphs, we found that two heuris-
tic strategies led to faster convergence. First, starting
inference with a small number of iterations using a
static combs schedule (we use 4 iterations) improved
performance. Second, a strategy of “dilating” the edge
scores led to faster convergence. The dilation proce-
dure is defined as follows. For each edge e = {i, j},
a set of “neighboring” edges Ne (=∅) is created. For
each node n adjacent to an edge with non-zero wij ,
with small probability (1%) we add to Ne the horizon-
tal or vertical chain of length 2d centered at n (we use
d=10). We then add a small score ε = 10−5 to all edges
in Ne. Intuitively, there are often strong correlations
between pixels in a local neighborhood that extends
beyond just the immediate neighbors. With the di-
lation strategy, relevant information can preemptively
be brought from neighbors several pixels away.

Edge Improvement Measure. We also ex-
perimented with an edge measure inspired by the
strategy that Sontag et al. (2008) used to choose
regions of the graph to add constraints for tight-
ening the LP relaxation. In this measure, the
undirected edge score for {i, j} is the increase in
the dual objective achieved by optimally reparam-
eterizing the subgraph containing θ̃ij , θ̃i, and θ̃j :

∆Dual
ij = minxi,xj

[
θ̃i(xi) + θ̃ij(xi, xj) + θ̃j(xj)

]
−[

minxi
θ̃i(xi) + minxi,xj

θ̃ij(xi, xj) + minxj
θ̃j(xj)

]
.

This measure has an undesirable theoretical property:
it does not capture whether WTA has been achieved.

Consider e.g ., reparameterizations with zero node po-
tentials: this measure will be 0 for all edges, but WTA
may not hold. Empirically, we found it to be inferior
to our measures. See Tarlow et al. (2011a) for details.

6.1. Stereo Experiments
Stereo vision involves predicting disparity labels for
each pixel given a pair of stereo images. Graphical
models for this problem have been proposed by Tappen
& Freeman (2003) and extensively studied by Meltzer
et al. (2005). We tested on the Tsukuba (288x383,
16 labels) and Venus (383x434, 20 labels) image pairs
from the Middlebury Stereo Dataset3, and used the
publicly available energies 4 from Alahari et al. (2010).
The graph was a 4-connected grid for which the natu-
ral fixed scheduling scheme is to alternate on horizon-
tal and vertical combs, i.e. spanning trees containing
all horizontal edges connected by a single column of
vertical edges (and vice versa).

Fig. 2 shows the results of our experiments. As we can
see, both our methods TBCA-LPDG and TBCA-WTA
significantly outperform TBCA-Combs, which demon-
strates the efficacy of our proposed scoring functions.
Interestingly, we note that while TRW-S is the fastest
implementation and performs the best in terms of run-
time, it performs worse than our methods in terms of
number of distance transforms. MPLP performs worst
in terms of both metrics.

6.2. Segmentation Experiments
The goal in this application is dense object-category
labeling, i.e., to label every image pixel with a particu-
lar category label. We worked with some images from
the PASCAL Visual Object Category dataset (Ever-
ingham et al.), which is considered to be one of the
most challenging datasets for this problem. Typical
images are 375x500 pixels and the dataset contains 20
foreground and 1 background category. We use the
energies from Ladickỳ et al. (2009), who use pairwise
energy functions based on Shotton et al. (2009).

We do not show plots for MPLP because it was signifi-
cantly worse than other methods. For this application,
our methods TBCA-LPDG, TBCA-WTA outperform
TBCA-static and TRW-S, both in terms of number
of distance transforms and runtime, in some instances
cutting runtime by more than 80%. See Fig. 3.

6.3. Dynamic Segmentation Experiments
In this experiment, we simulate a problem where dy-
namic inference is used within learning to reuse in-
ference computation between iterations. First, we

3
http://vision.middlebury.edu/stereo/data/

4
http://cms.brookes.ac.uk/staff/Karteek/data.tgz
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Figure 3. Object class labeling experiments. (a) Dual
objective versus time for the segmentation problem shown
in the second row of Fig. 4. 375x500 pixel, 21 label 4-
connected grid model with pairwise potentials based on ob-
ject co-occurrence counts. (b) Dual objective versus num-
ber of distance transforms for same problem.

run inference on the original problem to conver-
gence (Fig. 4(b)). We then update a subset of
unary potentials—which may correspond to updating
a weight on a sparsely activated feature—and re-solve
the problem. Here, all white pixels in Fig. 4(c) have
unary potentials incremented to more strongly prefer
being labeled background. We now solve this slightly-
updated problem by warm-starting from the converged
messages. Fig. 4(f) shows the dual objective (and en-
ergy of primal decoding) as a function of number of dis-
tance transform calls for this updated problem. Both
TRW-S and TBCA-WTA are able to find the MAP
(duality gap < 10−4), however TBCA-WTA passes
orders of magnitude fewer messages than TRW-S (x-
axis is in log-scale). The reason for this wide gap is
that TBCA-WTA is able to accurately localize the re-
gions where messages need to be passed for conver-
gence, while TRW-S indiscriminately passes messages
everywhere in the graph. Fig. 4(e) shows where the
messages were passed in a heat-map visualization.

6.4. Protein Design
The goal of this problem to find a sequence of amino-
acids that are most stable in a given 3D configuration.
We use the energy functions studied by Yanover et al.
(2006). This is also a difficult dataset because the LP
relaxation is tight only on 2 of the 97 protein instances.

Fig. 5 shows scatter plots for one of the smaller pro-
teins ‘1bx7’. Each point is a sub-forest of the MRF. X-
axis shows the sum of LPDG/WTA measures over it’s
nodes and edges, and Y-axis shows the improvement
in dual-objective by performing a block-coordinate as-
cent step over this forest block. We can see that our
proposed measure are highly correlated with improve-
ments in the dual objective.

In the protein problems, there is not a natural grid
structure, so we compare our measures to a static se-
quential star-based schedule, iterating over nodes and
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Figure 4. Dynamic Segmentation Experiment. For
each image(a), global optimum is shown in (b). We then
update white pixels in (c) to prefer background. The
“warm started” inference then runs until convergence (d)
of the modified problem. (e) shows a heat map visualiza-
tion of where our algorithms passes message updates. Note
the localized updates. (f) and (g) compare our method to
TRW-S run dynamically with the same setup.

reparameterizing subgraphs containing all edges ad-
jacent to the current node. Our dynamic schedules
are faster and use fewer distance transforms. On pro-
tein ‘1bx7’, where the relaxation is tight, the WTA
schedule converges to the optimum in .39 seconds us-
ing 24400 distance transforms. The stars baseline con-
verges in .86 seconds using 53700 distance transforms.
On protein ‘1kth’, where the relaxation is not tight,
after 500 seconds and roughly 9M distance transforms
(time and distance transforms correspond closely be-
tween the two in this case), the WTA schedule achieves
a dual objective of -115.94, while the stars baseline
achieves a worse dual objective of -116.03. We also
tried a dynamic experiment similar to Sec. 6.3. Specifi-
cally, we considered a variable that was alternating be-
tween two labels during message passing (i.e., its label
history Di contained 2 states). We forced it to take
one of these labels, and warm-started message-passing
with the converged messages. Similar to Sec. 6.3,
we found that TBCA-WTA is significantly more effi-
cient than TRW-S, e.g . achieves a similar improvement
in dual as TRW-S in 80% fewer distance transforms
(∼200K vs. 1.7M) and 90% less time (5 vs 50 sec).

7. Conclusions
In summary, we presented a novel dynamic block selec-
tion algorithm for tree-block coordinate ascent in LP-
relaxations of MAP inference. Our proposed measures
are natural generalizations of complementary slackness
conditions and virtual arc consistency criteria. Since
our measures incorporate both primal and dual infor-
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Figure 5. Scatter Plots. (a) Dual improvement vs
LPDG/WTA scores at the start of the algorithm. Each
point represents a forest, and the total LPDG/WTA scores
of all nodes/edges covered are shown. Dual improve-
ment for each point is computed by performing a block-
coordinate ascent step corresponding to that forest. At
the first iteration, LPDG and WTA scores are precisely
the same, hence shown on a single plot. (b,c) Dual im-
provement versus LPDG and WTA respectively at itera-
tion 100. Correlation coefficients for the three plots are
0.9051, 0.7009 and 0.4955. We can see that our scores are
well correlated with the increase in the dual objective.

mation, they alert us to regions where messages need
to be passed and where decoding needs to be improved.

Just as synchronous message schedules are understood
to be wasteful on tree-like and grid-like graphs, we
hope our work provides further evidence that energy-
oblivious message schedules are analogously wasteful
and inefficient. Our implementation is orders of mag-
nitude faster than the MPLP implementation made
available by its authors, but we have not optimized
our code to the degree that has been done for TRW-
S. We believe there is still substantial opportunity for
us to improve the run-time of our method, especially
considering the performance in terms of number of dis-
tance transforms performed.

An important consideration with dynamic scheduling
is whether the benefit gained from more intelligent
scheduling outweighs the cost of computing schedules.
This tradeoff changes as inference progresses: static
schedules can be reasonable in early iterations; our
method is most useful in later iterations, where there
are fewer dirty edges (leading to a low overhead) and
few regions where additional inference is beneficial.

We have also found LPDG to be useful for cluster pur-
suit in tightening the standard LP-relaxation (Batra
et al., 2011), and for speeding-up α-expansion by la-
bel reordering (Batra & Kohli, 2011). More generally,
since LPDG is a natural generalization of complemen-
tary slackness conditions for any LP relaxation of an
integer program, we expect it to be useful in settings
even beyond message-passing algorithms.
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