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Abstract

Most existing approaches for non-parametric
kernel learning (NPKL) suffer from expensive
computation, which would limit their appli-
cations to large-scale problems. To address
the scalability problem of NPKL, we propose
a novel algorithm called BCDNPKL, which is
very efficient and scalable. Superior to most
existing approaches, BCDNPKL keeps away
from semidefinite programming (SDP) and
eigen-decomposition, which benefits from t-
wo findings: 1) The original SDP framework
of NPKL can be reduced into a far smaller-
sized counterpart which is corresponding to
the sub-kernel (referred to as boundary ker-
nel) learning; 2) The sub-kernel learning can
be efficiently solved by using the proposed
block coordinate descent (BCD) technique.
We provide a formal proof of global conver-
gence for our BCDNPKL algorithm. The ex-
tensive experiments verify the scalability and
effectiveness of BCDNPKL, compared with
the state-of-the-art algorithms.

1. Introduction

Kernel methods have attracted more and more atten-
tions of researchers in computer science and engineer-
ing due to their superiority in classification, clustering,
dimensionality reduction and so on. However, manu-
ally choosing an appropriate kernel requires specific
domain knowledge, which limits the application of k-
ernel methods in some situations. Even for a given
kernel, how to tune the kernel parameters is also d-
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ifficult. Therefore, it has become a more and more
important research issue for how to automatically i-
dentify the appropriate kernel which is consistent with
the data characteristics. Recently, a large amount of
kernel learning algorithms (Chapelle et al., 2002; Smo-
la & Kondor, 2003; Lanckriet et al., 2004; Zhu et al.,
2004; Kulis et al., 2006; Hoi et al., 2007; Zhuang et al.,
2009; Hu et al., 2010) have been proposed for learning
the kernel from side-information (i.e., incomplete pri-
or knowledge). There are two kinds of representative
side information: class labels, and pairwise constraints
in which a must-link constraint indicates two objects
should belong to the same class while a cannot-link for
different classes. In this work, we focus on learning the
kernel matrix from pairwise constraints.

Despite of many successes, most existing kernel ma-
trix learning algorithms need expensive computation,
which limits their wide applications in large-scale
problems. For example, a family of studies (Lanck-
riet et al., 2004; Zhu et al., 2004; Kulis et al., 2006;
Hoi et al., 2007; Zhuang et al., 2009; Hu et al., 2010),
referred to as non-parametric kernel learning (NPKL),
are devoted to learning the entire kernel matrix, which
generally leads to a SDP optimization problem. How-
ever, the time complexity of standard SDP solvers
based on the interior-point method could be as high
as O(n6.5) (Zhuang et al., 2009). To address the scal-
ability issue of NPKL, an algorithm called NPK was
proposed by Hoi et al. (Hoi et al., 2007), which re-
duces the cost of SDP optimization by using dualiza-
tion and a heuristic scheme. More recently, Zhuang
et al. (Zhuang et al., 2009) introduced an algorithm
called SimpleNPKL to further improve the scalability
of NPKL, which first converts the SDP framework into
a min-max problem and then solves this problem by
using an alternative iteration strategy. However, de-
spite escaping from SDP optimization, SimpleNPKL
still performs one eigen-decomposition in its iteration,
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which greatly limits its scalability.

In this paper, we focus on addressing the scalability
of NPKL problem in (Hoi et al., 2007; Zhuang et al.,
2009). First, we find that the original SDP optimiza-
tion of NPKL can be reduced into a far smaller-sized
counterpart, implying that we can obtain a same solu-
tion only with a significantly lower computation. This
finding is inspired by the boundary problem (Jost,
2005), stating that a harmonic mapping can be unique-
ly determined by the boundary value condition. In like
manner, if regarding the data points with or without
pairwise constraints as the boundary or interior nodes
of an underlying graph G respectively, an implicit har-
monic kernel mapping φG can be uniquely determined
by its subpart only restricted to the boundary nodes.
Following such inspiration, we formally prove that a
desired kernel matrix Z can be uniquely determined
by its subpart ZBD (referred to as boundary kernel)
over the constrained points.

For further speedup, we explore a BCD technique in-
stead of SDP optimization to solve the reduced prob-
lem (i.e., boundary kernel). As is well known, BCD is
a classical optimization technique that has witnessed a
resurgence of interest in machine learning (Hsieh et al.,
2008), reasons for which include its simplicity, efficien-
cy and stability if each minimization of subproblem
can be performed very efficiently. Specifically, we first
reformulate the SDP problem w.r.t. ZBD into a non-
linear programming (NLP) by performing a low-rank
factorization, then solve this NLP reformulation by us-
ing a BCD technique in Gauss-Seidel style (Grippo &
Sciandrone, 2000). An interesting observation is that
if we use the hinge loss, square hinge loss or square
loss function, the corresponding subproblem will be
a strictly convex quadratic programming (QP), which
has a closed-form solution for square loss. To summa-
rize, our main contributions are as follows:

1) We formally prove that the original SDP frame-
work of NPKL can be reduced into a far smaller-sized
counterpart which is only restricted to the constrained
points. This implies that we can obtain a same solu-
tion with a significantly lower computation.

2) For further speedup, we exploit a BCD technique
rather than SDP optimization for boundary kernel
learning.

3) We extend NPKL to the square loss and thus
get a low-computational closed-form solution for the
subproblem of boundary kernel learning, which con-
tributes to more than 80 times speedup over Sim-
pleNPKL algorithm.

The rest of this paper is organized as follows. Sec-

tion 2 reviews the basics of NPKL briefly. Section 3
first reduces the original SDP framework of NPKL in-
to the boundary kernel learning and then introduces a
BCD technique for solving it. Further, the efficient im-
plementation and global convergence of the proposed
algorithm are also discussed. Section 4 shows our ex-
perimental results and Section 5 concludes this work.

2. Review for Non-Parametric Kernel
Learning

For completeness, we briefly review the previous work
(Hoi et al., 2007; Zhuang et al., 2009). Denoting the
entire data point collection by X = {x1,x2, · · · ,xn},
S = (Si,j) ∈ Rn×n is a symmetric matrix in which
each Si,j represents the similarity between xi and xj .
Thus, S implies a graph G, in which each data point
xi ∈ X corresponds to a graph node of G and each Si,j
acts as an edge weight between the nodes in terms of
xi and xj . Thus, a normalized graph Laplacian ∆ of
G can be constructed as follows:

∆ = (1 + δ)I −D− 1
2SD−

1
2

where I is the identity matrix of proper size and
D = diag(d1, d2, · · · , dn) is a diagonal (degree) matrix
with di =

∑
j Si,j . A parameter δ > 0 is introduced

to prevent ∆ from being singular, such that ∆ � 0.
Let T be the indices of the given constraints, an indi-
cator matrix T can be constructed for representing T
as follows

Ti,j =

{
+1 if (xi,xj) is a must-link pair in T
−1 if (xi,xj) is a cannot-link pair in T

The goal of NPKL is to identify a kernel matrix Z that
is consistent with both ∆ and T . Following (Hoi et al.,
2007), we formulate it into the following SDP problem:

min
Z�0

: tr(∆Z) + C
∑

(i,j)∈T

`(Ti,jZi,j) (1)

where the first term plays a similar role as the manifold
regularization, in which ∆ is used to impose smooth-
ness. The second term measures the inconsistency be-
tween Z and the given constraints, and `(·) is specified
as hinge loss function in (Hoi et al., 2007) while it can
be linear or square hinge loss in (Zhuang et al., 2009).

3. Non-Parametric Kernel Learning
Using BCD

In the sequel, let L and U be the indices of the data
points involved with and without pairwise constraints
respectively, i.e., the data points in XL = {xi|(xi, ·) ∈
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T } are constrained points while unconstrained points
for the ones in XU = X \ XL, we denote |XL| = l.
Thus, based on L and U , Z and ∆ can be represented
as follows

Z =

(
ZL,L ZL,U
ZU,L ZU,U

)
∆ =

(
∆L,L ∆L,U

∆U,L ∆U,U

)
(2)

3.1. Derivation to Boundary Kernel Learning

Following (Hoi et al., 2007), learning a kernel Z cor-
responds to seek an embedding mapping φG from the
nodes of underlying graph G to a RKHS, i.e., φG :
xi 7−→ φG(xi), that is, learning Z is equivalent to seek
φG. Let Φ = φG(X ) = (φG(x1), φG(x2), · · · , φG(xn))
and ΦL = Φ|L be as restricting Φ to XL, then

Z = Φ>Φ and ZL,L = Φ>LΦL (3)

If viewing the nodes associated with XL and XU as the
boundary and interior of G respectively, φG is a map-
ping restricted to G. Inspired by the boundary value
problem (Jost, 2005), we can give the following Propo-
sition 1 stating that φG can be uniquely determined by
its subpart only restricted to the boundary.

Proposition 1: The optimal solution of Eq.1 is Z =
QZBDQ>, in which ZBD = ZL,L is an optimal solu-
tion of the following SDP problem:

min
ZBD�0

: tr(∆̃ZBD) + C
∑

(i,j)∈T

`(Ti,jZ
BD
i,j ) (4)

where we denote IL the identity matrix of proper size,

Q =

(
IL

−∆−1
U,U∆>L,U

)
and ∆̃ = ∆L,L−∆L,U∆−1

U,U∆>L,U .

Proof : Let Ω(Z) = tr(∆Z) + C
∑

(i,j)∈T
`(Ti,jZi,j), by

substituting Eq.s 2∼3, we have

Ω(Z) = tr(ΦL∆L,LΦ>L + 2ΦU∆>L,UΦ>L
+ΦU∆U,UΦ>U ) + C

∑
(i,j)∈T

`(Ti,j(Φ
>
LΦL)i,j)

By setting 1
2
∂Ω
∂ΦU

= ∆>L,UΦ>L + ∆U,UΦ>U = 0, we have

Φ>U = −∆−1
U,U∆>L,UΦ>L

Thus, Ω(Z) = tr(∆̃ZBD) + C
∑

(i,j)∈T
`(Ti,jZ

BD
i,j ) and

Z = QΦ>LΦLQ
> = QZBDQ>, Φ> = QΦ>L . �

Remark: Proposition 1 reveals a nice property that a
full-kernel matrix Z can be uniquely determined by its
subpart counterpart ZL,L only restricted to the pair-
wise constraints. This property holds for any loss func-
tion, and will significantly simplify the computation of
Eq.1 when l� n.

3.2. Boundary Kernel Learning Using BCD

Proposition 1 reduces learning Z into learning its sub-
part ZBD = ZL,L. However if learning ZBD by using
SDP optimization, the time complexity could be as
high as O(|XL|6.5)(Zhuang et al., 2009). Therefore,
we resort to explore a BCD technique for solving the
SDP problem of Eq.4. That is, we first reformulate E-
q.4 into a NLP problem by low-rank factorization, and
then solve this NLP by BCD iteration in Gauss-Seidel
style (Grippo & Sciandrone, 2000).

3.2.1. low-rank factorization

Due to its symmetry and positive semidefiniteness,
ZBD can be factorized as

ZBD = V >V, V = (v1, · · · ,vl)
where vi ∈ Rr can be viewed as the new data repre-
sentation of xi ∈ XL. Substituting ZBD = V >V into
Eq.4, we get a NLP formulation as

min
V

: tr(V ∆̃V >) + C
∑

(i,j)∈T

`(Ti,jv
>
i vj) (5)

Now, the rising problem is what relationship exists
between the solutions of Eq.4 and Eq.5. A possible
answer is given by the following Proposition 2.

Proposition 2 (Burer & Monteiro, 2003): For suffi-
ciently large values of r, a global solution of Eq.5 gives
a global solution of Eq.4.

Proposition 2 states that a value of r exists such that
there is a one-to-one correspondence between the glob-
al solutions of Eq.5 and Eq.4. Further, for the es-
timation of r, Theorem 2.2 in (Burer & Monteiro,
2003) states that for a SDP problem with only linear
constraints, the rank of its optimal solution satisfies
r(r + 1) ≤ m, where m is the number of linear con-
strains. Thus, we have Proposition 3.

Proposition 3: If optimal solution ZBD
?

exists for
Eq.4, then the rank r of ZBD

?

satisfies the inequality
r(r + 1)/2 ≤ m where m = |T |.

Proposition 2 implies that optimizing Eq.5 can get a
global solution of Eq.4 for all r ≥ max{s ∈ N|s(s +
1)≤m}. However, the problem in Eq.5 is non-convex
so that searching its global optimal solutions is diffi-
cult. So, we aim at finding a local optimal solution of
Eq.5 by using the BCD technique (Grippo & Scian-
drone, 2000) in the next subsection.

3.2.2. BCD formulation for different loss
functions

Let Ω be the objective of Eq.5 again and taking each
vi(i = 1, · · · , l) as one coordinate block, the subprob-
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lem for updating vi becomes

v
(t+1)
i = argmin

yi

Ω(v
(t+1)
1 , · · · ,v(t+1)

i−1 ,yi,v
(t)
i+1, · · · ,v

(t)
l )

which updates V column by column. Starting from
an initial matrix V (0) , this update can generate a se-
quence of matrices {V (t)}∞t=0 and we refer to the pro-
cess from V (t) to V (t+1) as an outer iteration. Also,
we have l inner iterations so that v1, · · · ,vl are up-
dated within each outer iteration. The subproblem
for updating vi(i = 1, · · · , l) can be detailed as

min
vi

:
1

2
v>
i (∆̃i,ivi+2(

∑
k 6=i

∆̃i,kvk))+
C

2

∑
j∈T (i)

`(Ti,jv
>
i vj) (6)

where T (i) = {j|(i, j) ∈ T } and all vk(k 6=i) should
be fixed at the current inner iteration. Next, we will
show how to get a compact convex QP when the hinge
loss (HL), square hinge loss (SHL) or square loss (SL)
is plugged into Eq.6 respectively.

(I) Hinge Loss: `(f) = 2 max (1− f, 0)

The problem in Eq.6 can be reformulated as

min
vi,εj

: 1
2 ∆̃i,iv

>
i vi + v>i (

∑
k 6=i

∆̃i,kvk) + C
∑

j∈T (i)

εj

s.t. : ∀j ∈ T (i), Ti,jv
>
i vj≥1− εj , εj≥0.

(7)

By introducing the dual vectors α = (α1, · · · , α|T (i)|)
>

and β ∈ R|T (i)|, we have a Lagrangian function:

L(vi, εj ;απ(j), βπ(j)) = 1
2∆̃i,iv

>
i vi + v>i (

∑
k 6=i

∆̃i,kvk)

+
∑

j∈T (i)

(C − βπ(j))εj −
∑

j∈T (i)

απ(j)(Ti,jv
>
i vj − 1 + εj)

where π : j ∈ T (i)7−→π(j)∈{1, · · · , |T (i)|} is a
permutation. By vanishing the first order derivative
of L, we have

∂L
∂εj

= C − απ(j) − βπ(j) = 0
∂L
∂vi

= ∆̃i,ivi +
∑
k 6=i

∆̃i,kvk −
∑

j∈T (i)

απ(j)Ti,jvj = 0

This means 0≤απ(j)≤C and

vi = ∆̃−1
i,i (

∑
j∈T (i)

απ(j)Ti,jvj −
∑
k 6=i

∆̃i,kvk) (8)

By substituting Eq.8 into L, we have

L(α) =
∑

s∈T (i)

απ(s)(Ti,sv
>
s

∑
k 6=i

(∆̃i,kvk) + ∆̃i,i)

− 1
2

∑
s,t∈T (i)

Ti,sTi,tv
>
s vtαπ(s)απ(t)

Let q = (q1, · · · , q|T (i)|)
> and P = (pπ(s),π(t)) in terms

of qπ(s) = Ti,sv
>
s (
∑
k 6=i

∆̃i,kvk) + ∆̃i,i and pπ(s),π(t) =

Ti,sTi,tv
>
s vt, the dual of Eq.7 can be induced as

min
0≤α≤C

:
1

2
α>Pα−α>q (9)

where P � 0 and 0 ≤ α ≤ C means 0≤απ(j)≤C for
every j∈T (i).

( II ) Square Hinge Loss: `(f) = (max (1− f, 0))2

The problem in Eq.6 can be reformulated as

min
vi,εj

: 1
2∆̃i,iv

>
i vi + v>i (

∑
k 6=i

∆̃i,kvk) + C
2

∑
j∈T (i)

εj
2

s.t. : ∀j ∈ T (i), Ti,jv
>
i vj≥1− εj .

Let H = P + 1
C ∆̃i,iI ∈ R|T (i)|×|T (i)|, the dual becomes

min
α≥0

:
1

2
α>Hα−α>q (10)

where both P and q have the same forms as in Eq.9,
and the primal solution is also similar to Eq.8.

(III) Square Loss: `(f) = (1− f)2

The problem in Eq.6 can be reformulated as

minvi
:

1

2
v>i Mvi + v>i (

∑
k 6=i

∆̃i,kvk − C
∑
j∈T (i)

Ti,jvj)

where M = ∆̃i,iI +C
∑

j∈T (i)

vjv
>
j . Clearly, we can get

its closed-form solution as

vi = −M−1(
∑
k 6=i

∆̃i,kvk − C
∑
j∈T (i)

Ti,jvj) (11)

3.3. Algorithm and Implementation Issues

Based on the above analyses, the complete BCDNPKL
algorithm can be summarized in Algorithm 1 .

Algorithm 1 BCDNPKL for NPKL

Input: T,Q, ∆̃, δ, r, C, ε and IterMax
Output: Target kernel matrix Z?

Initialization: set V (0) ∈ Rr×l and t = 0.
repeat

for i = 1 to l do
(i) Update v

(t)
i into v

(t+1)
i by Eq.8 or Eq.11;

(ii) V (t) = (v
(t+1)
1 , · · · ,v(t+1)

i ,v
(t)
i+1, · · · ,v

(t)
l ).

end for
Set V (t+1) = (v

(t+1)
1 ,v

(t+1)
2 , · · · ,v(t+1)

l ), t = t+1;
until {||V (t+1) − V (t)||F < ε or t > IterMax}
Obtain Z? = QZBDQ> w.r.t. ZBD = V (t)>V (t).

For implementing Algorithm 1 , the time complexity
mainly lies in solving the subproblem of Eq.9, 10 or
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11, which is always a strictly convex QP (its size is
|T (i)| to Eq.9 or 10). When |T (i)| = 1, we can obtain
a closed-form solution α = min (max (P−1q, 0), C) to
Eq.9 and α = max (H−1q, 0) to Eq.10. It is worth not-
ing that the size of the QP of Eq.9 or Eq.10 is often
very small since the given constraints are distribut-
ed very sparse in general. When SL is chosen, the
subproblem has the closed-form solution in Eq.11, in
which computing the matrix inverse can become very
fast by using a generalization of Sherman-Morrison-
Woodbury formula1:(
W +

∑s

k=1
akb

>
k

)−1

= W−1−W−1AM−1B>W−1

where A = (a1, · · · ,as), B = (b>1 , · · · ,b>s ) and M is
a square matrix of size s. All above analyses indicate
that the BCD subproblem can be efficiently solved,
which will contribute to the high efficiency of BCD-
NPKL.

3.4. Global Convergence

The convergence of BCD optimization has been in-
tensively studied, interested readers can refer to (T-
seng & Yun, 2009; Grippo & Sciandrone, 2000). It is
well known that without certain safeguards, BCD im-
plementation cannot be guaranteed to converge. For-
tunately, from the componentwise convexity of Ω(V ),
i.e., Ω(V ) is strictly convex w.r.t. each vi, we can pro-
vide a formal proof for the convergence of Algorithm 1
in Theorem 1.

Theorem 1: If {V (t)} is the sequence of iterates gen-
erated from the updates in the Algorithm 1, then V (t)

globally converges to a stationary point.

Proof : Clearly, the update of V in Algorithm 1 pro-
duces a sequence of nondecreasing objective function
values Ω(V (0)) ≥ Ω(V (1)) ≥, · · · ,≥ Ω(V (t)) ≥ 0. Be-
cause of ∆ � 0 (see Section 2), we known ∆U,U � 0,

which means ∆̃ � 0 because as a Schur complement,
∆̃ � 0 if and only if ∆ � 0 and ∆U,U � 0. Hence,

the minimal eigenvalue of ∆̃, λmin(∆̃) > 0. Fur-
ther because of `(·) ≥ 0, we have λmin(∆̃)||V (t)||2F ≤
tr(V (t)>∆̃V (t)) ≤ Ω(V (t)) ≤ Ω(V (0)). Hence,

||V (t)||2F≤Ω(V (0))/λmin(∆̃)

This means that the level set of {V |Ω(V ) ≤ Ω(V (0))}
is compact so that {V (t)} can converge to a limit point
V ?. From Eq.s 9∼11, we know that for any loss func-
tion, the subproblem w.r.t. vi(i = 1, · · · , l) is strictly
convex. Hence, according to Proposition 5 in (Grip-
po & Sciandrone, 2000), the limit point V ? is also a
stationary point. �

1Available at: http://arxiv.org/abs/0807.3860.

Remark: Theorem 1 states that BCDNPKL produces
at least a local-optimal solution. Also, we can conclude
that BCDNPKL has at least linear convergence rate
since BCD method has the same convergence rate as
gradient descent method (Tseng & Yun, 2009).

4. Experiments

Like (Hoi et al., 2007), we examine both effectiveness
and efficiency of the proposed approach by clustering.
That is, a kernel matrix is first learned from the pair-
wise constraints using the proposed algorithms, and
then the kernelized K-means algorithm is employed to
cluster examples. The clustering accuracy of the ker-
nelized K-means will be used to evaluate the quality of
the learned kernel matrix, while CPU time (the time
for clustering is excluded) for efficiency. Each cluster-
ing experiment is repeated by 20 trials with multiple
restarts and all baselines are given the same random
set of initial cluster centers in each trial. For effective-
ness evaluation, we adopt two measures. One is the
pairwise accuracy (Hoi et al., 2007)

Pair-Accuracy =
∑
i>j

1{1{ci=cj}=1{ĉi=ĉj}}
0.5n(n−1)

This metric measures the percentage of example pairs
that are correctly clustered together. The other is
the normalized mutual information (NMI) also used
in (Kulis et al., 2006). NMI measures the amount of
statistical information shared by the random variables
representing the cluster and ground-truth class distri-
butions.

4.1. Baselines

We compare BCDNPKL+HL/SHL/SL with the fol-
lowing state-of-the-art NPKL approaches:

• NPK: This approach is specific to hinge loss and fo-
cuses on deriving the dual problem of Eq.1. Following
(Zhuang et al., 2009), we solve the dual problem by
using a standard SDP solver SeDuMi2.

• SimpleNPKL+SHL: This approach is specific to
square hinge loss by adding a constraint into the pri-
mal problem in Eq.1 so that Z has a closed-form so-
lution under min-max (i.e., primal-dual) framework.
This min-max problem is solved by alternatively iter-
ating between primal and dual variables. The linear
loss (LL) also suggested by the authors, however, we
do not compare with SimpleNPKL+LL in that it is
uncompetitive to SimpleNPKL+SHL in effectiveness.

• ITML(Davis et al., 2007): This approach focuses
on learning a Mahalanobis distance matrix A from

2Available at http://sedumi.ie.lehigh.edu.
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pairwise constraints by using Bregman optimization.
Clearly, for a learned A, a kernel matrix Z = X>AX
can be generated as our comparison, where X =
(x1,x2, · · · ,xn).

• SDPLR(Burer & Monteiro, 2003): This approach
reformulates SDP framework into a NLP problem by
the idea of low-rank factorization, and then solves
the NLP reformulation by using the augmented La-
grangian method.

4.2. Experiment Setup

We divide all test data sets into three groups: The
first group includes nine small data sets: chessboard,
double-spiral, glass, heart, iris, protein, sonar, soybean
and wine, all of which are also used in the previous
studies (Hoi et al., 2007; Zhuang et al., 2009). The
second group (depicted in Table 1) includes six data
sets and all of them are also used in (Zhu et al., 2004).
The third group (depicted in Table 2) includes the
seven Adult1 data sets, of which the first five are also
used in (Zhuang et al., 2009).

For complete evaluation, we consider both sparse and
dense graphs for constructing ∆. For sparse graph
test, following (Zhuang et al., 2009), we set k = 5 as
the number of nearest neighbors for the first group da-
ta sets and k = 50 for the third group. Following (Zhu
et al., 2004), we set k = 100 for isolet , and k = 10
for the other data sets in second group. For dense
graph test, we construct the weighted graphs for al-
l third group data sets, where the similarity matrix
S = (Si,j) is given by Si,j = exp{−||xi − xj ||2/(2σ2)}
for i6=j and 0 otherwise, and the factor σ is fixed
as half of averaged distance between each sample
and its top-10 nearest neighbors. The factor C in-
volved in BCDNPKL/SimpleNPKL/NPK and γ in
ITML, are fixed as 1 for all the second and third
group data sets, but they are tuned in the range
of {0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10} for all the first
group ones. We set the parameter δ = C

2 in Algorith-
m 1 and the parameter B in SimpleNPKL following
(Zhuang et al., 2009). The rank parameter r is esti-
mated from Proposition 3 to the involved algorithms
BCDNPKL and SimpleNPKL. For iteration, we gener-
ate the initial point V (0) by using the MATLAB func-
tion rand(r, l).

To examine the performance extensively, on the sec-
ond group data sets, we set both little and much side-
information (but only much case for the first and third
group data sets). Specifically, similar to (Hoi et al.,

1Available at http://www.csie.ntu.edu.tw/ ∼cjlin/
libsvmtools/datasets/binary.html.

Table 1. The second group data sets.

Data set
pc

-mac

baseball

-hockey

one

-two

odd

-even

ten

-digits
isolet

#Classes 2 2 2 2 10 26

#Instances 1,943 1,993 2,200 4,000 4,000 7,797

Table 2. The third group data sets including seven Adult
data sets (for each one, #Classes=2, #Features=123).

Data set a1a a2a a3a a4a a5a a6a a7a

#Instances 1,605 2,265 3,185 4,781 6,414 11,220 16,100

2007), we randomly generate 4n × 10% pairs of con-
straints for little side-information setting and 4n×30%
for much case, where one half of constraints belongs
to must-link and the other to cannot-link.

All the codes are implemented in MATLAB 7.1(R14),
and all the experiments on the second and third group
data sets are carried out on a server running Ubun-
tu with AMD CPU (4 cores, 2.3GHz and 8G RAM),
while the experiments on the first group data sets on a
PC running Windows XP with AMD-Turion(tm)-64-
X2 (1.6 GHz, 960MB RAM).

4.3. Results and Analyses

The results on the first group data sets are reported in
Table 3, from which our main conclusions are: 1) BCD-
NPKL+SL is always faster than SimpleNPKL+SHL;
2) Both NPK and SDPLR are significantly slower than
the other algorithms in general, and ITML seems un-
competitive to SimpleNPKL+SHL in terms of accu-
racy. The 2) is also the reason why we give up com-
parison with NPK, ITML and SDPLR further on the
second and third group date sets.

Regarding the results on the second group data set-
s, the NMI accuracy and CPU time of BCDNPKL
and SimpleNPKL are reported in Table 4, from which
we can conclude: 1) BCDNPKL+SL gets all the best
efficiencies and both BCDNPKL with HL and SHL
are also faster than SimpleNPKL+SHL on isolet da-
ta; 2) The speedups of BCDNPKL over SimpleNPKL
are more sensitive on the little constraint setting than
those on the much case.

For further comparisons in scalability, the results on
the third group data sets are listed in Table 5. Our
main conclusions are: 1) BCDNPKL+SL is always
fastest and all BCDNPKL with HL, SHL or SL are al-
ways faster than SimpleNPKL+SHL on the data sets
from a4a to a7a; 2) Due to avoiding finding k-nearest
neighbors, the time of constructing the dense graphs
is considerably lower than that on the sparse ones;
3) Implementing BCDNPKL on a large-scale dense
graph is almost as efficient as that on the correspond-
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ing sparse graph, on the contrary, implementing Sim-
pleNPKL on a large-scale dense graph is significantly
slower than that on its sparse graph because of eigen-
decomposition. So SimpleNPKL is prohibitive from
running on the data sets a6a and a7a when the dense
graphs are chosen.
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Figure 1. The comparison of convergent objective values
between BCDNPKL and the baselines based on SDP solver
on data sets: iris (C = 10) and soybean (C = 5).

Further, we compare the convergent objective values
between BCDNPKL+HL/SHL/SL and the baselines
based on standard SDP solvers (SeDuMi/YALMIP).
Figure 1 shows the comparison on two data sets: iris
(C = 10) and soybean (C = 5), from which our
main conclusions are: 1) BCDNPKL often converges
within 10 iterations; 2) the difference of the objec-
tive values between BCDNPKL+SHL/SL and the SD-
P solver approaches zero, our conjecture is that BCD-
NPKL+SHL/SL maybe contribute to a global optimal
solution. However, the difference of the objective val-
ues between BCDNPKL+HL and the SDP solver is
clearly larger than zero, which should be that BCD-
NPKL+HL actually generate a different solution from
the SDP solver.

5. Conclusions

For performing NPKL from pairwise constraints, our
BCDNPKL algorithm is superior especially in scala-
bility. In the future, we will parallelize the implemen-
tation of BCDNPKL for further speedup.
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