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Abstract

This work explores the effects of relevant and
irrelevant boolean variables on the accuracy
of classifiers. The analysis uses the assump-
tion that the variables are conditionally in-
dependent given the class, and focuses on a
natural family of learning algorithms for such
sources when the relevant variables have a
small advantage over random guessing. The
main result is that algorithms relying pre-
dominately on irrelevant variables have error
probabilities that quickly go to 0 in situations
where algorithms that limit the use of irrele-
vant variables have errors bounded below by
a positive constant. We also show that accu-
rate learning is possible even when there are
so few examples that one cannot determine
with high confidence whether or not any in-
dividual variable is relevant.

1. Introduction

The purpose of this paper is to provide an illustra-
tive analysis that isolates the effects of relevant and
irrelevant variables on a classifier’s accuracy. We show
that, if variables complement one another (formalized
with the usual assumption of conditional independence
given the class label), then relevant variables can do
much more good than irrelevant variables do harm. In
many natural settings the individual variables are only
weakly associated with the class label. This can hap-
pen when a lot of measurement error is present, as is
seen in microarray data. In these settings it can be
worthwhile for the classifier to use what at one time
might have been thought an excessive number of vari-
ables, even if only an small fraction of them are rele-
vant.
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Over the past decade or so, a number of empirical
and theoretical findings have challenged the traditional
rule of thumb described by Bishop (2006) as follows.

One rough heuristic that is sometimes ad-
vocated is that the number of data points
should be no less than some multiple (say 5
or 10) of the number of adaptive parameters
in the model.

The Support Vector Machine literature (see (Vapnik,
1998)) views algorithms that compute apparently com-
plicated functions of a given set of variables as linear
classifiers applied to an expanded, even infinite, set
of features. These empirically perform well on test
data, and theoretical accounts have been given for this.
Boosting and Bagging algorithms also generalize well,
despite combining large numbers of simple classifiers
– even if the number of such “base classifiers” is much
more than the number of training examples (Quinlan,
1996; Breiman, 1998; Schapire et al., 1998). This is de-
spite the fact that Friedman et al. (2000) showed the
behavior of such classifiers is closely related to per-
forming logistic regression on a potentially vast set of
features (one for each possible decision tree, for exam-
ple).

Similar effects are sometimes found even when the
features added are restricted to the original “raw”
variables. Figure 1, which is reproduced from
Tibshirani et al. (2002), is one example. The curve
labelled “te” is the test-set error, and this error is plot-
ted as a function of the number of features selected by
the Shrunken Centroids algorithm. The best accuracy
is obtained using a classifier that depends on the ex-
pression level of well over 1000 genes, despite the fact
that there are only a few dozen training examples.

It is impossible to tell if most of the variables used
by the most accurate classifier in Figure 1 are irrele-
vant. However, we do know which variables are rele-
vant and irrelevant in synthetic data (and can generate
as many test examples as desired). Figure 2 concerns
a simple algorithm applied to a simple source. Each
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Figure 1. This graph is reproduced from Tibshirani et al.
(2002). For a microarray dataset, the training error, test
error, and cross-validation error are plotted as a function
both of the number of features (along the top) included
in a linear model and a regularization parameter ∆ (along
the bottom).

of two classes is equally likely, and there are 1000 rele-
vant variables, 500 of which agree with the class label
with probability 1/2 + 1/10, and 500 which disagree
with the class label with probability 1/2 + 1/10. An-
other 99000 variables are irrelevant. The algorithm is
equally simple: it has a parameter β, and outputs the
majority vote over those features (variables or their
negations) that agree with the class label on a 1/2+β
fraction of the training examples. Plots are provided
for three runs of this algorithm with 100 training ex-
amples, and 1000 test examples. Both the accuracy of
the classifier and the fraction of relevant variables are
plotted against the number of variables used in the
model, for various values of β. Each time, the best
accuracy is achieved when an overwhelming majority
of the variables used in the model are irrelevant, and
those models with few (< 25%) irrelevant variables
perform far worse. Furthermore, the best accuracy is
obtained with a model that uses many more variables
than there are training examples. Also, accuracy over
90% is achieved even though the correlation of the in-
dividual variables with the class label is so weak, and
the number of training examples is so small, that it
is impossible, for any individual feature, to tell confi-
dently whether that feature is relevant or not.

Assume classifier f consists of a vote over n variables
that are conditionally independent given the class la-
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Figure 2. Top: Test error (blue) and fraction of irrelevant
variables (black dashed) as a function of the number of
features. Bottom: Scatter plot of test error rates (vertical)
and fraction of irrelevant variables (horizontal).

bel. Let k of the variables agree with the class label
with probability 1/2+γ, and the remaining n−k vari-
ables agree with the label with probability 1/2. Then
the probability that f is incorrect is at most

exp

(−2γ2k2

n

)

(1)

(as shown in Section 3). The error bound decreases
exponentially in the square of the number of relevant
variables. The competing factor increases only linearly
with the number of irrelevant variables. Thus, a very
accurate classifier can be obtained with a feature set
consisting predominately of irrelevant variables.

In Section 4 we consider learning from training data
generated from a source in which N boolean variables
are conditionally independent given the class label,
and N −K of them are also independent of the label,
agreeing with it with probability 1/2. The K relevant
variables either agree with the label with probability
1/2 + γ or with probability 1/2 − γ. Whereas Equa-
tion (1) bounded the error as a function of the number
of relevant and irrelevant variables in the model, we are
now discussing the number of relevant and irrelevant
variables in the data. We analyze an algorithm that
chooses a value of β and outputs a majority vote over
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all features that agree with the class label on at least
1/2 + β of the training examples (as before, each fea-
ture is either a variable or its negation). We show that
if β ≤ γ and the algorithm is given m training exam-
ples, then the probability that it makes an incorrect
prediction on an independent test example is at most

(1+o(1)) exp

(

−2γ2K

(

[1− 8e−2(γ−β)2m − γ)]2+
1 + 8(N/K)e−2β2m + γ

))

,

(2)

where [z]+
def
= max{z, 0}. (Throughout the paper, the

“big Oh” and other asymptotic notation will be for
the case where γ is small, K/γ is large, and N/K is
large. If K is not large relative to 1/γ2, even the Bayes
optimal classifier is not accurate.) If β = γ/2, this
implies a bound of

(1 + o(1)) exp

(

−2γ2K

(

1−O(e−γ2m/2)

1 +O
(

(N/K)e−γ2m/2
)

))

.

When β ≤ γ/2 and m ≥ c/γ2, we also show that the
error probability is at most

(1 + o(1)) exp
(

−Ω
(

γ2K2/N
))

. (3)

If N = o(γ2K2), this error probability goes to zero.
With only Θ(1/γ2) examples, an algorithm cannot
even tell with high confidence whether a relevant vari-
able is positively or negatively associated with the class
label, much less solve the more difficult problem of de-
termining whether or not a variable is relevant. In-
deed, this error bound is also achieved using β = 0,
when, for each variable Xi, the algorithm includes ei-
ther Xi or its negation in the vote.1

Our upper bounds illustrate the potential rewards for
algorithms that are “inclusive”, using many of the
available variables in their classifiers. We also prove
some lower bounds that illustrate the potential cost
when algorithms are “exclusive”. We say that a pol-
icy for setting β as a function of γ is λ-exclusive if
the expected number of relevant variables in the re-
sulting model divided by its expected total number of
variables is at least λ. We show that any λ-exclusive
policy has an error probability at least a constant as K
and N/K go to infinity and γ goes to 0 in such a way
that the error rate obtained by the more “inclusive”
setting β = γ/2 goes to 0. In particular, no λ-exclusive
algorithm can achieve a bound like (3).

1To be precise, the algorithm includes each variable or
its negation when β = 0 and m is odd, and includes both
the variable and its negation when m is even and the vari-
able agrees with the class label exactly half the time. But,
any time both a variable and its negation are included,
their votes cancel. We will always use the smaller equiva-
lent model obtained by removing such canceling votes.

Relationship to Previous Work For the sources
studied in this paper, there is a linear classifier
that classifies most random examples correctly with
a large margin, i.e. most examples are not close
to the decision boundary. The main motivation
for our analysis was to understand the effects of
relevant and irrelevant variables on generalization,
but it is interesting to note that we get meaning-
ful bounds in the extreme case that m = Θ(1/γ2),
whereas the margin-based bounds that we know (such
as Schapire et al. (1998); Koltchinskii & Panchenko
(2002); Dasgupta & Long (2003); Wang et al. (2008))
are vacuous in this case. (Since these other bounds
hold more generally, their overall strength is incom-
parable to our results.) Ng & Jordan (2001) showed
that the Naive Bayes algorithm (which ignores class-
conditional dependencies) converges relatively quickly,
justifying its use when there are few examples. (Their
bound for Naive Bayes is also vacuous when m =
Θ(1/γ2).) Bickel & Levina (2004) studied the case
in which the class conditional distributions are Gaus-
sians, and showed how an algorithm which does not
model class conditional dependencies can perform
nearly optimally in this case, especially when the num-
ber of variables is large. Bühlmann & Yu (2002) ana-
lyzed the variance-reduction benefits of Bagging with
primary focus on the benefits of the smoother classifier
that is obtained when ragged classifiers are averaged.
As such it takes a different form than our analysis.

Our analysis demonstrates that certain effects are pos-
sible, but how important this is depends on how closely
natural learning settings resemble our theoretical set-
ting and the extent to which our analysis can be gen-
eralized. The conditional independence assumption is
one way to express the intuitive notion that variables
are not too redundant. A limit on the redundancy is
needed for results like ours since, for example, a col-
lection of Θ(k) perfectly correlated irrelevant variables
would swamp the votes of the k relevant variables. On
the other hand, many boosting algorithms minimize
the potential for this kind of effect by choosing fea-
tures in later iterations that make errors on different
examples then the previously chosen features. One re-
laxation of the conditional independence assumption is
to allow each variable to conditionally depend on a lim-
ited number r of other variables, as is done in the for-
mulation of the Lovasz Local Lemma (see Alon et al.
(1992)). To illustrate the robustness of the effects an-
alyzed here, we generalize (1) to this case in Section 5.

There we prove a bound of c(r+1) exp
(

−2γ2k2

n(r+1)

)

when

each variable depends on most r others. There are a
number of ways that one could imagine relaxing the
conditional independence assumption while still prov-
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ing theorems of a similar flavor.

Another obvious direction for generalization is to re-
lax the strict categorization of variables into irrelevant
and (1/2 + γ)-relevant classes. We believe that many
extensions of this work with different coverage and in-
terpretability tradeoffs are possible. For example, our
proof techniques give similar theorems when each rele-
vant variable has a probability between 1/2+ γ/2 and
1/2 + γ of agreeing with the class label. Here we con-
centrate on some of the cleanest and simplest settings
in order to focus attention on the main ideas.

We state some useful tail bounds in the next section,
and Section 3 analyzes the error of simple voting clas-
sifiers. Section 4.1 gives bounds on the expected er-
ror of hypotheses learned from training data while 4.2
shows that, in certain situations, any exclusive algo-
rithm must have high error while the error of some
inclusive algorithms goes to 0. In section 5 we bound
the accuracy of voting classifiers under a weakened in-
dependence assumption.

2. Tail bounds

These bounds all assume that U1, U2, . . . , Uℓ are ℓ in-
dependent {0, 1}-valued random variables and U =
∑n

i=1 Ui. We start with some upper bounds.

The Hoeffding bound, see Pollard (1984):

Pr

[

1

ℓ
U − E

(

1

ℓ
U

)

≥ γ

]

≤ e−2γ2ℓ. (4)

The Chernoff bound, see Angluin & Valiant (1979);
Motwani & Raghavan (1995), for any η > 0:

Pr[U > (1+η)E(U)] < exp

(

−(1 + η)E(U) ln

(

1 + η

e

))

(5)

For any 0 ≤ η ≤ 4 (see Appendix A.1):

Pr[U > (1 + η)E(U)] < exp
(

−η2E(U)/4
)

. (6)

For any 0 < δ ≤ 1 (see Appendix A.2):

Pr[U > 4E(U) + 3 ln(1/δ)] < δ. (7)

We will also need lower bounds on the tails of the
distribution. Here c1, ..., c7 are absolute constants.

If Pr(Ui = 1) = 1/2 for all i, η > 0, and ℓ ≥ 1/η2 then
(see Appendix A.3):

Pr

[

1

ℓ
U − 1

ℓ
E (U) ≥ η

]

≥ c1

η
√
ℓ
exp

(

−2η2ℓ
)

− c2√
ℓ
.

(8)

Slud’s Theorem (Slud, 1977), if 0 ≤ η ≤ c3 and
Pr [Ui = 1] = 1/2 + η for all i then:

Pr

[

1

ℓ
U < 1/2

]

≥ c4e
−c5η

2ℓ. (9)

If Pr [Ui = 1] = 1/2 for all i, then for all 0 ≤ η ≤ 1/2
(see Appendix A.4):

Pr

[

1

ℓ
U − 1

ℓ
E(U) ≥ η

]

≥ c6e
−c7η

2ℓ. (10)

3. The accuracy of models containing

relevant and irrelevant variables

In this section we analyze the accuracy of the models
(hypotheses) produced by the algorithms in Section 4.
Each example is represented by a vector of N binary
variables and a class designation. We assume a simple
generative model with parameter γ > 0 and:

• random {0, 1} class designations: both classes are
equally likely;

• the K relevant variables are equal to the class
designation either with probability 1/2+γ or with
probability 1/2− γ;

• the N − K irrelevant variables are equal to the
class label with probability 1/2;

• all variables are conditionally independent given
the class designation.

Which variables are relevant and whether each one is
positive or negatively correlated with the class desig-
nations are chosen arbitrarily ahead of time.

A feature is either a variable or its complement. The
2(N −K) irrelevant features come from the irrelevant
variables, the K relevant features agree with the class
labels with probability 1/2 + γ, and the K misleading
features agree with the class labels with probability
1/2− γ.

We consider modelsM predicting with a majority vote
over a subset of the features. We use n for the total
number of features in model M, k for the number of
relevant features, and ℓ for the number of misleading
features (leaving n−k−ℓ irrelevant features). Since the
votes of a variable and its negation “cancel out,” we
assume without loss of generality that models include
at most one feature for each variable.

Theorem 1. Let M be a majority vote of n fea-
tures, k of which are relevant and ℓ of which are mis-
leading (and n − k − ℓ are irrelevant). If ℓ ≤ k,
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the probability that M predicts incorrectly is at most

exp
(

−2γ2(k−ℓ)2

n

)

.

Proof: Model M predicts incorrectly only when at
most half of its features are correct. The expected

fraction of correct voters is 1/2 + γ(k−ℓ)
n , so, for M’s

prediction to be incorrect, the fraction of correct vot-
ers must be at least γ(k − ℓ)/n less than its ex-
pectation. Applying (4), this probability is at most

exp
(

−2γ2(k−ℓ)2

n

)

.

The next corollary shows that even models where most
of the features are irrelevant can be highly accurate.

Corollary 1. If γ is constant, k−ℓ = ω(
√
n), and k =

o(n), then the accuracy of the model approaches 100%
while its fraction of irrelevant variables approaches 1.

The hypothesis of Corollary 1 is satisfied, for example,
when γ = 1/4, k = 2n2/3 and ℓ = n2/3.

4. Learning

We now consider the problem of learning a model M
from data. We assume that the algorithm receives
m i.i.d. examples generated as described in Section 3.
One test example is independently generated from the
same distribution, and we evaluate the algorithm’s
expected error, the probability over training set and
test example that its model makes an incorrect pre-
diction on the test example (the “prediction model” of
Haussler et al. (1994)).

We define Mβ to be the majority vote2 of all features
that equal the class label on at least 1/2 + β of the
training examples. To keep the analysis as clean as
possible, our results apply to algorithms that chose β
as a function of N , K, γ, and training set size m, and
then predict with Mβ .

4.1. The accuracy of Mβ

This section proves two theorems bounding the ex-
pected error rates of learned models. We note that
the Bayes Optimal predictor for our generative model
is a majority vote of the K relevant features, and has
an error rate bounded by e−2γ2K (a bound as tight as
the Hoeffding bound). We also use Hoeffding bounds
in our results and will state them in a similar form.

Theorem 2. If 0 ≤ β ≤ γ, the expected error rate of
Mβ is at most

(1 + o(1)) exp

(

−2γ2K

(

[1− 8e−2(γ−β)2m − γ]2+
1 + 8(N/K)e−2β2m + γ

))

.

2If Mβ is empty, then any default prediction, such as
1, will do.

Our proof of Theorem 2 starts with lemmas bound-
ing the number of misleading, irrelevant, and relevant
features in Mβ .

Lemma 1. With probability at least 1 − δ, the
number of misleading features in Mβ is at most

4Ke−2(γ+β)2m + 3 ln(1/δ).

Proof: For a particular misleading feature L in Mβ ,
Algorithm A must overestimate the probability that
L = Y by β+γ. Applying (4), this happens with prob-

ability at most e−2(β+γ)2m, so the expected number of
misleading features in Mβ is at most Ke−2(β+γ)2m.
Since each misleading feature is associated with a dif-
ferent independent variable, we can apply (7) with

E(U) = Ke−2(β+γ)2m to get the desired result.

Lemma 2. With probability at least 1−2δ, the number
of irrelevant features in Mβ is at most 8Ne−2β2m +
6 ln(1/δ).

Proof: Separately bound the number of positive
and negative irrelevant features in the model as in
Lemma 1. With probability at least 1 − 2δ the to-
tal number of irrelevant features is at most the sum of
the bounds.

Lemma 3. With probability at least 1 − δ, the num-
ber of relevant features in Mβ is at least K −
4Ke−2(γ−β)2m − 3 ln(1/δ).

Proof: Bound the number of relevant features not in
the model as in Lemma 1. The number of relevant
features remaining in the model is at least K minus
this bound.

Lemma 4. The probability that Mβ makes an error
is at most

exp







−2γ2
[

K − 8Ke−2(γ−β)2m − 6 ln(1/δ)
]2

+

K + 8Ne−2β2m + 6 ln(1/δ)






+4δ.

for any δ > 0 and 0 ≤ β ≤ γ.

Proof: Applying Theorem 1 with the lower bound on
k − ℓ from Lemmas 1 (under-approximating (γ + β)2

with (γ−β)2) and 3 and upper bounding n withK plus
the bound of Lemma 2 shows that, with probability at
least 1− 4δ, the error is at most the first term. (Note
that the lemma is vacuous unless the bound on k − ℓ
is positive.)

Proof (of Theorem 2): Using δ = exp(−γK/6) in
Lemma 4 and simplifying, the expected error rate of
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Mβ is at most

exp







−2γ2K
[

1− 8e−2(γ−β)2m − γ
]2

+

1 + 8N
K e−2β2m + γ






+ 4e−γK/6.

The first term is at least e−2γ2K and e−γK/6 =
o(e−2γ2K) as γK gets large, implying the bound

(1 + o(1)) exp







−2γ2K
[

1− 8e−2(γ−β)2m − γ
]2

+

1 + 8N
K e−2β2m + γ






.

Theorem 3. Suppose A uses a β where 0 ≤ β ≤ cγ
for a constant c ∈ [0, 1). There is a constant c′ (de-
pending only on c) such that, if m = c′/γ2, the er-

ror of A is at most (1 + o(1)) exp
(

−γ2K2

N

)

. Fur-

thermore, if m = ω(1/γ2), the error of A is at most

(1 + o(1)) exp
(

−(2−o(1))γ2K2

N

)

.

Proof. Since Mβ contains at most N features, the
bound of Lemma 4 with the denominator replaced by
N also holds. Continuing as in the proof of Theorem 2
and using (γ − β)2 ≥ (1− c)2γ2 yields a bound of

(1+o(1)) exp

(

−2γ2K2

(

[1−O(e−2(1−c)2γ2m)]2+
N

))

.

Settingm = c′/γ2 for a large enough value of c′ suffices
to make the [· · · ]2+ term at least 1/2, and when m =
ω(1/γ2) it is 1− o(1).

Note that Theorem 3 includes non-trivial bounds for
M0 that votes all N variables (for odd sample size m).

4.2. Lower bound

In this subsection, we show that any algorithm with
an error guarantee like Theorem 3 must include many
irrelevant features in its model.

Definition 1. Let R be the set of relevant features,
and recall that Mβ is the set of features in the model
(which depends on the random training data). We say
that an algorithm A is λ-exclusive if for every posi-
tive N , K, γ, and m, A uses a β ∈ [0, 1/2] such that
E(|Mβ ∩R|)

E(|Mβ |)
≥ λ.

Our main lower bound theorem is the following.

Theorem 4. There are absolute positive constants c1
and c2 ∈ [0, 1), and functions K(γ) and N(γ) tying K
and N to γ such that if m = c1/γ

2 the following hold.

If λ > 0, then the error rate of any λ-exclusive A is at
least a positive constant for all small enough γ.

Inclusive A using models Mβ with β ≤ c2γ have error
rates that goes to zero super-polynomially fast (in 1/γ).

We will prove Theorem 4 using a series of lemmas.
The first is a lower bound in terms of the number of
relevant variables.

Lemma 5. There are absolute positive constants
c1, c2, c3 such that if γ ∈ [0, c1] then any model with
k relevant features has an error probability at least
c2e

−c3γ
2k.

Proof: If there are no irrelevant or misleading fea-
tures, applying (9) yields the Lemma. Adding irrel-
evant or misleading features only increases the error
probability.

The next step is a lower bound on the number of ir-
relevant variables.

Lemma 6. Suppose γ ≤ 1/4, N ≥ 2K, and β ≥ 0.
The expected number of irrelevant features in Mβ’s
model is at least N

(

c1 exp
(

−c2(β/γ)
2
))

and also at
least

N

(

c3
β
√
m

exp
(

−2β2m
)

− c4√
m

)

where c1, c2, c3 and c4 are absolute positive constants.

Proof: A positive irrelevant feature is selected if it
agrees with the class label at least 1/2+β of the time.
Applying Bound (10) and linearity of expectation,
gives a lower bound of (N−K)

(

c6 exp
(

−c7β
2m
))

and
the assumptions ensure N −K ≥ N/2 and m = c/γ2 .
The second part uses Bound (8) instead of (10).

We now upper bound the number of relevant variables.

Lemma 7. If β ≥ γ, the expected number of relevant
variables in Aβ’s model is at most Ke−2(β−γ)2m.

Proof: Use (4) to bound the probability that a rele-
vant feature agrees with the class label β−γ more often
than its expected fraction of times and the linearity of
expectation.

Lemma 8. The ratio
β

γ
= Ω

(

min

{

ln

(

N

K

)

,

√

ln
1

γ

})

(as 1/γ and N/K go to infinity) if
E(|Mβ ∩R)|

E(|Mβ |)
≥ λ

for constant λ ∈ (0, 1).

Proof: Let I be the set of irrelevant features. If
E(|Mβ∩R)|
E(|Mβ |) ≥ λ then

E(|Mβ∩R|)
E(|Mβ∩R|)+E(|Mβ∩I|) ≥ λ which

implies
E(|Mβ∩R)|
E(|Mβ∩I|) ≥ λ

1−λ .

We first show β > γ. Assume to the contrary that
β ≤ γ. Use Lemma 6 and note there are at most
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K relevant features, so
K

cN
≥

λ

1− λ
for an absolute

constant c. This is contradicted for a large enough
value of N/K, so β > γ when N/K is large.

We apply Lemma 6 and 7 getting, for absolute positive
constants c and c′, that

Ke−2(β−γ)2m

N
(

c
β
√
m
exp(−2β2m)− c′√

m

) ≥ E(|Mβ ∩R)|
E(|Mβ ∩ I|) ≥ λ

1− λ
.

Solving for the exp(−2β2m) term and setting κ =
(1−λ)K

Nλ and m = c′′/γ2 gives

exp(−2c′′(β/γ)2) ≤
√
c′′βκ

cγ
e−2c′′(β/γ−1)2 +

c′β

c
.

This implies at least one of:

exp(−2c′′(β/γ)2) ≤
√
c′′βκ

2cγ
e−2c′′(β/γ−1)2

or exp(−2c′′(β/γ)2) ≤ c′β

2c
. (11)

The first of these implies, after taking logs and some

algebra (e.g. canceling the (β/γ2) terms), that
β

γ
≥





ln
(

2cγ√
c′′βκ

)

4c′′
− 1

2



 . Note the RHS is increasing in

β/γ while the LHS is decreasing in β/γ. Furthermore,
setting β/γ = ln(1/κ) leads to a contradiction as κ →
0. Therefore r = Ω(ln(1/κ)) and β/γ = Ω(ln(N/K)).

We now turn to the exp(−2c′′(β/γ)2) ≤ c′β
2c case. Note

that the RHS is decreasing in β and the LHS is increas-
ing in β. Therefore any value of β where this fails gives
a lower bound on β. If β = γ

√

ln(1/γ)/4c′′ then the

inequality becomes γ1/2 ≤ c′γ
√

ln(1/γ)

4c
√
c′′

which fails for

small enough γ. So β/γ = Ω
(

√

ln(1/γ)
)

, completing

the proof.

Proof (of Theorem 4): Set K = 1
γ2 exp((ln(1/γ))

1/3)

and N = K exp((ln(1/γ)1/4)). Theorem 3 now implies
that the probability of error for Mβ with β ≤ c2γ is
exp(−Θ(exp(ln(1/γ)1/3)/ exp(ln(1/γ)1/4))).

Now let us consider any λ-exclusive algorithm. The
Chernoff bound together with Lemma 7 implies that
there is a constant c such that with probability
3/4, the number of relevant variables in Aβ(γ) is

at most Ke−c(β/γ−1)2 . Lemma 8 implies that this
is at most K exp(−Ω(min{ln(N/K)2, ln(1/γ)})) =
1
γ2 exp(−Ω(

√

ln(1/γ)})). Applying Lemma 5 com-
pletes the proof.

5. Conditionally dependent variables

Assume that there is a degree-r graph G whose nodes
are variables, and such that, conditioned on the label,
each variable is independent of all variables not con-
nected to it by an edge in G. Assume that k variables
agree with the label with probability 1/2 + γ, and the
n−k agree with the label with probability 1/2. Let us
say that a source like this has r-local dependence (we
will also overload “r-local dependence” to refer to the
constraint on each of the conditional distributions).

Theorem 5. For a source that has r-local dependence
for r ≤ n/2, the probability that f predicts incorrectly

is at most c(r+1) exp
(

−2γ2k2

n(r+1)

)

for a positive constant
c.

Proof Sketch: Replace the Hoeffding bound in the
proof of Theorem 1 with a similar bound for r-local
dependence due to Pemmaraju (2001) .
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A. Appendices

A.1. Proof of (5) and (6)

Equation 4.1 from (Motwani & Raghavan, 1995) is

Pr[U > (1 + η)E(U)] <

(

eη

(1 + η)1+η

)E(U)

. (12)

which implies (5). From (12), when 0 ≤ η ≤ 4 (since
η − (1 + η) ln(1 + η) < −η2/4 there), Pr[U > (1 +
η)E(U)] < exp

(

−η2E(U)/4
)

showing (6).

A.2. Proof of (7)

Using (5) with η = 3 + 3 ln(1/δ)/E(U),

Pr[U > 4E(U) + 3δ]

< exp

(

−(4E(U) + 3 ln δ) ln

(

4 + 3 ln(1/δ)/E(U)

e

))

< exp

(

−(3 ln(1/δ) ln

(

4

e

))

< δ.

A.3. Proof of (8)

The following is a straightforward consequence of the
Berry-Esseen inequality.

Lemma 9 (see DasGupta (2008)). Under the assump-
tions of Section 2 with each Pr[Ui = 1] = 1/2, let:

Ti = 2(Ui − 1/2) and T =
√

1
ℓ

∑ℓ
i=1 Ti, and Z be a

standard normal random variable.
There is an absolute positive constant c < 1 such that,

for all η, we have |Pr[T > η]− Pr[Z > η]| ≤ c√
ℓ
.

Lemma 10. (Feller, 1968) If Z is a standard nor-
mal random variable and η > 0, then Pr[Z > η] ≥
1√
2π

(

1
η − 1

η3

)

e−η2/2.

Now, to prove (8), let M = 1
ℓ

∑ℓ
i=1(Ui − 1

2 ) and let Z
be a standard normal random variable. Then Lemma 9
implies that, for all κ

∣

∣

∣Pr
[

2
√
ℓM > κ

]

− Pr[Z > κ]
∣

∣

∣ ≤ c√
ℓ

for an absolute constant c > 0. Using κ = 2η
√
ℓ,

Pr[M > η] ≥ Pr
[

Z > 2η
√
ℓ
]

− c√
ℓ
. (13)

Applying Lemma 10, we get

Pr
[

Z > 2η
√
ℓ
]

≥ 1√
2π

(

1

2η
√
ℓ
−
(

1

2η
√
ℓ

)3
)

e−2η2ℓ.

Since ℓ ≥ 1/η2, we get

Pr
[

Z > 2η
√
ℓ
]

≥ 1√
2π

(

1

2
− 1

8

)

1

η
√
ℓ
e−2η2ℓ.

Combining with (13) completes the proof of (8).

A.4. Proof of (10)

When η ≤ 1/8, Inequality (10) follows from a result of
Feller (1943) (see Matoušek & Vondrak (2011)).

When η > 1/8, we have Pr
[

1
ℓU − 1

ℓE(U) ≥ η
]

=
1
2ℓ

∑(1/2−η)ℓ
i=0

(

ℓ
i

)

≥ 1
2ℓ

(

ℓ
(1/2−η)ℓ

)

≥
1
2ℓ

(

1
1/2−η

)(1/2−η)ℓ

= exp(−ℓ(ln(2)+(1/2−η) ln(1/2−
η))) ≥ exp(−16η2), where the last step can be verify-
ing using Calculus (since η > 1/8).


