
Integrating Partial Model Knowledge in Model Free RL Algorithms

Aviv Tamar avivt@tx.technion.ac.il
Dotan Di Castro dot@tx.technion.ac.il
Ron Meir rmeir@ee.technion.ac.il
Department of Electrical Engineering, The Technion - Israel Institute of Technology, Haifa, Israel 32000

Abstract
In reinforcement learning an agent uses on-
line feedback from the environment and prior
knowledge in order to adaptively select an ef-
fective policy. Model free approaches address
this task by directly mapping external and
internal states to actions, while model based
methods attempt to construct a model of the
environment, followed by a selection of op-
timal actions based on that model. Given
the complementary advantages of both ap-
proaches, we suggest a novel algorithm which
combines them into a single algorithm, which
switches between a model based and a model
free mode, depending on the current environ-
mental state and on the status of the agent’s
knowledge. We prove that such an approach
leads to improved performance whenever en-
vironmental knowledge is available, with-
out compromising performance when such
knowledge is absent. Numerical simulations
demonstrate the effectiveness of the approach
and suggest its efficacy in boosting policy
gradient learning.

1. Introduction

In Reinforcement Learning (RL) an agent attempts
to improve its performance over time at a given task,
based on continual interaction with the (usually un-
known) environment, (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). This improvement takes
place by modifying the action selection policy, based
on feedback from the environment and prior knowl-
edge available to the agent. Formally, RL is often
formulated as the problem of finding a mapping, the
so called policy, from the environment’s states to the
agent’s actions that maximizes a given functional of a
reward function.

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

Most RL algorithms can be classified into either model
based or model free approaches (Sutton and Barto,
1998; Bertsekas and Tsitsiklis, 1996). In the former
setting, taking its inspiration from the field of Adap-
tive Control (Kumar, 1985), the agent builds a model
of the environment, typically in the form of a Markov
Decision Process (MDP), while interacting with it.
Based on this model, a planning problem is solved
where techniques from Dynamic Programming (Bert-
sekas and Tsitsiklis, 1996) are applied in order to find
the optimal policy function. On the other hand, within
the model free setting, the agent does not try to build a
model of the MDP, but rather attempts to find the op-
timal policy by directly mapping environmental states
to actions. In this sense, no model of the environment
is required in order to act optimally. While both ap-
proaches possess significant merits, the view taken in
this paper is that their advantages are in fact comple-
mentary, with each approach possessing distinct ad-
vantages in particular situations. Since the nature of
the problem is often not known in advance, it would
seem advantageous to combine both perspectives al-
lowing the agent to benefit from both approaches. In
this paper we pursue such a hybrid approach appli-
cable to the case where partial model information is
available. As a concrete example, consider a scenario
where the environment consists of a known stationary
component and an unknown time varying element. In
this case the agent should continuously adapt to the
environment, but may take advantage of knowledge of
the known part to improve performance. We provide
a method for integrating partial model information
into an existing model free algorithm, prove through
theoretical analysis that our method improves perfor-
mance, and demonstrate its effectiveness via computer
simulation.

A high level sketch of the method The model free
algorithms we are concerned with are of the Stochas-
tic Approximation (SA) type (Kushner and Yin, 2003).
These online algorithms attempt to optimize some pa-
rameter of the system, using “noise corrupted” system
measurements as a data stream for an iterative opti-
mization process. These algorithms deal with noise by

Integrating Partial Model Knowledge in Model Free RL Algorithms

making only small changes to the parameters at each
step, so that over many iterations the noise averages
out, and the parameters asymptotically follow a mean
trajectory. Intuitively, any prior knowledge about the
system should reduce our uncertainty about its behav-
ior and thus enable some noise reduction. In this paper
we propose a method that reduces the noise at each
step. We do this by observing that the update at each
step can be viewed as a simple estimate of the mean
update. Prior knowledge enables us to propose an es-
timator which has smaller estimation error, thereby
reducing the noise variance. A key property of our
estimator is that it is unbiased, thus it preserves the
algorithm’s mean trajectory. This assures us that the
overall function of the algorithm will remain intact,
while the reduction in noise variance gives reason to
expect an increase in performance.

2. Estimation of a Random Variable
Mean with Partial Knowledge

Our method of using partial knowledge in an SA algo-
rithm is based on constructing a better estimator for
the mean update at each step. In this section we de-
scribe our estimator in the context of estimating the
mean of a random variable. This allows us to derive all
its important properties without the notational bur-
den of the SA setting. The results we derive will then
easily transfer to the more complex SA setting.

Let X be a random variable over a discrete set Ω
and let P (ω) , Pr (X = ω) denote the probability
distribution of X. Assume that, prior to the es-
timation process, we are given the probability dis-
tribution values of X over a subset of Ω. Denote
by K this set for which P values are known, K ,
{ω : ω ∈ Ω s.t. P (ω) is known}, which we will refer
to as the partial knowledge set. Suppose we are given
a sample of X, denoted by x, and we wish to esti-
mate (without bias) the expectation µ = E [X] ,∑
ω∈Ω ωP (ω). Denote by K̄ the complement of the

set K , and by 1Kx the indicator function that equals
1 if x ∈ K and 0 otherwise. Consider the estimator

µ̂K (x) = 1Kx ·
E [X · 1KX]

E [1KX]
+ 1K̄x · x. (1)

The intuition behind (1) is simple. If the sample is part
of the known set, then it is of no use to us, and our
estimate is a normalized mean over the known part
of Ω. Otherwise, our estimate is the sample itself,
maintaining the estimator unbiased. It is easy to see
that µ̂K is unbiased, as expressed in Lemma 2.1.

Lemma 2.1. The estimator µ̂K satisfies E [µ̂K] = µ.

In the next Lemma the Mean Squared Error (MSE)
of µ̂K is computed. Let P (K) =

∑
ω∈K P (ω), and let

PK (ω) denote the probability measure over the known
set K, namely PK (ω) = 1KωP (ω) /P (K). Denote by
EK [·] and VarK [·] the expectation and variance under
the probability measure PK .

Lemma 2.2. The MSE of µ̂K is E [µ̂K − µ]
2

=
Var [X]− P (K) ·VarK [X] .

Proof. First, observe that for any function f (·)

EK [f (X)−µ]
2
=EK [f (X)−EKf (X)+EKf (X)−µ]

2

=VarKf (X) + (EK [f (X)]− µ)
2
,

where the cross terms in the second equality vanish.

Since VarK [µ̂K (X)] = 0, and EK [µ̂K (X)] = EK [X]
we have

E [µ̂K (X)− µ]
2

= E
[(
1KX + 1K̄X

)
(µ̂K (X)− µ)

2
]

= P (K)EK
[
(µ̂K (X)− µ)

2
]

+ E
[
1K̄X (X − µ)

2
]

= P (K) (EK [X]− µ)
2

+ E
[
1K̄X (X − µ)

2
]

= E [X − µ]
2 − P (K) ·VarK [X] .

One could disregard the partial knowledge altogether,
and choose to use the sample x itself as an unbiased
estimate for µ. Denote this estimator by

µ̂ (x) = x. (2)

It is easy to see that the MSE of µ̂ is Var [X]. From
Lemma 2.2 we deduce that when the cardinality of the
known set satisfies |K| > 1 , and P (K) > 0, the MSE
of µ̂K is smaller than that of µ̂.

An appropriate question is whether a better estimator
than µ̂K (x) exists. We refer the interested reader to
the supplementary material1, where we show that un-
der certain assumptions µ̂K (x) is admissible, but note
that the results of Lemmas 2.1 and 2.2 suffice for the
following discussion.

3. A Stochastic Approximation
Algorithm with Partial Model
Knowledge

In this section we describe our method of endowing
a model free RL algorithm with partial model knowl-
edge, based on the estimator developed in the previous
section.

1http://webee.technion.ac.il/~rmeir/tamar2011supp.zip

Integrating Partial Model Knowledge in Model Free RL Algorithms

3.1. Preliminaries

Notation Throughout the rest of the paper the follow-
ing notation is used. All vectors are column vectors,
and (·)T denotes the transpose operator. The product
A ◦ B denotes the element-wise product (Hadamard
product) of A and B. Tr [·] is the trace of a matrix.
The cardinality of a set K is denoted by |K|, and itsby
K̄. Unless noted otherwise, a subscript of a value de-
notes time. An individual element i of a vector A is
denoted by [A]i, and similarly, for a matrix B we de-
note the element (i, j) by [B]ij .

RL Environment We consider an agent interacting
with an unknown environment, modeled by a MDP in
discrete time with a finite state set X and action set
U . Each selected action u ∈ U of the agent determines
a stochastic transition matrix Pu , [Pu(y|x)]x,y∈X ,
where y is the state following the state x.

For each state x ∈ X the agent receives a correspond-
ing deterministic reward r(x), which is bounded, and
depends only on the current state2. The agent main-
tains a policy function, µθ(u|x), parametrized by a vec-
tor θ ∈ RL, mapping an observation x ∈ X into a prob-
ability distribution over the controls U . Under policy
µθ, the environment and the agent induce a Marko-
vian transition matrix, denoted by Pµθ , which we as-
sume to be ergodic3. This Markovian transition ma-
trix has a stationary distribution over the state space
X , denoted by πµθ , and we construct a diagonal matrix
Πµθ ∈ R|X |×|X| = diag (πµθ). Our goal is to optimize
θ with respect to some performance criteria. The tun-
ing of θ is performed online in the following fashion.
At time n, the current parameter value equals θn and
the agent is in state xn. It then chooses a control un
according to µθn(u|xn), observes xn+1, and updates
θn+1 according to some protocol.

Stochastic Approximation Stochastic approxima-
tion methods (Kushner and Yin, 2003) are a class of
iterative stochastic algorithms, to which many model
free RL algorithms belong (Bertsekas and Tsitsiklis,
1996). Analysis of SA methods has received consider-
able attention over the past decade, and many analysis
techniques are available. In particular, the ODE ap-
proach is a widely used method for investigating the
asymptotic behavior of SA iterates. The algorithms
with which we deal in this paper will all be cast in the
following SA form,

θn+1 = θn + εnF (θn, xn, un, xn+1) , (3)
2Generalizing the results presented here to state-action

rewards is straightforward. Generalization to stochastic
rewards is also possible by considering mean rewards.

3i.e. every state is visited infinitely often.

where {εn} are positive step sizes. The key idea of
the technique is the following. Suppose that iter-
ate (3) can be decomposed into a mean function of
the current state, action and parameter, denoted by
g(θn, xn, un) = E [F (θ, xn, un, xn+1)| θn, xn, un], and
a martingale difference noise term denoted by δMn,
which is a result of the stochastic transition to the
next state. Formally,

θn+1 = θn + εn (g (θn, xn, un) + δMn) . (4)

Suppose that the effect of the martingale difference
noise weakens due to repeated averaging, and fur-
ther assume that there exists a continuous function
ḡ (θ) = E [g (θ, x, u)| θ] where the expectation is over
the states and actions4. Consider the following ordi-
nary differential equation (ODE)

dθ/dt = ḡ(θ). (5)

Then, a typical result of the ODE method in the SA
setup suggests that the asymptotic limits of (3) and
(5) are identical. Another aspect of SA relates to the
rate of convergence of such iterates (Kushner and Yin,
2003), an issue we will return to.

A note on types of convergence The type of con-
vergence to the asymptotic limit depends primarily on
the step size used. Let θ∗ denote an asymptotically
stable point of (5). Then, for a suitably decreasing
step size, convergence w.p. 1 of θn to θ∗ can be es-
tablished. For a constant step size, θn can be shown
to converge weakly to a random variable centered on
θ∗. In the following we use the term convergence am-
biguously, and the precise definition should be inferred
from the context. For a detailed and rigorous discus-
sion of the types of convergence in SA the reader is
referred to Kushner and Yin (2003).

3.2. Partial Model Based Algorithm

A key observation obtained from examining equations
(3-4), is that F (θn, xn, un, xn+1) in the SA algorithm
is just the sample estimator (2) of g (θn, xn, un), where
the estimation variance stems from the stochastic tran-
sitions in the MDP. In the following we assume that
we have, prior to running the algorithm, some infor-
mation about these transitions. Similarly to section 2,
define the known set for state x and action u as

Kx,u , {y : y ∈ X s.t.Pu(y|x) is known} .

Denote by 1Kn+1 an indicator function that equals 1
if {xn+1} belongs to Kxn,un and 0 otherwise. Based
on the estimator introduced in section 2, we propose

4Explicitly ḡ (θ) =
∑
x∈X πµθ (x)

∑
u∈U µθ(u|x)g (θ, x, u)

Integrating Partial Model Knowledge in Model Free RL Algorithms

the following update rule for the tunable parameter,
denoted by θK , which we refer to as the Integrated
Partial Model (IPM) iteration

θKn+1 = θKn +εn
(
1Kn+1F

K

n + 1K̄n+1F (θKn , xn, un, xn+1)
)
,

(6)

where, abusing notation, FK
n = FK

n (θKn , xn, un), and

FK

n ,

∑
y∈Kxn,un

Pun(y|xn)F (θKn , xn, un, y)∑
y∈Kxn,un

Pun(y|xn)
. (7)

Similarly to (4), iterate (6) can also be decomposed
into a mean function gK (θKn , xn, un) and a martingale
difference noise δMK

n

θKn+1 = θKn + εn (gK (θKn , xn, un) + δMK

n) ,

and by Lemma 2.1 we have gK(θ, x, u) = g(θ, x, u).
Similarly, defining ḡK (θ) = E [gK (θ, x, u)| θ] we get
that ḡK (θ) = ḡ (θ), therefore (6) converges to the same
asymptotic trajectory as (3). Furthermore, Lemma
2.2 shows that if our partial knowledge set is not null,
then on each iteration the variance of the noise term
is reduced. This gives us reason to believe that an im-
provement in the overall performance of the algorithm
can be expected.

3.3. Step size considerations

As it turns out, the improvement in performance at-
tained by the IPM iteration is heavily influenced by
the step size used. This can be intuitively explained
using the following example. Let {zi} be a sequence
of i.i.d. bounded random variables, with mean µz and
variance σ2

z . Consider the following SA iteration

θn+1 = θn + εn (zn+1 − θn) .

For a decreasing step size of the form εn = 1/(n+ 1),
the value of θn is simply the empirical average, which
converges w.p. 1 to µz. As a performance measure,
consider the MSE defined by E ‖θn − µz‖2, which
equals σ2

z/n. Integration of partial knowledge based
on (6) in this case is equivalent to averaging variables
with the same mean but with a reduced variance, and
the MSE still approaches zero at a rate O (1/n). On
the other hand, when the step size is constant, θn con-
verges in mean to µz, but the MSE converges to a
non-zero value which, intuitively, is proportional5 to
the variance σ2

z . Any variance reduction in this case
would thus prove valuable.

5A precise value is given in the next section.

The use of a constant step size, though clearly undesir-
able in the preceding example, is quite common in RL
applications, as it allows the iterates to quickly reach
a neighborhood of the desired solution, and can cope
with time varying environments. In the following dis-
cussion, we shall thus focus our analysis on algorithms
with a constant step size.

4. TD(0) with Partial Knowledge

In this section we apply our method to the well known
model free algorithm Temporal Difference Prediction
(TD(0)) (Sutton and Barto, 1998). The simplicity
of TD(0) allows us to mathematically characterize its
performance in terms of convergence rate, and to quan-
tify the impact of partial knowledge integration on
it. The mathematical results we derive specifically for
TD(0) are also characteristic of more complex algo-
rithms, as will be shown in simulations.

A similar analysis of TD(0) without the partial knowl-
edge was given in Dayan and Sejnowski (1994), though
for a decreasing step size, and without explicit conver-
gence rate results. Singh and Dayan (1998) provided
update equations for the MSE of TD(0), which we also
use as a measure of convergence rate, though their
equations were only solvable by simulation.

Throughout this section, we assume that the agent’s
policy µ is deterministic and constant, mapping a spe-
cific action to each state, denoted by µ (x). Letting
0 < γ < 1 denote a discount factor, define the value
function for state x under policy µ as the expected
discounted return when starting from state x and ex-
ecuting policy µ

V (x) , E

[∞∑
t=0

γtr(xt)

∣∣∣∣∣x0 = x

]
.

Here, for simplicity of notation, we have omitted µ
in V µ (x). The value function is a vector of size |X |.
When the state space is large, Function Approxima-
tion (FA) is often used to find an approximation to the
value function in a subspace of size L < |X |. Linear
FA is implemented as follows. Given a set of |X | lin-
early independent basis vectors φ(x) ∈ RL, our goal is
to find an approximation to V (x), denoted by V̂ (x, θ)
and defined as V̂ (x, θ) = φ(x)T θ, i.e. our tunable pa-
rameter θ in this case is a vector of L linear weights.
In vector form we write V̂ (θ) = Φθ, where Φ ∈ R|X |×L
is a matrix with the basis vectors in its rows.

The fixed step TD(0) algorithm updates θ online in
the following manner (Sutton and Barto, 1998)

θn+1 = θn + εdnφ (xn) , (8)
dn , r (xn) + γφ(xn+1)T θn − φ(xn)T θn,

Integrating Partial Model Knowledge in Model Free RL Algorithms

where ε is a small and constant step size. Using (6-7)
we define IPM-TD(0)

θKn+1 = θKn + εdKnφ (xn) , (9)

dKn , r(xn)+γ
(
1Kn+1F

K

n +1K̄n+1φ(xn+1)T θKn
)
−φ(xn)T θKn ,

FK

n ,

∑
y∈Kxn,un

Pun (y|xn)φ(y)T θKn∑
y∈Kxn,un

Pun (y|xn)
.

The mean function ḡ (θ) , E [dnφ (xn)| θn = θ] is cal-
culated to be (Bertsekas and Tsitsiklis, 1996; Lemma
6.5)

ḡ (θ) = ΦTΠµr + ΦTΠµ (γPµ − I) Φθ.

From Lemma 2.1 we conclude that ḡK (θ) ,
E [dKnφ (xn)| θKn = θ] = ḡ (θ). Denote by θ∗ the asymp-
totic limit of the iterate mean, E [θn], which is the
unique fixed point of the ODE dθ/dt = ḡ (θ)6. Since
both iterates (8) and (9) have the same asymptotic
mean, the MSE, E ‖θn − θ∗‖2, can be defined as amea-
sure of performance of the iterates. The linearity of
ḡ (θ) allows us to analytically quantify this measure.

The remainder of this section is concerned with prov-
ing that the performance, in MSE terms, of iterate (9)
is better than that of iterate (8). In order to accom-
plish this we first present a general expression for the
asymptotic MSE of both iterates. Then, we solve it for
the simplified case of table based TD(0). The solution
for linear FA can also be obtained, but it is technically
tedious, and is deferred to the full paper. Nevertheless,
simulations with linear FA are presented in section 5,
and display similar behavior to the tabular case.

In their treatment of rate of convergence, Kushner and
Yin (2003; p. 315) discuss the properties of the process
ρn , (θn − θ∗) /

√
ε. Their Theorem 10.1.3 states that,

given a lengthy set of assumptions7, ρn converges in
distribution (as ε → 0 and n → ∞ such that n =
ω (1/ε))8 to a normally distributed random variable,
which is the stationary distribution of the stochastic
differential equation

dU = AUdt+ dW. (10)
6Convergence in mean of TD(0) was shown by Sut-

ton (1988). It is also a consequence of weak convergence,
which, due to lack of space we do not prove.

7Due to lack of space, we do not prove here that al-
gorithms (8) and (9) fulfill all the required assumptions.
Satisfaction of these assumptions relies on the following
properties. The iterates are continuous in θ, and the value
function is bounded. The stationary Markov chain con-
trolling state transitions is ergodic, ḡ (θ) is linear, and the
matrix ΦTΠµ (γPµ − I) Φ is Hurwitz.

8We retain this assumption on ε and n in the sequel.

A is the Jacobian of ḡ, namely A = ΦTΠµ (γPµ − I) Φ,
and W is a Wiener process with covariance matrix
Σ = Σ0 + Σ1 + ΣT1 where

Σ0 = lim
n→∞

E
[

(dnφ (xn)) (dnφ (xn))
T
∣∣∣ θn = θ∗

]
, (11)

Σ1=

∞∑
j=1

lim
n→∞

E
[
(dnφ (xn)) (dn+jφ (xn+j))

T
∣∣∣θn,θn+j=θ∗

]
.

For iteration (9) we have ΣK
0 ,Σ

K
1 where dKn replaces dn

in (11). The stationary solution to (10) is normally dis-
tributed with zero mean and covariance R, which can
be easily computed (Papoulis and Pillai, 2002) by ob-
serving that (10) describes white noise filtered through
a linear system, leading to

R = lim
t→∞

eAt

t̂

0

e−AsΣ
(
e−As

)T
ds

(eAt)T . (12)

Let {λ}Li=1 denote the eigenvalues of A, which all have
a negative real part (Bertsekas and Tsitsiklis, 1996,
Lemma 6.6b), and let Γ be its diagonalizing matrix,
i.e.,A = ΓΛΓ−1 where Λ is diagonal. Also, define a
matrix χ ∈ RN×N such that [χ]ij = −1/ (λi + λj).
Then the limit in (12) can be written as

R = lim
t→∞

Γ

t̂

0

eΛ(t−s)Γ−1Σ
(
Γ−1

)T
eΛ(t−s)ds

ΓT

= Γ
(
χ ◦
(

Γ−1Σ
(
Γ−1

)T))
ΓT ,

and the limit of the MSE is therefore

E‖θn− θ∗‖2→ εTr
[
Γ
(
χ◦
(

Γ−1Σ
(
Γ−1

)T))
ΓT
]
. (13)

The difference in MSE between iterates (8) and (9)
lies in the difference between Σ0,Σ

K
0 and Σ1,Σ

K
1 . In

order to simplify calculations, in the remainder of the
analysis we deal with a table based algorithm where
Φ = I. The results can easily be generalized to linear
FA, though we defer the detailed analysis to the full
paper. In the tabular case, Σ1 = ΣK

1 = 0. This is the
case since when we are in state x only the x′th value of
θ is updated. The next update of that value will take
place when we are again in state x. The state sequence
is governed by an ergodic Markov chain, and from the
Regenerative Cycle Theorem (see Brémaud, 1999, pp.
87) we have that trajectories between visits to x are
independent. The updates, which are a function of
these trajectories, are therefore also independent, and
each element in the sum in (11) is zero. The calculation
of Σ0 is straightforward. It is a diagonal matrix, and
its elements are

[Σ0]xx = [πµ]x

∑
y

Pµ (y|x)
(
r (x) + γ [θ∗]y − [θ∗]x

)2

.

Integrating Partial Model Knowledge in Model Free RL Algorithms

Let ∆Σ denote the diagonal matrix defined by ∆Σ ,
Σ0 − ΣK

0 . Using Lemma 2.2, ∆Σ is a diagonal matrix
with elements

[∆Σ]xx= [πµ]xP
(
Kx,µ(x)

)
VarKx,µ(x)

[
r(x)+γ [θ∗]y−[θ∗]x

∣∣∣x]
= γ2 [πµ]x P

(
Kx,µ(x)

)
VarKx,µ(x)

[
[θ∗]y

∣∣∣x] .
Note that ∆Σ has no negative elements. We are inter-
ested in the difference in the asymptotic MSE

δMSE = E ‖θn − θ∗‖2 − E ‖θKn − θ∗‖
2 (14)

→ ε · Tr
[
Γ
(
χ ◦
(

Γ−1∆Σ

(
Γ−1

)T))
ΓT
]
.

If the known set is not null, then δMSE is positive (it
can be seen as the asymptotic MSE of an iterate with
the same matrix A, but with ∆Σ instead of Σ0, which
by definition is positive), and thus the algorithm’s per-
formance improves. We summarize this result in the
following theorem.
Theorem 4.1. Consider the table based online TD(0)
iterate for θn described by (8) with Φ = I, and the
IPM− TD(0) iterate for θKn described by (9) with the
same requirement on Φ. Then both iterations converge
in mean to the same value θ∗. Furthermore, assum-
ing that there is at least one state x ∈ X such that
P
(
Kx,µ(x)

)
·VarKx,µ(x)

[
[θ∗]y

∣∣∣x] > 0, then the asymp-

totic MSE of the iterates satisfy lim
n→∞

E ‖θKn − θ∗‖
2

=

lim
n→∞

E ‖θn − θ∗‖2 − δMSE, where δMSE is given in
(14), and δMSE > 0.

Theorem 4.1 therefore assures us that the reduction in
noise variance at each step, guaranteed by Lemma 2.2,
translates into a reduction in the overall error of the
algorithm.

Note that the simple dependence of the MSE on ε al-
lows for a different interpretation of the performance
in terms of convergence rate - for some desired MSE,
the partial knowledge allows us to use a larger step
size ε, and thus converge faster. This issue will also be
demonstrated in simulation.

In the case of function approximation the results will
be similar, but one has to also take into account the
correlation between different time steps - the Σ1 and
ΣK

1 matrices.

We comment on a decreasing step size. For a step
size of the form εn = 1/nα, 0.5 < α ≤ 1, a sim-
ilar analysis can be performed with ρn defined as
ρn = nα/2 (θn − θ∗). In this case, θn converges to
θ∗ w.p. 1, and the MSE decreases to zero at a rate
O
(
n−α/2

)
. Integrating partial knowledge in this case

will only reduce fluctuations in the converging path
of the system. The performance gain of incorporating
partial knowledge is therefore much stronger when the
step size is constant.

5. Simulation results

In this section we demonstrate the performance of our
method in simulation9. We first describe results on the
TD(0) algorithm, and compare with the theory estab-
lished in the previous section. Next, we demonstrate a
policy gradient type algorithm which also changes the
policy online, and show how partial knowledge allows
for better performance.

General Setup Our simulations are on a set of ab-
stract randomly constructed MDP’s termed Gener-
alized Average Reward Non-stationary Environment
Test-bench or in short garnet (Bhatnagar et al.,
2007). garnet MDP’s comprise a class of randomly
constructed finite MDP’s serving as a test-bench for
RL algorithms. A garnet MDP is characterized in
our case by four parameters and is denoted by gar-
net(|X | , |U| , B, σ). The parameter |X | is the number
of states in the MDP, |U| is the number of actions, B
is the branching factor of the MDP, i.e., the number
of uniformly distributed non-zero entries in each line
of the MDP’s transition matrices, and the reward in
each state is normally distributed with variance σ. For
each garnet MDP we also construct a ‘Known’ MDP
characterized by a parameter pK , 0 ≤ pK ≤ 1 such that
each transition in the original MDP is known w.p. pK .
The value of pK therefore indicates our level of knowl-
edge about the MDP, ranging from no knowledge at all
(pK = 0) up to knowing the complete MDP (pK = 1).

A linear FA is used as follows. For approximating
a function of the states, we use a linear approxima-
tion f(x, θ) = φ(x)′θ, where φ(x) ∈ {0, 1}L, and
define l to be the number nonzero values in φ(x).
The nonzero values are chosen uniformly at random,
where any two states have different feature vectors.
When approximating a function of states and actions
the approximation is performed only over the states,
and we define feature vectors ξ(x, u) ∈ {0, 1}L·|U|
which are constructed as ξ(x, u) , (0, ...(L × (u −
1) zeros), φ(x), 0, ...(L× (|U| − u) zeros))T .

5.1. Policy Evaluation with TD(0)

For a garnet(10, 5, 10, 1) MDP, a random determin-
istic policy was chosen and its value function was eval-
uated using algorithm (9). The error ‖θn − θ∗‖2, aver-

9The code for generating the results presented here can
be found in the supplementary material

Integrating Partial Model Knowledge in Model Free RL Algorithms

aged over 500 different runs with the same initial con-
ditions, is plotted in figure 1 (left) for different values
of pK . The asymptotic MSE was calculated using (13)
and is shown for comparison. In figure 1 (middle), the
step size for an iteration with partial knowledge was
set such that the asymptotic MSE would match that
of the iteration without partial knowledge. As can be
seen, this caused the IPM iteration to converge faster.

Figure 1 (right) shows results on a garnet(30, 5, 10, 1)
MDP, where we used linear FA as described above with
L = 10 and l = 2. As can be seen, the behavior
observed in the tabular case is characteristic of the FA
case as well.

5.2. A Policy Gradient Algorithm

In this simulation the agent maintains a stochastic
policy function parametrized by θ ∈ RL·|U|, given by
µθ(u|x) = eθ

T ξ(x,u)/
∑
u′ e

θT ξ(x,u′) . The agent’s goal
is to find the parameter θ which maximizes the aver-
age reward η = E[r(x)]. Policy Gradient algorithms
estimate the gradient w.r.t. θ of the average reward,
∇θη, and perform a stochastic gradient ascent on the
parameters to reach a local maximum. One such algo-
rithm was proposed by Marbach and Tsitsiklis (1998).
At time n we update the parameter vector θ and a
scalar λ which is an estimate of η,

θn+1 = θn + ε (r (xn)− λn) zn, (15)
λn+1 = λn + ε′ (r (xn)− λn) , (16)

where ε and ε′ are step sizes, and ε′ < ε. We then sim-
ulate a transition to the next state, and update the
vector z by zn+1 = zn +Lxn,un (θn), where Lxn,un (θn)
is the likelihood ratio Lx,u (θ) = ∇θ logµθ(u|x). Ev-
ery time a predefined recurrent state of the MDP is
visited, zn+1 is reset to zero. Denote by 1Kn an indica-
tor function that equals 1 if xn belongs to Kxn−1,un−1

and 0 otherwise. Incorporating partial knowledge into
the algorithm using (6) simply amounts to replacing
r (xn) in (15-16) with

1Kn ·

∑
y∈Kxn−1,un−1

Pun−1
(y|xn−1)r (y)∑

y∈Kxn−1,un−1

Pun−1
(y|xn−1)

+ 1K̄n · r (xn) .

We simulated the policy gradient algorithm on a gar-
net(30, 5, 10, 1) MDP. Linear FA was used with L =
10, l = 2. Figure 2 shows the average reward η as
a function of iteration. These results indicate that
the variance reduction in each iteration (guaranteed
by Lemma 2.2) resulted, on average, in a better es-
timation of the gradient ∇θη, and therefore a better
policy at each step.

6. Discussion and Future Work

Generally, when devising a solution to a difficult prob-
lem, one should incorporate into it all reliably avail-
able information. Model Free RL algorithms typically
operate without explicit knowledge of the underlying
environment, and therefore, when such knowledge is
available, using these algorithms ‘out of the box’ is
clearly suboptimal. In this work we have presented
a general method of integrating partial environmental
knowledge into a large class of model free algorithms.
Our method improves the asymptotic behavior of the
algorithm, and at each iteration reduces the estima-
tion variance due to uncertainty in the environment.
We have shown analytically (for TD(0)) and in sim-
ulation (for Policy Gradient) an improvement in the
algorithm’s overall performance.

A few issues are in need of further investigation. The
first concerns the accuracy of the known set. In this
work we have assumed that the partial environmental
knowledge is precise. Clearly, such an assumption is
not realizable in real world situations, and in a more
realistic setup it is assumed that our partial knowledge
contains some degree of error. This implies that our
estimator (1) is no longer unbiased, though, if the bias
is small then the asymptotic limits of algorithms (3)
and (6) should be close. Therefore, one way to tackle
this issue is to refine our known set such that some
bound on the bias is guaranteed.

The second issue concerns the online acquisition of the
known set. Using the SA algorithm (3), at the time of
the n’th update of θ, we have already encountered a
state-action trajectory of size n. Can we use this tra-
jectory to construct an estimated partial MDP model,
use it as in algorithm (6), and guarantee an improve-
ment in the algorithm’s performance? While one may
easily construct such an algorithm, this should be done
with caution, since using the same trajectory for up-
dating the parameter and the estimated model may
cause overfitting. Though this issue deserves careful
analysis, we note that when a constant step size is
used, the major influences on the current value of the
parameter are the most recent measurements, which
should render this effect negligible.

Relation to Real Time Dynamic Programming
We conclude with an interesting note. When the
model is fully known, implementing our method on
Q-Learning and choosing a step size ε = 1 results in
an algorithm similar to Real Time Dynamic Program-
ming (Barto et al., 1995) (RTDP). Thus in this case
the IPM algorithm bridges between the model free Q-
Learning and RTDP which uses a complete model.

Integrating Partial Model Knowledge in Model Free RL Algorithms

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

M
S

E

p

K
 = 0

p
K
 = 0.3

p
K
 = 0.5

p
K
 = 0.8

0 100 200 300 400 500 600 700
0

5

10

15

20

25

Iteration

M
S

E

p
K
 = 0

p
K
 = 0.5

0 50 100 150 200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

M
S

E

p
K
 = 0

p
K
 = 0.3

p
K
 = 0.5

p
K
 = 0.8

Figure 1. TD(0) with a Partial Model. Left : MSE of Table Based IPM-TD(0) on a GARNET(10,5,10,1) MDP with a
deterministic random policy, for different values of pK . Step size is ε = 0.2. Dashed lines show the asymptotic MSE
calculated by (13). Middle : MSE of Table Based IPM-TD(0) on a GARNET(10,5,10,1) MDP with a deterministic
random policy. For pK = 0 (black-solid) a step size ε = 0.15 was used, and the asymptotic MSE was calculated using
(13) (black-dashed). For pK = 0.5 (red-solid) a step size was calculated (using (13)) such that its asymptotic MSE would
equal that of pK = 0. Right : MSE of linear FA IPM-TD(0) on a GARNET(30,5,10,1) MDP with a deterministic random
policy, for different values of pK . Step size is ε = 0.15. The linear FA parameters are L = 10 and l = 2. A discount factor
of γ = 0.7 was used in all simulations. All results are averaged over 500 different runs with the same initial conditions.

Acknowledgements

The research leading to these results has received
funding from the European Unions Seventh Frame-
work Programme (FP7/2007-2013) under PASCAL2
(PUMP PRIMING) grant agreement no. 216886 and
under a Marie Curie Reintegration Fellowship (IRG)
grant agreement no. 249254.

0 5 10 15

x 10
4

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

Iteration

A
ve

ra
ge

 R
ew

ar
d

η

p
K
 = 0

p
K
 = 0.5

p
K
 = 0.8

Figure 2. Policy Gradient with a Partial Model. Imple-
mentation of the algorithm described in section 5.2 on
a GARNET(30,5,10,1) MDP, with step size parameters
ε = 0.03 and ε′ = 0.003. The linear FA parameters are
L = 10 and l = 2. Average reward is plotted vs. iteration
number for different values of pK . Results are averaged
over 500 different runs with the same initial conditions.

References
A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to
act using real-time dynamic programming. Artificial
Intelligence, 72(1-2):81–138, 1995.

D.P. Bertsekas and J. Tsitsiklis. Neuro-dynamic Pro-

gramming. Athena Scinetific, 1996.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and
M. Lee. Natural actor–critic algorithms. Technical
Report TR09-10, Univ. of Alberta, 2007.

P. Brémaud. Markov Chains: Gibbs Fields, Monte
Carlo Simulation, and Queues. Springer, 1999.

P. Dayan and T.J. Sejnowski. TD(λ) Converges with
Probability 1. Machine Learning, 14:295–301, 1994.

P.R. Kumar. A survey of some results in stochastic
adaptive control. SIAM Journal on Control and Op-
timization, 23:329–380, 1985.

H.J. Kushner and G. Yin. Stochastic approximation
and recursive algorithms and applications. Springer
Verlag, 2003.

P. Marbach and J. Tsitsiklis. Simulation-based opti-
mization of markov reward processes. IEEE. Trans.
Auto. Cont., 46(2):191–209, 1998.

A. Papoulis and S.U. Pillai. Probability, Random Vari-
ables, and Stochastic Processes. McGraw Hill, fourth
edition, 2002.

S. Singh and P. Dayan. Analytical mean squared er-
ror curves for temporal difference learning. Machine
Learning, 32:5–40, 1998.

R.S. Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44,
1988.

R.S. Sutton and A.G. Barto. Reinforcement Learning.
MIT Press, 1998.

