
Online Submodular Minimization for Combinatorial Structures

Stefanie Jegelka jegelka@tuebingen.mpg.de

Max Planck Institute for Intelligent Systems, Tübingen, Germany

Jeff Bilmes bilmes@u.washington.edu

University of Washington, Seattle, WA 98195, USA

Abstract

Most results for online decision problems
with structured concepts, such as trees or
cuts, assume linear costs. In many settings,
however, nonlinear costs are more realistic.
Owing to their non-separability, these lead to
much harder optimization problems. Going
beyond linearity, we address online approx-
imation algorithms for structured concepts
that allow the cost to be submodular, i.e.,
nonseparable. In particular, we show regret
bounds for three Hannan-consistent strate-
gies that capture different settings. Our re-
sults also tighten a regret bound for uncon-
strained online submodular minimization.

1. Introduction

Online decision problems require repeatedly choosing
a solution S with knowledge only of the costs for pre-
vious decisions. The goal is to be in the long run com-
petitive to the best solution in hindsight. This online
setting becomes more challenging if in each round, a
combinatorial structure must be chosen as the solu-
tion, e.g., a path or spanning tree (Kalai & Vempala,
2005; Koolen et al., 2010; Kakade et al., 2009). Almost
always, the cost function is assumed to be linear, i.e.,
separable. Often, this separability is key to tackle the
combinatorial explosion of the decision space which
otherwise poses difficulties to methods based on main-
taining weights. Indeed, non-separability of the cost
usually renders the offline problem NP-hard. Then
only approximation algorithms are possible, a further
complication. Accordingly, and despite the broad in-
terest that online problems have enjoyed in Machine
Learning, results for online combinatorial problems

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

with nonlinear costs are quite scarce, and mostly re-
late to simple constraints or problems that are solvable
exactly. But the restriction to separable costs fails to
capture several real-world situations. Therefore, we
address online algorithms for nonseparable, submodu-
lar costs.

In the online combinatorial setting, we have a ground
set E of elements, e.g., the edges in a fixed graph. In
each of T rounds, we must choose a structure St from
a family S ⊂ 2E that contains, e.g., all spanning trees,
or all matchings. Then the cost function ft is revealed
that determines the loss ft(St). If we knew ft, we
would solve the problem

min ft(S) subject to S ∈ S. (1)

Examples are routing or connectivity problems, where
the graph structure does not change over time, but the
cost f : 2E → R+ of the edges does. Usually, the cost
function is a sum w(S) =

∑
e∈S w(e) of nonnegative

edge weights w : E → R+. With this cost, Problem (1)
reduces to a well-studied problem like shortest path or
minimum spanning tree.

However, the sum of weights fails to capture the cost
in many real-life situations. As an example, edges in
a graph might be operated by different companies,
and there is a discount for using the same company
on many edges. Similarly, some elements might have
shared fixed costs or depend on shared resources. Such
discounts are captured by submodular set functions.
Thus, we allow f to be a nondecreasing submodular
set function. A function f : 2E → R+ is submodu-
lar if it satisfies diminishing marginal costs: for any
A ⊆ B ⊆ E \ {e}, it holds that f(A ∪ {e}) − f(A) ≥
f(B ∪ {e}) − f(B). The function is nondecreasing if
for all A ⊆ B ⊆ E, it holds that f(A) ≤ f(B). A
sum of weights satisfies diminishing costs with equal-
ity, and is thus called a modular function. All separa-
ble functions are modular. As opposed to submodu-
lar functions, modular functions cannot express depen-
dencies between the costs of two elements. Recently,

Online Submodular Minimization for Combinatorial Structures

theoretical computer science has seen a rising interest
in combinatorial problems like (1) with submodular
costs (Iwata & Nagano, 2009; Goel et al., 2009; Koufo-
giannakis & Young, 2009). Such submodular problems
arise in a variety of applications, such as the following.

Label Costs. Each element e ∈ E has a set of
labels (features) π(e) ⊂ L, and the cost f(S) of a
set S ⊆ E is the cost of the labels of its elements:
f(S) = c(

⋃
e∈S π(e)). Labels are shared among sev-

eral elements, and the cost of a set of labels L is addi-
tive: c(L) =

∑
`∈L c(`) (ref. in (Hassin et al., 2007)).

In a network, the labels can correspond to transporta-
tion media or edges maintained by the same company,
and choosing paths or trees with uniform labels lowers
the cost. Another application is reliable connectivity
structures in networks: links do not break indepen-
dently, but share physical resources or other common
sources of failure. They belong to “Shared Risk Link
Groups” (Yuan et al., 2005), modeled by common la-
bels. Related ideas have surfaced in computer security,
where the minimum label cut in an attack graph in-
dicates the lowest-cost prevention of an intrusion (Jha
et al., 2002). Finally, the “multiple query optimization
problem” can be phrased as a label cost problem. In
all these examples, submodular costs allow even the
cost of the labels themselves to enjoy discounts.

Minimum power assignment. In wireless ad-hoc
networks, we seek a connectivity structure (e.g., a
spanning tree) that has minimum power requirement.
The power consumption of a node depends on the most
expensive edge it is using, p(v|S) = maxe=(v,u)∈S c(e),
and the total cost is the sum of the node costs, f(S) =∑
v∈V p(v|S) (Calinescu et al., 2003).

Image segmentation. Graph cuts are a versatile
tool in computer vision. Submodular edge costs allow
to couple edges and improve segmentations in difficult
settings (Jegelka & Bilmes, 2011a).

Stochastic optimization. In discrete mean-risk
minimization, we aim to minimize a stochastic cost
function over S while avoiding risks. The resulting
optimization problems have cost functions of the form
f(S) =

∑
e∈S µe + Ω

√∑
e∈S σ

2
e – a submodular func-

tion. Instead of the root, other concave functions can
arise that yield submodular set functions (Atamtürk
& Narayanan, 2008).

1.1. Online setting and regret

We consider the full-information online setting: in
round t, the decision maker must choose a solution
St ∈ S, knowing only the costs up to round t−1. Upon
this choice, the cost ft is revealed, and the player in-

curs loss ft(St). Throughout rounds t = 1, . . . , T , one
aims to minimize the regret, the difference to the best
fixed solution in hindsight:

R(T) =
1

T

(
T∑
t=1

ft(St)−min
S∈S

T∑
t=1

ft(S)

)
. (2)

An algorithm is Hannan-consistent if its regret van-
ishes as T → ∞. Regret is commonly used for
problems where the minimization for a known cost,
minS∈S f(S), can be solved exactly. But problems of
the form (1) with submodular costs are NP-hard; in-
deed, many have non-constant lower bounds on the ap-
proximation factor α. The factor α is a bound on the
quality of a solution S′ returned by a given algorithm,
compared to the optimal solution S∗: f(S′) ≤ αf(S∗).
If E are the edges in a graph G = (V,E), lower bounds
on α are Ω(|V |) for minimum spanning tree and per-
fect matching (Goel et al., 2009), Ω(

√
|E|) for min

(s, t)-cut (Jegelka & Bilmes, 2011b), and Ω(|V |) for
edge cover (Iwata & Nagano, 2009).

Thus, in this work, we target online approximation
algorithms. Let α be the approximation factor at-
tained by an offline approximation algorithm that
solves minS∈S f(S) for a known submodular f . The
α-regret compares to the best solution that can be ex-
pected in polynomial time and is used with approxima-
tions (Kakade et al., 2009; Streeter & Golovin, 2008):

Rα(T) =
1

T

(
T∑
t=1

ft(St)− αmin
S∈S

T∑
t=1

ft(S)

)
. (3)

1.2. Contributions and roadmap

Building on offline approximation algorithms, we
tackle submodular cost functions in combinatorial on-
line problems. This setting has also been termed
“learning structured concept classes” – but, contrary
to previous work, we use nonlinear costs. In particular,
we derive algorithms that handle (i) non-separability
for structures that are beyond previous dynamic pro-
gramming approaches (Lugosi et al., 2009), and (ii)
approximations, by exploiting properties of submod-
ular functions. First, we show two generic Hannan-
consistent algorithms for two main approximation
strategies, one based on subgradient descent (§2.1),
and one based on a Follow-the-leader scheme (§2.2).
Table 1 shows regret bounds for plugging in details
of various problems. As a corollary, our Theorem 1
tightens Theorem 1 in (Hazan & Kale, 2009) for the
unconstrained case. While the first two parts address
general submodular functions, the third part focuses
on a special class, namely label costs (LC). This class

Online Submodular Minimization for Combinatorial Structures

Table 1. Overview of regret bounds. The approximation factor α is underlined, k is the maximum frequency, U the
universe to cover. In a graph G = (V,E), n = |V |; for set cover, m is the number of sets. ∗for complete bipartite graphs

set cover vertex cover (s, t)-cut spanning tree perfect matching

subgradient desc. (§2.1) O(k
√
m/T) O(2

√
m/T) O(n

√
m/T) – –

FPL (§2.2) – – O(nm/
√
T) O(nm/

√
T) O(nm/

√
T)

label cost (§2.3) O(ln |U |
√

|L|/T) O(ln |E|
√

|L|/T) O(
√
m|L|/T) O(lnn

√
|L|/T) O(|L|

√
|L|/T)∗

allows better approximation factors if class-specific al-
gorithms are used. We reformulate LC problems as
cover-type problems, and derive an online algorithm
that can use any offline algorithm for the LC problem
at hand. Beyond standard label costs, our formulation
extends to multiple labels and simple discounts.

1.3. Related work

Most existing online and bandit algorithms for combi-
natorial problems expect a modular (linear) cost func-
tion (Kalai & Vempala, 2005; Koolen et al., 2010; Cesa-
Bianchi & Lugosi, 2009; Awerbuch & Kleinberg, 2004;
Balcan & Blum, 2007). Many exploit the separability
of this function to handle the exponential number of
choices, e.g., when maintaining weights. Submodular
functions are not separable in this way. One example
for non-separable costs with multi-task constraints is
(Lugosi et al., 2009). Their dynamic programming ap-
proach, however, works only for limited constraint sets
that keep the state graph small.

Unconstrained submodular minimization is not NP-
hard, and Hazan & Kale (2009) derive online algo-
rithms for this problem with a regret of O(m

√
T) for

m elements. We partially build on their techniques.

Contrary to the problems in most of the work above,
most instances of Problem (1) are NP-hard. In gen-
eral, there is no generic solution for integrating ap-
proximations into online algorithms. Kalai & Vem-
pala (2005) extend the regret bound for the Follow-
the-perturbed leader (FPL) algorithm to NP-hard com-
binatorial problems with a modular cost function if
there is an algorithm that provides a coordinate-wise
approximation to the optimal solution; this does not
apply here. Kakade et al. (2009) show an example
where FPL fails for the greedy set cover algorithm, and
ask how to use FPL in general with approximations.
In Section 2.2, we integrate a class of approximation
algorithms for Problem (1) into the FPL framework.
Kakade et al. (2009) show how to derive online ap-
proximation algorithms from offline algorithms, gen-
eralizing online gradient descent (Zinkevich, 2003) by
approximate projections. They too consider only a
certain family of cost functions and pose the case of
nonlinear costs as an open problem. A straightforward

use of their algorithm would yield exponential regret
bounds, and also pose other problems (Supplement).

For approximate submodular maximization, an online
greedy method exists (Streeter & Golovin, 2008) that
satisfies given constraints in expectation only. The
concept of adaptive submodularity (Golovin & Krause,
2010) also implies greedy algorithms, but considers a
setting different from ours.

1.4. Preliminaries and notation

The cost function f is defined on 2E , the power set
of E. The cardinality of E is m = |E|. Graphs
are denoted by G = (V,E). The α in the regret
bound always refers to the approximation factor of
the corresponding offline algorithm. Let χA ∈ {0, 1}E
be the characteristic vector of A ⊆ E, which means
χA(e) = 1 if e ∈ A and χA(e) = 0 otherwise. An
important concept for submodular functions is the
submodular polyhedron Pf = {x ∈ RE | x · χA ≤
f(A) for all A ⊆ E}. For any submodular f , it holds
that f(A) = maxy∈Pf

y · χA. The Lovász exten-

sion f̃ of f is the convex extension f̃ : RE+ → R
with f̃(x) = maxy∈Pf

y · x, so f̃(χA) = f(A) for all
A ⊆ E (Lovász, 1983). This definition shows that
g = argmaxy∈Pf

y · x is a subgradient of f̃ in x (Fu-

jishige, 2005): it implies g · x′ ≤ f̃(x′) for all x′ ∈ RE+,

and hence f̃(x′)− f̃(x) ≥ g · (x′−x). The greedy algo-
rithm (Edmonds, 1970; Lovász, 1983) finds the vector
g in O(m logm) time. We will also use that the sum
of submodular functions is submodular, and assume
f to be nonnegative and nondecreasing. For more de-
tails on submodular functions, see e.g. (Fujishige, 2005;
Lovász, 1983). Note that in a discrete space, we use
“modular” and “linear” interchangeably.

2. Strategies

Many approximation algorithms relate an inherently
difficult problem to an easier one, and we will build on
exactly this relation. Problem (1) is hard for two rea-
sons, and we categorize algorithms by which of those
reasons they address: (i) Problem (1) has combinato-
rial constraints – unconstrained submodular minimiza-
tion is not NP-hard (ref. in (Fujishige, 2005)); (ii) the

Online Submodular Minimization for Combinatorial Structures

Algorithm 1 Rounded subgradient descent

Input: η > 0, initial x1 ∈ K
for t = 1 to T do

get St from xt by rounding with guarantee α
obtain ft
compute gt = argmaxg∈Pft

g · xt and

xt+1 = ΠK(xt − ηgt)
end for

cost function is nonseparable – for a separable f , many
instances are not NP-hard, e.g., minimum spanning
tree.

Algorithms working with (i) treat f as a pseudo-
boolean function on indicator vectors, relax S to its
convex hull, and finally round the solution of the re-
laxed problem. The relaxation is a convex non-smooth
minimization problem with linear constraints. Such a
problem is naturally amenable to an online, possibly
exponentiated, subgradient descent.

Algorithms motivated by (ii) replace f by a tractable

approximation f̂ , and minimize f̂ over S. We use this
f̂ in a specific way in the Follow-the-leader framework,
and show example functions that fit our framework.
The generic f̂ by (Goemans et al., 2009) does not fit
Algorithm 2, but we present a modification that works.

Finally, label costs permit better approximations that
the generic algorithms of type (i) and (ii) are not guar-
anteed to achieve. Thus, we derive a third framework
for label costs. It transforms the cost function and con-
straints into an equivalent problem – selecting labels –
that is the starting point for the online approximation.

2.1. Relaxations

We begin with an algorithm that operates on a relax-
ation and then uses rounding. The rounding procedure
determines the approximation factor; suitable proce-
dures exist for covering constraints (Iwata & Nagano,
2009) and cuts (Jegelka & Bilmes, 2011b).

Let K ⊆ [0, 1]E be the convex hull of the decision space
S ⊆ {0, 1}E ; both are described by the same linear in-
equalities. The cost function on K corresponding to ft
on S is the convex Lovász extension f̃t. Algorithm 1
maintains two variables: it performs a subgradient de-
scent based on (Zinkevich, 2003) in continuous space
that yields xt, and then rounds to St. In each round
t, it takes a step into the direction of the negative
subgradient −gt of f̃t and projects back onto K. The
projection ΠK(y) = argminx∈K ‖x − y‖2 is in general
easier to solve than the full non-smooth relaxation.

Theorem 1. For a rounding scheme with ap-

proximation guarantee α, M = maxt ft(E), and
η =

√
m(M

√
T)−1, Algorithm 1 has an α-regret of

Rα(T) ≤ αM
√
m/T = O

(
α
√
m/T

)
.

As a corollary, Theorem 1 improves a bound in (Hazan
& Kale, 2009), and makes it tight (using α = 1, S =
{0, 1}E and their thresholded rounding).

Corollary 1. The regret for online submodular mini-
mization with Algorithm 1 is bounded by O(

√
m/T).

Crucial for the improvement is a bound on the norm
of the subgradient that uses gt ∈ Pf and ‖gt‖ ≤ ‖gt‖1
(Supplement):

Lemma 1. Let gt be a subgradient of ft (obtained as
in §1.4). Then ‖gt‖ ≤ βmaxA⊆E |ft(A)|−ft(∅), where
β = 1 if ft is nondecreasing, and β = 3 otherwise.

Proof. (Thm. 1, outline) The proof consists of two
steps. First, we bound the 1-regret for the sequence
{xt} analogous to (Zinkevich, 2003), and then use
this result to bound the α-regret for the sequence
St. Let S∗ ∈ argminS∈S

∑T
t=1 ft(S). The definition

f̃t(x) = maxg∈Pft
g · x implies f(S∗) = f̃(χS∗) and

T∑
t=1

f̃(xt)−
T∑
t=1

f(S∗) ≤
T∑
t=1

gt · xt −
T∑
t=1

gt · χS∗ .

A proof similar to that in (Zinkevich, 2003) leads to a
bound on the right hand side that we bound further:

2

T∑
t=1

gt · (xt − χS∗) ≤ max
x,y∈K

‖x− y‖2/η + ηT max
t
‖gt‖2

≤ m/η +M2Tη.

For the second inequality, we used ‖x − y‖2 ≤ m for
all x, y ∈ K because K ⊆ [0, 1]E . Furthermore, we
bounded the `2 norm of gt by Lemma 1:

‖gt‖ ≤ gt · χE ≤ maxt ft(E) ≤M.

Finally, the approximation guarantee for the rounding
procedure implies that f(St) = f̃(χSt

) ≤ αf̃(xt), so

T∑
t=1

f(St)− α
T∑
t=1

f(S∗) ≤ α
T∑
t=1

f̃(xt)− α
T∑
t=1

f(S∗)

≤ 0.5α(m/η +M2Tη).

The regret bound follows with η =
√
m(M

√
T)−1.

A similar strategy works with exponentiated gradients
– the regret bounds are as for linear cost problems,
scaled by a factor α. The proof is analogous.

Suitable rounding techniques are not available for
all submodular-cost problems. Instead, several algo-
rithms approximate the cost function. This approach
fits the Follow-the-leader framework described next.

Online Submodular Minimization for Combinatorial Structures

2.2. Approximations of the cost

We now address algorithms of type (ii) that replace f

in Problem (1) by an approximation f̂ and solve the re-

sulting tractable problem instead. Several f̂ integrate
with the Follow-the-leader principle (Hannan, 1957).

This principle suggests playing the best S given
the costs observed so far: in round t, pick St =
argminS∈S

∑t−1
τ=1 fτ (S) + r(S) (Kalai & Vempala,

2005). In the simplest case, the last term is a mod-
ular perturbation r(S) = r · χS by a random vector
r (Follow-the-perturbed-leader, FPL). But here, find-
ing such a minimizer St is NP-hard, and an St from an
approximation algorithm is not enough (Kakade et al.,
2009). Instead, Algorithm 2 uses the exact expected
minimizer of the approximate costs, because the devi-
ation of each f̂t from ft is bounded, not only the sum.
We define two general conditions for f̂ :

C1 The approximation f̂ of f satisfies f(A) ≤ f̂(A) ≤
αf(A) for all A ∈ S.

C2 The following problem can be solved exactly in
polynomial time:

argminS∈S
∑

t
f̂t(S) + αr(S). (4)

Algorithm 2 Follow the approx. perturbed leader

Input: η > 0
pick r ∈ [0,M/η]E uniformly at random
for t = 1 to T do

approximate ft by f̂t
set St = argminS∈S

∑t−1
τ=1 f̂τ (S) + αr(S)

obtain ft
end for

These constraints apply in a variety of settings, as we
discuss later. Algorithm 2 integrates such an f̂ into
the FPL framework and adapts the perturbation r ac-
cordingly. Condition (C2) ensures that we can find St.
Then we can bound the regret for submodular costs in
an approximation setting even with FPL.

Theorem 2. For an approximation f̂ that satisfies
(C1) and (C2), M = maxt ft(E), and η = 1/

√
2T ,

Algorithm 2 achieves an expected α-regret E[Rα(T)] ≤
2
√

2αmM/
√
T = O(αm/

√
T).

Proof. (Outline) Let

St = argmin
S∈S

∑t−1

τ=1
f̂τ (S) + αr(S);

Ŝt = argmin
S∈S

∑t−1

τ=1
f̂τ (S); S∗t = argmin

S∈S

∑t

τ=1
fτ (S).

Similar to the proof of Lemma 3.1 in (Kalai & Vem-
pala, 2005), we obtain a bound for the series of St+1:∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

To transfer this result to the series of St, we use that
f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):

T∑
t=1

f̂t(St) ≤
T∑
t=1

f̂t(ŜT+1)

+

T∑
t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).
(5)

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S

∗
T) ≤ α

∑T

t=1
ft(S

∗
T),

and that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). Together with

Equation (5), this yields∑T

t=1
ft(St)− α

∑T

t=1
ft(S

∗
T)

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

It remains to bound the two terms on the right hand
side, and these bounds depend on r ∈ [0,M/η]E . The
expected difference of r terms can be bounded by
mM/η. For the other term, we extend a technique
in (Hazan & Kale, 2009) to the approximation setting
(Supplement) to bound the probability that St 6= St+1,
and reach the inequality∑T

t=1
E[f̂t(St)− f̂t(St+1)]

≤
∑T

t=1
P (St 6= St+1) max

A∈S
f̂(A) ≤ 2αmMTη.

Finally, combining these bounds yields

E
[T∑
t=1

ft(St)
]
− α

T∑
t=1

ft(S
∗
T) ≤ αMm/η + 2αmMTη.

Theorem 2 follows for η = 1/
√

2T .

2.2.1. Approximations fitting Algorithm 2

Conditions (C1) and (C2) show that a suitable approx-

imation f̂ is decisive. We list and derive examples for
f̂ that can be plugged into Algorithm 2.

Spanning tree and matching. The best approxi-
mation bound for minimum spanning tree (MST) and
perfect matching with general submodular costs is
O(|V |), and is achieved with the simple approxima-

tion f̂m(S) =
∑
e∈S f(e) (Goel et al., 2009). Since f̂m

Online Submodular Minimization for Combinatorial Structures

is additive, any standard algorithm for MST or match-
ing applies for (C2). (C1) holds by subadditivity of f .

The simple f̂m, however, often leads to rather loose
approximation factors. We derive a better, nontrivial
approximation for the problem structure of cuts.

Minimum cut. For cuts, E is the set of directed
edges in a graph G = (V,E). We design f̂ to be sep-
arable across certain groups of edges for tractability,
but retain submodularity on restricted sets to improve
on f̂m. Let {E−v }v∈V be the partition of E where
E−v contains all edges e = (u, v) with head v, and
{E+

u }u∈V be the analogous partition that assigns each
edge e = (u, v) to its tail node u. For either partition,
we define an approximate cost function:

f̂−(S) =
∑
v∈V

f(A ∩ E−v); f̂+(S) =
∑
v∈V

f(A ∩ E+
v).

By subadditivity, both functions are upper bounds on
f . Before starting Algorithm 2, we decide uniformly at
random whether to use f̂ = f̂− or f̂ = f̂+ and retain
this choice throughout. With this strategy, the factor
α in (C1) improves from m (for f̂m) to |V |/2:

Lemma 2. Let f̂ be randomly chosen between f̂− and
f̂+ with equal probabilities. Then f(S) ≤ E[f̂(S)] ≤
(|V |/2)f(S) for all minimal (s, t)-cuts S.

The lemma follows from the definition of f̂ and sub-
additivity of f (Supplement).

To satisfy (C2), we compute the cut St via a gen-
eralized flow problem. Polymatroidal network flows
(Lawler & Martel, 1982) generalize flow capacity con-
straints to submodular functions capin

v and capout
v that

restrict the inflow and outflow of each node v, respec-
tively. Such a maxflow problem can be solved in poly-
nomial time. Its dual problem is a minimum cut with
cut cost c(S) = minA⊆S

∑
v capin

v (A∩E−v)+capout
v ((S\

A) ∩ E+
v) (Lovász, 1983). We thus set the capacity

functions to represent the cost in (C2). If f̂ = f̂−, then
we set capout

v to some large value so that c(S) only uses
capin

v , and set capin
v (A) =

∑
t ft(A∩E−v)+αr(A∩E−v).

The procedure for f̂+ is analogous. Then (here for f̂−)

c(S) =
∑

v

∑
t
ft(S ∩ E−v) + αr(S ∩ E−v)

=
∑

t
f̂t(S) + αr(S).

2.2.2. A generic approximation

A generic nontrivial approximation f̂ for submodular
functions was proposed by Goemans et al. (2009), but
it does not satisfy (C2) in a straightforward way. Its

functional form is f̂(S) =
√∑

e∈S w(e).

Nevertheless, it is possible to use its square. It satisfies
f̂2(A) ≤ f2(A) ≤ α2

g f̂
2(A) for all A ⊆ E, with αg =

O(
√
m logm). Even better, f̂2 is a modular function,

so we can use any online algorithm for linear costs:
when observing ft, we pretend to have seen f̂2t . The
regret might worsen by a constant factor, compared to
a linear loss of the same range as ft.

To state the regret bound, let ν = mint,S∈S ft(S). We
make the reasonable assumption that no ft is the con-
stant zero function, and then ν > 0. The following
Lemma is proved in the (Supplement).

Lemma 3. Let R̂A be the regret of an online algorithm
A when used with linear cost functions with a range
like f̂2t . Using A with f̂2t when observing ft leads to

an αg-regret of Rαg (T) ≤ αgR̂A/ν.

2.3. Labels and related costs

The two previous sections proposed online algorithms
for general submodular functions. The associated ap-
proximation factors usually match their lower bounds.
However, certain sub-classes of submodular functions
admit better approximation factors. As an example,
the approximation factor for MST drops from linear to
logarithmic in |V | if f is a label cost function. There-
fore, we address a specific algorithm for label costs.

With label costs, each element e has a label π(e) ∈ L,
and the cost is the additive cost of the labels, f(S) =
c(
⋃
e∈S π(e)) =

∑
`∈π(S) c(`) (Hassin et al., 2007). We

assume here that the labels of the elements are fixed,
but the cost of the labels changes over time. We start
with trees and covers, and then generalize our tech-
nique to related costs and other problems.

We intrinsically transform the decision space and state
the problem of selecting a structure as a label selection
problem with a covering constraint. Then we exploit
the simpler cost on the labels. The offline approxima-
tion algorithm helps find the desired labels.

Instead of directly choosing a structure, Algorithm
3 picks a set of labels Lt with minimum cost. This
Lt must be such that the set of elements E(Lt) =
{e|π(e) ∈ Lt} with labels in Lt contains the desired
structure St ∈ S, e.g., a tree. Given such an Lt, find-
ing a feasible St ⊆ E(Lt) is easy, and, by the definition
of ft, ft(St) ≤ ct(Lt). For trees, we find St by prun-
ing the graph to contain only edges E(Lt) and then
compute a spanning tree, St.

It remains to determine (i) by which criterion to choose
Lt, and (ii) how to find an Lt that contains the desired
structure. As to (i), we note that the cost function on
labels is modular. Therefore, we use an approximate

Online Submodular Minimization for Combinatorial Structures

Algorithm 3 Online label cost minimization

pick any S1 ∈ S; set L1 =
⋃
e∈S π(e), y1 = χL1

for t = 2 to T do
(yt, Lt) = ApproxProj(yt−1 − ηct−1, Lt−1, yt−1)
find St ⊆ E(Lt), St ∈ S
obtain ft and extract ct

end for

gradient descent. Algorithm 3 maintains a continu-
ous correspondent yt of Lt, and moves from yt into
the direction of the negative gradient ct. To move the
resulting point to the feasible set, we use an approx-
imate projection from (Kakade et al., 2009), denoted
by ApproxProj. This method applies because our re-
formulation has linear cost. The approximate projec-
tion relies on an approximation algorithm - here, an
algorithm to find a suitable Lt, given a cost vector c.

Thus, as a last step, we show how to find a label set
Lt that contains a spanning tree. Given cost c, we
formulate a submodular cover problem:

min c(L) s.t. g(L) = g(L), (6)

for a nondecreasing submodular function g : 2L →
N0. We construct g to capture the tree constraint for
E(L). Let r : 2E → N0 be the rank function of a
graphic matroid defined by the given graph, that is,
r(S) = |S| if the subgraph induced by S does not
contain any cycles. Otherwise, r(S) is the size of the
largest subset of S that is cycle-free. The function r
is submodular and nondecreasing. If S is a spanning
tree, then r(S) = r(E) = |V | − 1. We define

g(L) = r(E(L)). (7)

This function g is also submodular, integral and non-
decreasing, and g(L) = g(L) = r(E) if and only if
E(L) contains a spanning tree. Problem (6) is solved
by a greedy algorithm for submodular cover (Wolsey,
1982), with approximation factor α = H(max` g(`)) =
O(log |V |). Here, H(n) is the nth harmonic num-
ber. This algorithm completes the online algorithm
for spanning trees.

The construction for set cover is analogous, with g(L)
counting the number of elements covered by sets with
labels in L. In fact, the result is a standard set cover
problem. Thanks to our reformulation, the regret
bound involves the total number of labels, |L| ≤ m.

Theorem 3. The regret of Algorithm 3 is bounded as
Rα(T) = O(α

√
M |L|/T), where M = maxt ft(E).

The bound follows from Theorem 3.2 in (Kakade et al.,
2009) for η = (α+ 1)

√
|L|/(MT), and from the equiv-

alence of picking labels and structures, as outlined

above. Theorem 3 immediately implies a regret bound
of O(

√
|L|M log |V |/

√
T) for spanning trees.

Multiple labels and truncated costs. Our trans-
formation also applies to multiple labels per edge and
simple thresholded costs. Multiple labels can be sim-
ulated by dividing an edge into “slots”, and by a con-
struction to count edges fractionally. Details are de-
scribed in the (Supplement). In a similar spirit, trun-
cated costs of the form c(L) = min{w · χL, γ} can be
simulated by parallel edges, so that the algorithm can
pick a full group or single edges via labels.

Other structures. Some structures, such as paths,
are not easily represented as submodular covers. How-
ever, it actually suffices to view the label cost problems
as modular-cost problems of choosing a minimum cost
set of labels L, where E(L) must contain the desired
structure. To solve this problem, we compute a mini-
mum label cost structure S∗ and pick all labels used by
S∗. Algorithms for minimum label cost path (Hassin
et al., 2007), matching (Monnot, 2005) or cut (Zhang
et al., 2009) find an approximate S∗ with factor α. We
substitute the respective procedure for the submodular
cover in the approximate projections, and Algorithm 3
still applies. As a result, Theorem 3 holds with the re-
spective α.

3. Discussion and Open Questions

We showed two generic approaches to online algo-
rithms for submodular costs and combinatorial struc-
tures: projected subgradient for relaxations and
Follow-the-leader for approximations of the cost func-
tion. Despite being not completely ignorant of the un-
derlying approximation strategy, they are still generic
enough to cover almost all existing offline approxima-
tion methods for structured concepts with submodular
costs. Algorithm 3 is even more generic: it fits any al-
gorithm for a label cost problem, and yields vanishing
α-regret even for the better α attainable with label
costs. Details for all results are in the (Supplement).

Our work contributes to extending the results for the
online combinatorial setting from linear costs to non-
linear costs. In particular, it yields the first regret
bounds for structured concepts with submodular costs.
This complements the work in the unconstrained set-
ting (Hazan & Kale, 2009), and the work on online
submodular maximization (Streeter & Golovin, 2008;
Streeter et al., 2009). “Combinatorial bandits” have
been explored for linear cost functions (Cesa-Bianchi
& Lugosi, 2009) – an open question remains what is
achievable in the bandit case for nonlinear, nonsepa-
rable costs.

Online Submodular Minimization for Combinatorial Structures

References

Atamtürk, A. and Narayanan, V. Polymatroids and mean-
risk minimization in discrete optimization. Operations
Research Letters, 36(5):618–622, 2008.

Awerbuch, B. and Kleinberg, R. D. Adaptive routing with
end-to-end feedback: distributed learning and geometric
approaches. In Proc. of the ACM Symp. on Theory of
Computing (STOC), 2004.

Balcan, M. F. and Blum, A. Approximation algorithms and
online mechanisms for item pricing. Theory of Comput-
ing, 3(9):179–195, 2007.

Calinescu, G., Kapoor, S., Olshevsky, A., and Zelikovsky,
A. Network lifetime and power assignment in ad hoc
wireless networks. In Proc. of the European Symp. on
Algorithms (ESA), 2003.

Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
In Proc. of the Int. Conf. on Learning Theory (COLT),
2009.

Edmonds, J. Combinatorial Structures and their Applica-
tions, chapter Submodular functions, matroids and cer-
tain polyhedra, pp. 69–87. Gordon and Breach, 1970.

Fujishige, S. Submodular Functions and Optimization.
Number 58 in Annals of Discrete Mathematics. Elsevier
Science, 2nd edition, 2005.

Goel, G., Karande, C., Tripati, P., and Wang, L. Approx-
imability of combinatorial problems with multi-agent
submodular cost functions. In Proc. of the Ann. Symp.
on Foundations of Computer Science (FOCS), 2009.

Goemans, M. X., Harvey, N. J. A., Iwata, A., and Mir-
rokni, V. S. Approximating submodular functions every-
where. In Proc. of the ACM-SIAM Symp. on Discrete
Algorithms (SODA), 2009.

Golovin, D. and Krause, A. Adaptive submodularity: A
new approach to active learning and stochastic optimiza-
tion. In Proc. of the Int. Conf. on Learning Theory
(COLT), 2010.

Hannan, J. Approximation to Bayes risk in repeated play.
In Contributions to the Theory of Games, volume III.
1957.

Hassin, R., Monnot, J., and Segev, D. Approximation al-
gorithms and hardness results for labeled connectivity
problems. Journal of Combinatorial Optimization, 14
(4):437–453, 2007.

Hazan, E. and Kale, S. Online submodular minimization.
In Proc. of the Ann. Conf. on Neural Information Pro-
cessing Systems (NIPS), 2009.

Iwata, S. and Nagano, K. Submodular function minimiza-
tion under covering constraints. In Proc. of the Ann.
Symp. on Foundations of Computer Science (FOCS),
2009.

Jegelka, S. and Bilmes, J. Submodularity beyond submod-
ular energies: coupling edges in graph cuts. In Proc. of
the IEEE Conf. on Computer Vision and Pattern recog-
nition (CVPR), 2011a.

Jegelka, S. and Bilmes, J. Approximate inference via gener-
alized graph cuts. In Proc. of the Int. Conf. on Machine
Learning (ICML), 2011b.

Jha, S., Sheyner, O., and Wing, J.M. Two formal analyses
of attack graphs. In Proc. of the 15th Computer Security
Foundations Workshop, pp. 49–63, 2002.

Kakade, S., Kalai, A. T., and Ligett, K. Playing games
with approximation algorithms. SIAM Journal on Com-
puting, 39(3):1088–1106, 2009.

Kalai, A.T. and Vempala, S. Efficient algorithms for on-
line decision problems. Journal of Computer and System
Sciences, 71:26–40, 2005.

Koolen, W.M., Warmuth, M. K., and Kivinen, J. Hedg-
ing structured concepts. In Proc. of the Int. Conf. on
Learning Theory (COLT), 2010.

Koufogiannakis, C. and Young, N. E. Greedy ∆-
approximation algorithm for covering with arbitrary
constraints and submodular costs. In Proc. of the Int.
Colloquium on Automata, Languages and Programming
(ICALP), 2009.

Lawler, E. L. and Martel, C. U. Computing maximal
“Polymatroidal” network flows. Mathematics of Oper-
ations Research, 7(3):334–347, 1982.

Lovász, L. Mathematical programming – The State of the
Art, chapter Submodular Functions and Convexity, pp.
235–257. Springer, 1983.

Lugosi, G., Papaspiliopoulos, O., and Stoltz, G. Online
multi-task learning with hard constraints. In Proc. of
the Int. Conf. on Learning Theory (COLT), 2009.

Monnot, J. The labeled perfect matching in bipartite
graphs. Information Processing Letters, 96:81–88, 2005.

Streeter, M. and Golovin, D. An online algorithm for
maximizing submodular functions. In Proc. of the
Ann. Conf. on Neural Information Processing Systems
(NIPS), 2008.

Streeter, M., Golovin, D., and Krause, A. Online learning
of assignments. In Proc. of the Ann. Conf. on Neural
Information Processing Systems (NIPS), 2009.

Supplement. http://ssli.ee.washington.edu/

~jegelka/icml/online.pdf.

Wolsey, L. An analysis of the greedy set cover algorithm for
the submodular set covering problem. Combinatorica, 2
(4), 1982.

Yuan, S., Varma, S., and Jue, J. P. Minimum-color path
problems for reliability in mesh networks. In Proc. of the
IEEE Int. Conf. on Computer Communications (INFO-
COM), 2005.

Zhang, P., J.-Y, Cai, Tang, L.-Q., and Zhao, W.-B. Ap-
proximation and hardness results for label cut and re-
lated problems. Journal of Combinatorial Optimization,
2009.

Zinkevich, M. Online convex programming and infinitesi-
mal gradient ascent. In Proc. of the Int. Conf. on Ma-
chine Learning (ICML), 2003.

