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Abstract

We study simultaneous learning and cover-
ing problems: submodular set cover prob-
lems that depend on the solution to an ac-
tive (query) learning problem. The goal is
to jointly minimize the cost of both learn-
ing and covering. We extend recent work in
this setting to allow for a limited amount of
adversarial noise. Certain noisy query learn-
ing problems are a special case of our prob-
lem. Crucial to our analysis is a lemma
showing the logical OR of two submodular
cover constraints can be reduced to a single
submodular set cover constraint. Combined
with known results, this new lemma allows
for arbitrary monotone circuits of submodu-
lar cover constraints to be reduced to a sin-
gle constraint. As an example practical ap-
plication, we present a movie recommenda-
tion website that minimizes the total cost of
learning what the user wants to watch and
recommending a set of movies.

1. Background

Consider a movie recommendation problem where we
want to recommend to a user a small set of movies to
watch. Assume first that we already have some model
of the user’s taste in movies (for example learned from
the user’s ratings history or stated genre preferences).
In this case, we can pose the recommendation problem
as an optimization problem: using the model, we can
design an objective function F (S) which measures the
quality of a set of movie recommendations S ⊆ V . Our
goal is then to maximize F (S) subject to a constraint
on the size or cost of S (e.g. |S| ≤ k ). Alternatively

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

we can minimize the size or cost of S subject to a
constraint on F (S) (e.g. F (S) ≥ α).

Without making any assumptions about F , both of
these problems are intractable. A popular assumption
that makes it possible to approximately solve these
problems is the assumption that F is submodular. A
set function F : 2V → R is submodular iff for every
A ⊆ B ⊆ (V \ {s})

F (A+ s)− F (A) ≥ F (B + s)− F (B)

In other words, adding an item s to a smaller set A re-
sults in a larger gain than adding it to a larger set
B. In our movie recommendation application, this
means that the value of recommending a particular
movie only decreases as we recommend other movies.
For submodular objectives, maximizing F (S) subject
to |S| ≤ k is called submodular function maximization,
and minimizing the cost of S subject to F (S) ≥ α is
called submodular set cover. F (S) is called monotone
non-decreasing if F (A) ≤ F (B) for A ⊆ B. F is called
modular (additive, linear) if F (A+s) = F (A)+F ({s})
and normalized if F (∅) = 0. A classic result is that
for integer α and integer valued, monotone objectives
a simple greedy algorithm for submodular set cover
gives a solution within lnα times the optimal solu-
tion (Wolsey, 1982). Many applications like document
summarization (Lin & Bilmes, 2011), sensor placement
(Krause et al.), and viral marketing in social networks
(Kempe et al., 2003) can be solved via submodular
maximization or set cover.

In this work we consider a version of the movie recom-
mendation problem in which we do not know the user’s
taste preferences and must actively acquire this infor-
mation. We must both identify the user’s preferences
through feedback (learn) and recommend a small set
of movies according to these preferences (cover). Our
goal is to minimize the joint cost of both learning and
covering. User feedback can take many forms. For
example, we could assume that after recommending a
movie to a user we are given feedback in the form of
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a movie rating. We also consider variations with sep-
arate learning actions and recommendation actions.

Other applications outside of movie recommendation
can also be phrased in terms of simultaneous learning
and covering. For example we may want to find a set of
documents that summarizes all documents that a user
is interested in; if we do not initially know which docu-
ments a user is interested in then we must both identify
the documents of interest (learn) and also summarize
them (cover). Similarly we may want to advertise to
an initially unknown target group of users or place
sensors in an initially unknown environment.

In previous work (Guillory & Bilmes, 2010), we intro-
duced and analyzed a problem called interactive sub-
modular set cover, a direct generalization of both ex-
act active learning with a finite hypothesis class (i.e.
query learning) and submodular set cover. Many si-
multaneous learning and covering type problems can
be formally posed as interactive submodular set cover.
Interactive submodular set cover can be seen as uni-
fying submodular set cover (Wolsey, 1982) and query
learning (Hanneke, 2006; Balcázar et al., 2007). Fig-
ure 1 shows the relationship between these problems.

Interactive Submodular Set Cover
Given:

• Hypothesis class H containing unknown h∗

• Query set Q and response set R with known
q(h) ⊆ R for q ∈ Q, h ∈ H

• Modular query cost function c defined over Q
• Submodular, monotone objective functions
Fh : 2Q×R → R≥0 for h ∈ H

• Objective threshold α

Protocol: Ask a question q̂i ∈ Q and receive a
response r̂i ∈ q̂i(h∗).
Goal: Using minimal cost

∑T
i=1 c(q̂i) , guarantee

Fh∗(Ŝ) ≥ α where Ŝ =
⋃T
i=1{(q̂i, r̂i)}

In the movie recommendation example described
above, the hypothesis class H corresponds to all possi-
ble models of the user’s preferences, and the target hy-
pothesis h∗ ∈ H is the (initially unknown) true model
of the user’s preferences. Queries correspond to ac-
tions available to the learning and covering algorithm;
for example, we can have an action for each movie cor-
responding to recommending that movie and an action
for each genre corresponding to asking the user if they
are interested in that genre. Responses correspond
to feedback from actions, and q(h) ⊆ R is the set of
allowable responses for question q if hypothetically h
were the target hypothesis. For example, if q asks
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Figure 1. Related problems

the user if they are interested in horror movies then
q(h) = {Y es} if according to h the user likes horror
movies and q(h) = {No} if according to h the user
does not. q(h) = {Y es,No} if the model h is unin-
formative about this query. We assume q(h) 6= ∅ and
that q(h) is known (and available to an algorithm).

Finally, the objective function Fh(Ŝ) for hypothesis h
measures the quality of the recommendations given by
Ŝ if hypothetically h were the target hypothesis. We
assume Fh is submodular, monotone non-decreasing
and known. The goal is to ensure Fh∗(Ŝ) ≥ α for
a fixed α using minimal cost. Note that we assume
that Fh is known for every h; what we do not know is
h∗, which of the hypotheses is the target hypothesis.
In general it is not necessary to identify h∗ in order
to ensure Fh∗(Ŝ) ≥ α, but learning about h∗ may be
helpful. Define the version space V (Ŝ) to be the subset
of H consistent with Ŝ.

V (Ŝ) , {h ∈ H : ∀(q, r) ∈ Ŝ, r ∈ q(h)}

For worst case choice of h∗, in order to ensure that
Fh∗(Ŝ) ≥ α it is both necessary and sufficient to ensure
that Fh(Ŝ) ≥ α for every h ∈ V (Ŝ).

Interactive submodular set cover makes the limiting,
simplifying assumption that the target hypothesis h∗

is in H. In terms of the recommendation example,
interactive submodular set cover assumes that user’s
taste matches exactly one of a finite set of models we
know in advance and that there is no noise in our feed-
back. In almost every real world learning application,
this is an unrealistic assumption; typically, no single
hypothesis will exactly match up with the observed
question-response pairs because of noise or because we
have an incorrect hypothesis class.

2. Noisy Interactive Set Cover

In this paper we propose a generalization of interactive
submodular set cover that relaxes the assumption that
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h∗ ∈ H. With h∗ not necessarily in H, it no longer
makes sense to require Fh∗(Ŝ) ≥ α; we only know
objective functions Fh for h ∈ H so if h∗ /∈ H then
we have no way of testing if Fh∗(Ŝ) ≥ α. Instead
we require that the covering constraint Fh(Ŝ) ≥ α is
satisfied for all h that are sufficiently “close” to h∗ (as
measured through observed responses).

We propose defining closeness in terms of an ad-
ditional submodular, monotone non-decreasing func-
tion Gh(Ŝ) defined over question-response pairs. In
particular, we require that the covering constraint
Fh(Ŝ) ≥ α is satisfied for all h such that Gh(S∗) <
κ where κ is a known constant and S∗ is the un-
known set of all question-response pairs induced by h∗,
S∗ ,

⋃
q∈Q,r∈q(h∗){(q, r)}. S∗ is unknown so we can-

not directly compute Gh(S∗); however, the question-
response pairs we observe Ŝ are a subset of S∗ with
which we can reason about Gh(S∗). Intuitively, Gh
can be thought of as computing the distance from h to
h∗ in terms of the question-response pairs allowed by
h∗. We make the assumption that for any h, Ŝ, and
(q, r) such that r ∈ q(h), Gh(Ŝ + (q, r))−Gh(Ŝ) = 0.
In other words, if we observe a question-response pair
that agrees with h, then Gh does not increase. κ de-
termines which hypotheses are close enough.

Noisy Interactive Set Cover
Given:

• Hypothesis class H (doesn’t contain h∗)
• Query set Q and response set R with known
q(h) ⊆ R for q ∈ Q, h ∈ H and unknown
q(h∗) ⊆ R for q ∈ Q
• Modular query cost function c defined over Q
• Submodular, monotone objective functions
Fh : 2Q×R → R≥0 for h ∈ H
• Submodular, monotone objective functions
Gh : 2Q×R → R≥0 for h ∈ H with Gh(S +
(q, r))−Gh(S) = 0 for any S if r ∈ q(h)

• Objective threshold α, closeness threshold κ

Protocol: Ask a question q̂i ∈ Q and receive a
response r̂i ∈ q̂i(h∗)
Goal: Using minimal cost

∑T
i=1 c(q̂i), guarantee

Fh(Ŝ) ≥ α for all h such that Gh(S∗) < κ. Here
Ŝ =

⋃T
i=1{(q̂i, r̂i)} and S∗ ,

⋃
q∈Q,r∈q(h∗){(q, r)}.

By setting κ = 1 and usingGh(Ŝ) , I(h /∈ V (Ŝ)) (here
I is the indicator function) we recover a variation of
the original interactive submodular set cover problem.
In this case satisfying the covering constraint for all
h that agree with h∗ corresponds exactly to satisfying
the covering constraint for all h such that Gh(S∗) < κ.

This is equivalent to the interactive submodular set
cover problem if we include the optional assumption
Gh(S∗) < κ for at least one h (i.e. h∗ agrees with
some h ∈ H). We will show the algorithm we pro-
pose is approximately optimal regardless of whether
this assumption is made.

We can interpret this more general problem as using
an extended notion of version space such that a hy-
pothesis h is no longer immediately eliminated as soon
as a question-response pair (q̂i, r̂i) with r̂i /∈ q̂i(h) is
observed. Instead, a hypothesis h is only eliminated
from consideration when Gh(Ŝ) ≥ κ. Different κ and
Gh correspond to different notions of version space.

Lemma 1. For an algorithm to ensure for any h∗

that Fh(Ŝ) ≥ α for all h such that Gh(S∗) < κ it is
both necessary and sufficient to ensure that Fh(Ŝ) ≥ α
for all h such that Gh(Ŝ) < κ. The condition re-
mains sufficient and necessary if the algorithm as-
sumes Gh(S∗) < κ for some h.

Proof. To see this condition is sufficient note that
Gh(Ŝ) ≤ Gh(S∗). To see this condition is necessary
note that for any particular h this inequality holds
with equality for some h∗ (the h∗ which agrees with
h on queries in S∗ \ Ŝ). We cannot therefore elimi-
nate any h for which Gh(Ŝ) < κ as for some choice of
h∗ this hypothesis also satisfies Gh(S∗) < κ. This h∗

satisfies the assumption Gh(S∗) < κ for some h so the
condition remains necessary with this assumption.

We call a question asking strategy correct if it satis-
fies this condition. We now state our main result, the
proof of which is given in Section 4: as for submodular
set cover, a simple greedy algorithm is approximately
optimal for noisy interactive set cover

Theorem 1. For integer α and κ and integer mono-
tone, normalized, submodular Fh and Gh, a greedy al-
gorithm gives worst case cost within 1 + ln(κα|H|) of
that of any other correct question asking strategy. This
also holds if we assume Gh(S∗) < κ for some h.

3. Application to Noisy Query Learning

Like interactive submodular set cover, noisy interac-
tive set cover is related to query learning. In particu-
lar, we recover a version of query learning by using

Fh(Ŝ) , |H \ V (Ŝ)| Gh(Ŝ) , I(h /∈ V (Ŝ))

with κ = 1 and α = |H| − 1. For these objectives, the
goal of noisy interactive set cover is to eliminate |H|−1
hypotheses from the version space. This is equivalent
to standard query learning if we make the additional
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assumptions that (1) there is an h ∈ H that agrees
with h∗ on every query and (2) for each h, h′ ∈ H there
is some q ∈ Q with q(h) ∩ q(h′) = ∅. With these two
assumptions, it is always possible to eliminate |H| − 1
hypotheses from the version space and the remaining
hypothesis is the one hypothesis that agrees with h∗.

Noisy interactive set cover can also be used for query
learning with noise. Define err(h, Ŝ) ,

∑
(q,r)∈Ŝ I(r /∈

q(h)) and d(h, h′) = |{q : q(h) ∩ q(h′) = ∅}|.
Corollary 1. Assume (1) some ĥ ∈ H has
err(ĥ, S∗) < κ and (2) for every h, h′ ∈ H d(h, h′) ≥
2κ − 1. Identifying ĥ can be reduced to noisy inter-
active set cover with approximation ratio O(ln(κ|H|))

Proof. Using α = κ(|H| − 1), define

Fh(Ŝ) ,
∑
h′ 6=h

min(err(h′, Ŝ), κ) Gh(Ŝ) , err(h, Ŝ)

The goal of noisy interactive set cover is then to iden-
tify |H| − 1 hypotheses that make at least κ mistakes
with respect to h∗. With assumptions (1) and (2) this
is always possible and sufficient to identify ĥ. It is also
necessary to identify |H| − 1 hypotheses that make at
least κ mistakes in order to to identify ĥ; otherwise any
hypothesis with less than κ mistakes may be ĥ.

We show our algorithm is approximately optimal
whether or not we assume (1). Also, assuming (2)
has no effect on the analysis since it is an assump-
tion about the hypothesis class H and our analysis
holds for any H. Assumption (2) may hold, for exam-
ple, when H is constructed with a clustering algorithm
(Dasgupta et al., 2003) (e.g. by clustering users of a
collaborative filtering system). As an alternative to
these assumptions, we also show the following.

Corollary 2. Consider the problem of identifying a
set Ĥ ⊆ H such that h ∈ Ĥ for all h with err(h, S∗) <
κ and d(h, h′) < 2κ− 1 for all h, h′ ∈ Ĥ . This prob-
lem can be reduced to noisy interactive set cover with
approximation ratio O(ln(κ|H|))

Proof. Using α = κ(|H| − 1), let Gh(Ŝ) , err(h, Ŝ),

Fh(Ŝ) ,
∑

h′:d(h,h′)≥2κ−1

min(err(h′, Ŝ), κ) + ch

where ch , κ|{h′ : h′ 6= h, d(h, h′) < 2κ−1}|. A set of
query-response pairs solves noisy interactive set cover
with these objectives iff in the final version space all
remaining h are within 2κ − 2 of each other and all
eliminated h make at least κ mistakes.

Dasgupta et al. (2003) study a similar query learning
setting with adversarial noise. Under the hypothesis
class assumptions of Corollary 1, their algorithm gives
an O(ln |H|) approximation. We suspect our added de-
pendence on κ is due to the increased flexibility of Gh
in the more general problem (Gh does not need to be
defined in terms of an additive or metric loss function
and can be hypothesis dependant). We also note that
Dasgupta et al. (2003) assume |q(h)| = 1 and uniform
query costs, so our results are novel despite the added
dependence on κ. Assuming only that H contains one
or more h with err(h, S∗) < κ, Dasgupta et al. give
an O(ln |H|) multiplicative approximation for finding
one such h, but in this case the algorithm also has
an additional additive approximation term which de-
pends on κ and the number of hypotheses near any
h. The analysis uses two phases, with the first phase
similar to the problem solved in Corollary 2. Recently
Golovin et al. (2010) gave approximation results for
an average-case noisy query learning setting. Bellala
et al. (2010) consider related average-case problems.

4. Greedy Algorithm and Analysis

In previous work (Guillory & Bilmes, 2010), we showed
that a simple greedy algorithm is approximately opti-
mal for interactive submodular set cover. The analysis
proceeds in two steps. First, the optimization prob-
lem over many objectives Fh is reduced to a simpler
problem over a single objective F̄ . Second, a greedy
algorithm for this simpler problem is proposed and an-
alyzed. In this section we give an analysis for noisy in-
teractive set cover with this structure. The key insight
is that noisy interactive set cover can also be reduced
to a problem over a (different) single objective F̄ .

Define Fh,α(Ŝ) , min(Fh(Ŝ), α) to be version of Fh
truncated at α. Define the following objective

F̄ (Ŝ) ,
1

κ|H|
∑
h∈H

((κ−Gh,κ(Ŝ))Fh,α(Ŝ)+Gh,κ(Ŝ)α)

F̄ (Ŝ) ≥ α iff this set of query response pairs solves the
noisy interactive set cover problem. That is, F̄ (Ŝ) ≥ α
iff Fh(Ŝ) ≥ α for all h such that Gh(Ŝ) < κ. From
Lemma 1 this is sufficient and necessary to ensure
Fh(Ŝ) ≥ α for all h such that Gh(S∗) < κ for worst
case h∗. We show F̄ (S) is submodular.
Lemma 2. Let F (S) be a monotone non-decreasing
submodular function ranging between 0 and α. Let
G(S) be a monotone non-decreasing submodular func-
tion ranging between 0 and κ. Then

F̄ (S) , (κ−G(S))F (S) +G(S)α

is a monotone non-decreasing submodular function.
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Algorithm 1 Worst Case Greedy

1: Ŝ ⇐ ∅
2: while F̄ (Ŝ) < α do
3: q̂ ⇐ argmaxqi∈Q minri∈R

4: (F̄ (Ŝ + (qi, ri))− F̄ (Ŝ))/c(qi)
5: Ask q̂ and receive response r̂
6: Ŝ ⇐ Ŝ + (q̂, r̂)
7: end while

Proof. As a short hand we use δS(F, x) , F (S + x)−
F (S). We show F̄ (S) is monotone non-decreasing by
showing that for any A and x, δA(F̄ , x) ≥ 0.

δA(F̄ , x)
= κδA(F, x) + δA(G, x)α

+G(A)F (A)−G(A+ x)F (A+ x)
= (κ−G(A))δA(F, x) + δA(G, x)(α− F (A+ x))

We see that each of these terms is positive so long
as F and G are monotone non-decreasing and range
between 0 and α and 0 and κ respectively. We now
show F̄ (S) is submodular by showing, for any A ⊆ B
and x, δ(F̄ , A, x) ≥ δ(F̄ , B, x). As before we have

δB(F̄ , x) = (κ−G(B))δB(F, x)+δB(G, x)(α−F (B+x))

Each term in this expression is less than the corre-
sponding term in δA(F̄ , x).

We note Lemma 2 does not follow trivially from any of
the standard results for combining submodular func-
tions of which we are aware. In particular, the term
(κ−G(S))F (S) is not by itself submodular so the re-
sult doesn’t follow from the submodularity of the sum
of two submodular functions.

Corollary 3. F̄ (S) is submodular monotone non-
decreasing whenever Fh and Gh are submodular mono-
tone non-decreasing for all h ∈ H.

Proof. The result follows from Lemma 2 and the fol-
lowing known results. (1) When a function F (S)
is submodular and monotone non-decreasing, so is
Fα(S) = min(F (S), α) for a constant α. (2) When
Fh(S) is submodular and monotone non-decreasing for
every h ∈ H, F̄ (S) =

∑
h∈H Fh(S) is also submodular

and monotone non-decreasing.

Having established the submodularity of F̄ , we now de-
fine a greedy algorithm for solving the simplified prob-
lem over F̄ . See Algorithm 1. At each time step the
algorithm performs the query qi ∈ Q that maximizes

min
ri∈R

(F̄ (Ŝ + (qi, ri))− F̄ (Ŝ))/c(qi)

This algorithm is the same as the worst case greedy
algorithm for interactive submodular set cover with
two exceptions: (1) the objective function F̄ is dif-
ferent and (2) the response for a question qi is no
longer required to match the response set qi(h) for
some h ∈ V (Ŝ). This first difference does not alter the
analysis. The second difference does although not as
dramatically as one might expect. In fact optimality
follows by noting the this simplified problem is an in-
teractive submodular set cover problem over a single
objective Fh = F̄ with q(h) = R for every q. We give a
more direct analysis however with which we also show
approximate optimality when we assume Gh(S∗) < κ
for some h (restricting h∗). Recall this assumption was
useful for noisy query learning.

Define oracles T ∈ RQ to be functions mapping ques-
tions to responses and T (Q̂) ,

⋃
q̂i∈Q̂{(q̂i, T (q̂i))}.

T (Q̂) is the set of question-response pairs given by T
for the set of questions Q̂. Define General Cover Cost

GCC , max
T∈RQ

(
min

Q̂:F̄ (T (Q̂))≥α
c(Q̂)

)
GCC depends on Q, R, α, c, and F̄ but this depen-
dence is suppressed for simplicity of notation. GCC
is the cost of satisfying F̄ (T (Q̂)) ≥ α for worst case
choice of T where the choice of T is given to the algo-
rithm selecting Q̂. GCC generalizes many complexity
terms used in analyses of query learning (e.g. Teaching
Dimension) (Hanneke, 2006; Balcázar et al., 2007).

The same GCC quantity is also used in the analysis of
interactive submodular set cover (Guillory & Bilmes,
2010). The analysis proceeds by showing that GCC
lower bounds the optimal worst case cost and approxi-
mately upper bounds the worst case cost of the greedy
algorithm. What changes subtly in our analysis is the
lower bound portion of the argument. In our problem,
the optimal worst case cost is no longer the same since
we now allow h∗ /∈ H. We show that GCC still lower
bounds the cost of satisfying F̄ (Ŝ) ≥ α for worst case
h∗. We’ve already argued this is necessary and suffi-
cient for solving noisy interactive set cover, and there-
fore this shows GCC lower bounds worst case cost.

Lemma 3. If there is a question asking strategy for
satisfying F̄ (Ŝ) ≥ α with worst case cost C∗ then
GCC ≤ C∗.

Proof. Assume to show a contradiction that there is
a question asking strategy which satisfies F̄ (Ŝ) ≥ α
using worst case cost C∗ < GCC. By definition of
GCC, there is an oracle T ∗ with

min
Q̂:F̄ (T∗(Q̂))≥α

c(Q̂) = GCC > C∗
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We can then construct a corresponding target hypoth-
esis h∗ by setting q(h∗) = {T (q)}. When this h∗ is the
target hypothesis, any sequence of questions Q̂ with
cost less than or equal to C∗ must have F̄ (Ŝ) < α.
This contradicts our assumption.

We show that in fact GCC ≤ C∗ even if we make the
additional assumption that some for some h, Gh(S∗) <
κ. This is a stronger result since C∗ is smaller in this
case as we have placed an additional restriction on h∗.

Lemma 4. Assume for some h Gh(S∗) < κ. If there
is a question asking strategy for satisfying F̄ (Ŝ) ≥ α
with worst case cost C∗ then GCC ≤ C∗.

Proof. Assume again to show a contradiction that
there is a question asking strategy which satisfies
F̄ (Ŝ) ≥ α using worst case cost C∗ < GCC. As
before there is a T ∗ such that any sequence of ques-
tions Q̂ with total cost less than or equal to C∗ must
have F̄ (Ŝ) < α. If F̄ (Ŝ) < α then there must be
some remaining h with Gh(Ŝ) < κ and Fh(Ŝ) < α.
For any such Q̂, we can then construct an h∗ such
that (1) Gh(S∗) < κ for some h and (2) it is possi-
ble to answer questions consistently with h∗ so that
Gh(Ŝ) < κ and Fh(Ŝ) < α for some h. In particular,
use q(h∗) = {T ∗(q)} for q ∈ Q̂ and q(h∗) = q(h) for
q /∈ Q̂ where h is the hypothesis with Gh(Ŝ) < κ and
Fh(Ŝ) < α when T ∗ is used to answer Q̂.

The upper bound follows that for the noise-free case
(Guillory & Bilmes, 2010) giving Theorem 1.

5. Monotone Circuits of Constraints

One interpretation of noisy interactive set cover is in
terms of a boolean circuit of submodular cover con-
straints. For every h we want either Fh(Ŝ) ≥ α or
Gh(Ŝ) ≥ κ. Figure 2 shows the boolean circuit en-
coding this. This circuit is monotone (i.e. it only in-
volves AND and OR gates). A key part of our anal-
ysis is showing that this can be reduced to a single
constraint F̄ (Ŝ) ≥ α. In this section we show that,
in fact, Lemma 2 can be used in combination with
known results (Krause et al.) to reduce any monotone
boolean circuit of constraints to a single constraint.

Lemma 5. Given i = 1 . . . n constraints Fi(S) ≥
αi for normalized, monotone submodular Fi and any
monotone boolean circuit over these constraints, there
is a normalized, monotone submodular F̄ (S) and ᾱ
such that F̄ (S) ≥ ᾱ iff the circuit evaluates to true.

Proof. We first convert the constraints Fi(S) ≥ αi into
constraints F̂i(S) = αi where F̂i(S) = min(Fi(S), αi).

…

Figure 2. Noisy interactive set cover as a circuit.

min(Fi(S), αi) is submodular and ranges between 0
and αi.

We now show how to reduce the OR of two constraints
(F̂i(S) = αi) ∨ (F̂j(S) = αj) to a single constraint
F̄ (S) = ᾱ where F̄ ranges between 0 and ᾱ. Define

F̄ (S) = (αi − F̂i(S))F̂j(S) + F̂i(S)αj

It is not hard to see that indeed F̄ (S) = αiαj iff
(F̂i(S) = αi) ∨ (F̂j(S) = αj). Lemma 2 shows that
F̄ is submodular and monotone.

We now show how to reduce the AND of two con-
straints (F̂i(S) = αi) ∧ (F̂j(S) = αj). Define

F̄ (S) = F̂i(S) + F̂j(S)

as in (Krause et al.). F̄ (S) = αi + αj iff (F̂i(S) =
αi) ∧ (F̂j(S) = αj). F̄ is submodular and monotone
since it is the sum of monotone, submodular functions.

In both cases F̄ (S) ≥ ᾱ⇐⇒ F̄ (S) = ᾱ since F̄ ranges
from 0 to ᾱ. Furthermore, AND and OR combinations
are all we need, since any monotone circuit can be
written in terms of these operators.

With this lemma we can solve (interactive) submod-
ular set cover problems with constraints given by ar-
bitrary monotone circuits. The F̄ and ᾱ derived are
integer valued when all Fi and αi are integer valued.
We also need for ᾱ to be small for the reduction to be
useful. Assume for simplicity that αi = α for all i and
the circuit is written in disjunctive normal form (this
is always possible). In this case, ᾱ ≤ c1αc2 where c1 is
the number of clauses in the circuit and c2 the size of
the largest clause in the circuit (the OR nodes multi-
ply and the AND nodes add). The approximation ratio
given by the greedy algorithm is then ln ᾱ ≤ c2 ln c1α.
We therefore expect this reduction to be useful if c2 is
small (in our problem it is 2). This general reduction
may be of interest outside of our problem. For exam-
ple, in an advertising application we can require that
each of several demographics is influenced by at least
one of several advertising campaigns.
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6. Movie Recommendation

As an example real world application of our theoret-
ical results, we present a website we have developed
for movie recommendation which minimizes the to-
tal cost of learning and recommending. The standard
approach to movie recommendation uses collaborative
filtering (Breese et al., 1998). We take a different, com-
plimentary approach. Instead of learning from a user’s
fixed rating history, we directly asking the user ques-
tions. Furthermore, instead of trying to learn a com-
prehensive model of the user’s taste, we try to learn
what the user wants to watch right now. We think this
approach is well suited for streaming services.

6.1. System Design

We use the Netflix API to retrieve a catalog of
all movies and TV shows available through Netflix’s
Watch Instantly service (approximately 11000 titles).
We set our hypothesis class H to be this set of available
titles. With this H, assuming h∗ ∈ H corresponds to
assuming that the user wants to watch a single title.

In our query set Q we use four types of questions:
(1) genre questions such as “Do you want to watch
something from the Comedy genre?”, (2) release year
questions such as “Do you want to watch something
from the 90s?”, (3) runtime questions such as “Do you
want to watch something under an hour long?”, and
(4) cast and director questions such as “Do you want
to watch a movie featuring Tom Hanks?”. In addition,
we include inQ a recommendation action for each title.
We assume these actions have no feedback and assign
them cost .1 that of a question.

We experimented with three different versions of our
website which use different combinations of objective
functions Fh and Gh. Each version of the website is
created by solving the corresponding noisy interactive
set cover problem using the worst-case greedy algo-
rithm. In our current implementation, we solve the
problem for all possible sequences of responses and
use the resulting decision tree to generate a static web
page. With implementation tricks (Minoux, 1978) for
speeding up the greedy algorithm, we’ve found that
writing the web page to disk usually dominates the
run time. Each question is presented to the user on a
separate page along with a set of 6 positive examples
(displayed as box art thumbnail images) taken from
the current version space. Recommendations are pre-
sented in lists with box art and a plot synopsis.

Our first, simplest version uses κ = 1 and Gh(Ŝ) ,
I(h /∈ V (Ŝ)). For the covering objective, this first
version uses α = 1 and Fh(Ŝ) = 1 iff Ŝ includes the

recommendation action corresponding to h. This very
simple problem does not use the full power of noisy
interactive set cover and, in fact, is equivalent to query
learning with membership and equivalence queries.

Our second version uses κ = 2 and Gh(Ŝ) , err(h, Ŝ).
As compared to the first version, the second version
does not eliminate a title from consideration until the
user’s responses have disagreed with this title twice.

Our third version again uses κ = 2 but uses a more
complicated modular function for Gh which encodes
domain knowledge about the problem. For example, if
the user responds “Yes” to a genre question then our
Gh(Ŝ) increases by 2 for h that are not in that genre
or any related genres but only by 1 for h that are not
in the genre but are in related genres. We use similar
heuristics for release year and runtime questions.

The third version also uses a more complicated cov-
ering objective Fh. We use Fh(Ŝ) = 1 if Ŝ contains
either the recommendation action corresponding to h
or a recommendation action corresponding to a title
h′ which covers h. We say a title h′ covers h if: (1)
h is in the list of titles similar to h′ available from
the Netflix API, (2) h′ is tagged with all genres h is
tagged with, and (3) the average user rating for h′ is
greater than or equal to that for h. This essentially
defines a directed graph over titles. We also use this
same directed graph to create a small list of related ti-
tles displayed with each recommendation. In this way,
titles which are relevant but covered by another rec-
ommendation are often still shown to the user but with
less emphasis. For consistency we display these same
related titles in all three versions of the website.

6.2. User Study Results

We conducted a small user study comparing the three
different versions of our website. We asked each user
to try each version of the website (presented in a dif-
ferent random order for each user) and then fill out a
short survey. For each website, the survey asked users
how strongly they agree with four statements. 1. The
website was useful for finding things to watch. 2. The
website’s questions were easy to answer. 3. The web-
site’s recommendations matched my responses to the
questions that were asked. 4. The website asked the
right number of questions before recommending things
to watch. We also asked the users to describe the dif-
ferences between the sites and give suggestions.

We received 59 survey responses. Table 1 shows the
average responses. The variance was relatively high,
but there are some large significant differences in par-
ticular Website 1 vs Website 3 on Statements 1 and
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Table 1. Average survey responses. 5 is Strongly Agree, 1
is Strongly Disagree. Std. dev. shown in parentheses.

Statement Website 1 Website 2 Website 3
1 3.86 (0.90) 3.52 (1.08) 3.05 (1.02)
2 4.14 (0.80) 4.00 (0.81) 4.05 (0.78)
3 3.95 (0.97) 3.58 (1.00) 3.21 (1.07)
4 3.44 (1.15) 2.83 (1.13) 2.90 (1.16)

3. Surprisingly, there is an average preference for the
simplest site, Website 1, which assumes h∗ ∈ H. 45/59
participants rated Website 1 as being more useful or
as useful compared to the other websites. 35/59 rated
Website 2 as being more or as useful and only 23/59
rated Website 3 as being more or as useful.

Several users felt that Website 2 asked too many ques-
tions. One user commented that Website 2 asked ques-
tions that were too similar to previously asked ques-
tions. These were issues we hoped to address with the
more complicated Gh and Fh objectives used in Web-
site 3, and this partially worked; users did not think
that Website 3 asked too many questions.

In fact, because its Fh objective assigns larger gains
to certain titles, Website 3 often recommended a few
titles early and followed up with further questions and
recommendations. A few users specifically mentioned
that they liked this. More users however commented
they received poor or unexpected recommendations
too early and gave Website 3 lower scores because of
this. Some users did not seem to realize that by click-
ing “More” they would be asked further questions and
given more recommendations. To remedy this, about
midway through the study we changed the UI to make
this link more apparent, but this change did not seem
to improve perception of Website 3, and it was still not
clear how many users chose to continue after the first
recommendation. Space prevents reporting results for
before and after, so we present the average. More re-
sults are included in the supplementary material.

Since users tended to prefer the simpler website, one
could interpret these results as evidence against the
practical utility of our more flexible theoretical results.
However, in light of the user comments we received ex-
plaining their issues with the more complex websites,
we think these results are more indicative of problems
designing objective and cost functions by hand. One
very promising direction for future work would be to
learn the objectives. The user feedback also suggests
some specific ways our theory may be useful in fu-
ture systems. For example, our results suggest that, if
any noise is allowed, a more complex model than ad-
ditive zero-one error is necessary as this simple model

resulted in the system asking too many questions. Sev-
eral users also reported they wanted the ability to re-
spond “Maybe”. Incorporating such a response would
be problematic in a noise free query learning setting:
if we include “Maybe” in the set of allowed responses
q(h) for every q and h then then the worst-case gain of
every learning action is 0. However, with our approach
we can treat these responses as noise.

Supplementary material including the three web-
sites and survey is available at http://ssli.ee.
washington.edu/~guillory/icml11/.
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