
Topic Modeling with Nonparametric Markov Tree

Haojun Chen haojun.chen@duke.edu

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

David B. Dunson dunson@stat.duke.edu

Department of Statistical Science, Duke University, Durham, NC 27708, USA

Lawrence Carin lcarin@duke.edu

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Abstract

A new hierarchical tree-based topic model is
developed, based on nonparametric Bayesian
techniques. The model has two unique at-
tributes: (i) a child node in the tree may
have more than one parent, with the goal
of eliminating redundant sub-topics deep in
the tree; and (ii) parsimonious sub-topics
are manifested, by removing redundant us-
age of words at multiple scales. The depth
and width of the tree are unbounded within
the prior, with a retrospective sampler em-
ployed to adaptively infer the appropriate
tree size based upon the corpus under study.
Excellent quantitative results are manifested
on five standard data sets, and the inferred
tree structure is also found to be highly in-
terpretable.

1. Introduction

Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is widely used to infer low-dimensional latent seman-
tic information (topics) associated with a corpus of
documents, where a topic is a distribution over words.
While LDA constitutes a powerful modeling paradigm,
and has served as the motivation for many subsequent
models, a limitation of LDA and many such models is
that within the prior no statistical dependencies are as-
sumed between topics (each topic is drawn i.i.d. from
a Dirichlet distribution). However, such statistical de-
pendencies typically exist, for example a topic related
to soccer and another topic related to football share
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many words, but these topics are not exactly the same;
it is desirable to impose within the model this prior
expectation of statistical dependencies between top-
ics. To address this challenge, there has been recent
interest in hierarchical topic models (Adams et al.,
2010; Blei et al., 2010; Chambers et al., 2010; Grif-
fiths et al., 2007; Jenatton et al., 2010; Li & McCal-
lum, 2006). In such settings one may view the model
as inferring “meta-topics” that are constituted by in-
tegrating modular components (“sub-topics”) within a
hierarchy. For example, assume that φs is a probability
vector representing a sub-topic, and {φs} represents a
finite set of such probability vectors; any convex com-
bination of the {φs} may be viewed as constituting
a meta-topic. Hierarchical models are typically based
on modular elements like {φs}, the inter-relationships
between which are often constituted in a tree-based
manner. In the context of the soccer/football illustra-
tion above, each may be a meta-topic, constituted by a
convex combination of sub-topics from {φs}; these two
meta-topics will likely share some components {φs},
but not all.

An important advantage of using such hierarchical
and modular models is that different meta-topics
(which may be defined, for example, by a branch of a
tree) share components of the set {φs}, and therefore
there is a significant opportunity to borrow statistical
strength efficiently across a corpus. While two meta
topics may be distinct, they may share components of
{φs}, and therefore the available data are shared to a
desirable extent when learning {φs}.

In the nested Chinese restaurant process (nCRP) topic
model (Blei et al., 2010), each node in the tree is char-
acterized by a sub-topic, and a document is generated
from one path (branch) through the tree, from the root
to a leaf. In the tree-structured stick breaking process
(TSSB) (Adams et al., 2010), each node is a unique dis-
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tribution over topics and a document is generated from
one node of the tree. These hierarchical topic mod-
els yield good performance. However, they sometimes
may be too rigid. For example, in the nCRP model
(Blei et al., 2010) there is a single root node, and chil-
dren nodes may only have a single parent. This means
that all descendent sub-topics from parent p1 must be
distinct from the descendants of parent p2, if p1 6= p2.
Some of these distinct sets of children from different
parents may be redundant, and this redundancy can
be removed if a child can have more than one parent;
this is one motivation of our proposed model. To get a
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Figure 1. Illustrative example topics, inferred form the 20
Newsgroup document corpus.

sense of our model, and to observe its distinction from
tree-based models such as that in (Blei et al., 2010),
consider Figure 1. This figure depicts a small subset of
the sub-topics inferred at two adjacent scales, for a real
document corpus, considered in detail when present-
ing results. A Markov transition process is inferred to
move from sub-topics at one scale to those at the next
scale, and from Figure 1 it is possible for a sub-topic
to have two or more parents, linked to the parents in a
statistical (Markov) sense. In Figure 1, the sub-topics
at the bottom distinguish between “software” (left)
and “hardware” (right); at the top layer the left sub-
topic corresponds to general systems/technology, while
the right sub-topic corresponds specifically to comput-
ers and PCs. By sharing children across multiple par-
ent nodes, there is not a need to have children spe-
cialized to a distinct parent, and therefore potentially
have nearly duplicate but decoupled children. This
model flexibility is anticipated to enhance the sharing
of statistical strength, in the sense discussed above. To
our knowledge, none of the hierarchical and tree-based
models developed previously have this flexibility.

Each of the sub-topics reflected in {φs} are probabil-
ity vectors over the vocabulary. In most existing tree-
based hierarchical models there is typically nothing
within the model prior (Adams et al., 2010; Blei et al.,
2010; Griffiths et al., 2007) that places restrictions on
these multiple probability vectors; hence, when draw-
ing the φs from the prior, there may be significant
duplication in word usage, in the sense that a partic-

ular word may be probable in many of the φs. This
problem may be partially mitigated in the posterior
for {φs}, after analyzing the corpus; however, it is de-
sirable to impose as much structure as possible within
the prior, such that there is less reliance on the data
to infer anticipated phenomena. So motivated, within
the proposed model we constitute a new framework,
imposing that if a particular word is present in one or
more sub-topics at a particular scale, then this word
may not be used for sub-topics at scales deeper in the
tree. Among other things, this removal of redundant
usage of the same word at multiple scales aids in in-
terpreting the multi-scale sub-topics inferred by the
model.

We employ a retrospective sampler (Papaspiliopoulos
& Roberts, 2008), within a stick-breaking represen-
tation of the Dirichlet process (Ferguson, 1973) and
related stick-breaking constructs (Sethuraman, 1994).
In this setting the depth and width of the tree is un-
bounded, and hence the tree structure is inferred non-
parametrically from the data. To the authors’ knowl-
edge, the form of the retrospective sampler employed
in the proposed model is also new to topic modeling.

2. Proposed Model

2.1. Multi-scale Markov tree

We wish to model a corpus composed of D documents;
the size of the vocabulary is V . We develop a hierarchi-
cal Bayesian model that infers a multi-scale topic con-
struction. The lowest-level scale/resolution is s = 1,
and we wish more detailed/specific words to be empha-
sized as one progresses deeper in the tree (i.e., increas-
ing s). Moreover, we wish to impose that if a word is
utilized to constitute sub-topics at scale s′, then this
word is not reused in sub-topics at scales s > s′ (i.e.,
deeper in the tree). The proposed model does not in
general have a single root node, as in (Blei et al., 2010),
and all children at scale s+1 are connected statistically
to all parents at scale s, via a Markov process. The
depth of the tree, and the width (number of nodes)
at each scale are inferred nonparametrically from the
data.

For node t at scale s, there is an associated V -
dimensional probability vector over words, denoted
φst, this representing a sub-topic. Further, when
drawing word i from document d, wdi, there is a latent
integer cdi ≥ 1 defining which scale wdi is drawn from.
The generative processes for {φst} and {cdi} are dis-
cussed below; here we describe the process by which we
define the specific node at scale cdi from which word
wdi is drawn.
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The probability of utilizing each of the nodes (sub-
topics) at the first scale s = 1 is defined by the
document-dependent probability vector θd, drawn as

θd ∼ DP(η,α) , α ∼ Stick(λ)

where DP(η,α) represents a Dirichlet process (DP)
(Ferguson, 1973) with base measure α and real inno-
vation parameter η > 0; the expression Stick(λ) rep-
resents a stick-breaking process (Sethuraman, 1994)
with parameter λ, and the ith component of draw
α is αi = Vi

∏i−1
h=1(1 − Vh) with Vh ∼ Beta(1, λ).

The aforementioned DP draw may be constituted as
θd ∼

∑∞
j=1 πjδφ∗j , with φ∗j ∼

∑∞
k=1 αkδk and with

π = (π1, π2, . . . ) drawn π ∼ Stick(η). The θd are
therefore drawn in a form related to the hierarchical
DP (HDP) (Teh et al., 2006), with stick-breaking con-
struction.

The node from which word wdi is drawn is manifested
via a Markov process. Specifically, the generative pro-
cess sequentially selects one node at each scale, up to
scale cdi. When at node m at scale s ≥ 1, the proba-

bility vector p
(s)
m defines the probability of which node

is transitioned to at scale s+1. This probability vector
is drawn

p(s)m ∼ Stick(ζs)

Drawing {p(s)m } in this manner for all nodes at scale s,
a matrix P(s) is defined, the mth column of which is

p
(s)
m . Note that the matrices {P(s)} for scales s ≥ 1

are assumed independent of the document d. If the
model is truncated to only one scale, this model is
essentially the previously developed HDP-based topic
model (Teh et al., 2006). The use of additional scales
s > 1 are meant to capture finer details in the topics,
adding flexibility by allowing incorporation of detail to
the topics.

We will infer the number of required scales s to rep-
resent the corpus, using a retrospective sampler (Pa-
paspiliopoulos & Roberts, 2008), as discussed in Sec-
tion 2.4. Similarly, a retrospective sampler is also used

to draw the p
(s)
m ∼ Stick(ζs), and therefore the num-

ber of nodes or sub-topics at each scale is also inferred.
Hence we infer the depth of the tree, the width of each
scale, and a Markovian statistical relationship between
all parents at scale s and all children at scale s + 1.
Gamma hyperpriors are placed on λ and each ζs, and
hence posterior distributions are also inferred for these
parameters.

2.2. Node & scale-dependent word
probabilities

Assume that through the aforementioned Markov pro-
cess to scale cdi, node t is arrived at, and it is from

this node that word wdi is drawn. Hence, word wdi
is drawn from a multinomial distribution with param-
eter φcdit. We now define a generative process for
probability vectors {φst}, imposing that if a word has
non-zero probability of occurring at scale s′, then it
has zero probability of occurring at scale s > s′.

At each scale s ≥ 1 we define a V -dimensional binary
vector bs = (bs1, . . . , bsV )T . Each of the scale and node
dependent probability vectors over words are drawn

φst ∼ Dirichlet(γbs)

If bsv = 0, then word v ∈ {1, . . . , |V |} will have zero
probability of being manifested at scale s (for all nodes
t); i.e., the vth component of {φst} will be zero for all
t. Therefore, within the model we impose that if the
vth component of bs is non-zero for a particular scale
s, then the vth component of bs′ is zero for all s′ > s.
Specifically, the generative process is

p(bsv = 1|b[s−1]v) = 1(b[s−1]v = 0)τs, τs ∼ Beta(1, ψs)

where b[s−1]v = (b1v, . . . , bs−1,v)
T , 1(·) is the indicator

function, by convention b0v = 0 for all v ∈ {1, . . . , V },
τs is the conditional probability of adding a word to
scale s given that it has not been added to any of
the previous scales, and ψs ≥ 0 is a hyperparameter
controlling the distribution of words at scale s. One
may wish to impose a separate prior for each scale-
dependent parameter ψs, for example favoring smaller
τs with increasing s (such that the {φst} are sparser
with increasing s, favoring more-detailed words).

A distribution similar to the above Dirichlet(γbs) was
used for language modeling in sparseTM (Wang &
Blei, 2009a) and FTM (Williamson et al., 2010). How-
ever, the hierarchical construction specified above, for
which words are not reused, is unique to the proposed
model.

2.3. Generative process

Figure 2 provides a graphical depiction of the genera-
tive process. The generative process of this model can
be summarized as follow:

1. For each scale s, for each term v, draw term
selector bsv ∼ Bernoulli(1(b[s−1]v = 0)τs), τs ∼
Beta(1, ψs)

2. For each topic t ∈ 1, . . . , Ts in scale s,

(a) Draw topic distributions φst ∼
Dirichlet(γbs)

(b) Draw transition matrix P(s), the t-th column

p
(s)
t ∼ Stick(ζs)
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Figure 2. Graphical model representation for multi-scale
Markov topic model.

3. Draw stick lengths α ∼ Stick(λ), which are the
global distribution over topics

4. For document d

(a) Draw distribution over topics for the first
scale θd ∼ DP(η,α)

(b) For the i-th word:

i. Draw scale indicator cdi ∼ Mult(πd),
πd ∼ Stick(ρ)

ii. Draw topic indicator z
(1)
di ∼ Mult(θd)

if cdi ≥ 2, then for s = 2, . . . , cdi
z
(s)
di |(z

(s−1)
di = m) ∼ Mult(p

(s−1)
m )

iii. Draw word wdi|(cdi = s, z
(s)
di = t) ∼

Mult(φst)

A gamma hyperprior is placed on ρ, and πd defines the
probability of using each of the scales in the tree, with
the probability of scale usage document-dependent.
Note that in principle πd is an infinite-dimensional
probability vector, and hence the number of scales is
unbounded. As discussed in the next subsection, a ret-
rospective sampler (Papaspiliopoulos & Roberts, 2008)
is employed, and therefore the model infers the num-
ber of scales that are needed for representation of the
corpus, just as a similar approach is employed to infer
the number of nodes (sub-topics) at each scale.

Note that in our proposed model stick-breaking repre-
sentations are employed in depth, and also in width,
at each scale. In this sense the model is related to
the tree-structured stick-breaking model in (Adams
et al., 2010). However, in (Adams et al., 2010) an

entire document is inferred to reside at one node in
the tree, and in this sense the model may be viewed as
yielding hierarchical clustering for documents. In the
proposed model each node of the model corresponds
to a sub-topic, as in (Blei et al., 2010). However, un-
like (Blei et al., 2010), children nodes may have mul-
tiple parent nodes, in a Markovian statistical sense,
yielding a more-flexible construction with more shar-
ing of sub-topics. The model in (Jenatton et al., 2010)
has a parent-child tree-based construction similar to
that in (Blei et al., 2010), but the finite tree must be
specified, or inferred via cross-validation. The impo-
sition, within the prior, of structure on word usage
between scales is also unique to the proposed model.
Our model is also related to PAM(Li & McCallum,
2006) and GraphLDA(Chambers et al., 2010) in con-
structing flexible structures for a set of topics learned
from text. But our approach differs in that we intro-
duce Markov dependency to construct the paths and
the depth and width of the tree are inferred using ret-
rospective sampling.

2.4. Retrospective inference

In this subsection we describe the retrospective sam-
pling scheme to learn S, the depth of the tree, and
Ts, the width of the tree at each scale s. Let S
be the learned depth of the tree in a given itera-
tion and assume we have already obtain samples of
{{bs},ρ, {φs,t}} for 1 ≤ s ≤ S. We learn S by up-
dating each of the cdi’s in a Metropolis-Hastings step.
When updating cdi, the proposed s′ is generated from
the following distribution

qdi(s
′) ∝

{
πs′p(wdi|φs′,z(s′)di

), for s′ ≤ S
πs′Mdi(S), for s′ > S

where Mdi(S) = max
1≤s≤S

{p(wdi|φs,z(s)di

)}. The accep-

tance probability for the proposed s′ is κdi(s, s
′), de-

fined as
1, if s′ ≤ S and S′ = S

min{1, c̃di(S)Mdi(S
′)

c̃di(S′)p(wdi|φ
s,z

(s)
di

)}, if s′ ≤ S and S′ < S

min{1,
c̃di(S)p(wdi|φ

s′,z(s
′)

di

)

c̃di(S′)Mdi(S)
}, if s′ > S

where S′ = max{ max
d′ 6=d,i′ 6=i

{cd′,i′}, s′} and the nor-

malizing constant c̃di(S) =
∑S
s=1 πsp(wdi|φs,zdi) +

Mdi(S)(1 −
∑S
s=1 πs). The whole retrospective sam-

pling procedure for cdi is summarized in Algorithm 1.
As shown in the algorithm, S is learned automatically
by calculating the number of unique values of cdi’s.
A similar retrospective sampling procedure can be de-
veloped for learning Ts+1 by updating {P(s)} (Paisley
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& Carin, 2009). The update equations for {P(s)} are
provided in the next section.

Algorithm 1 Retrospective Inference for cdi
for d = 1 to D do
for i = 1 to Nd do

Sample udi ∼ Uniform(0, 1) and s′ = 1

while udi >
∑S
l=1 qdi(l) do

S = S + 1, sample bS−1, {νdS}, {φSt}, zSdi,
and P(S−1) from the prior, bS = 1−

∑S−1
h=1 bs,

and πdS = νdS
∏S−1
h=1 (1− νds)

end while
while udi >

∑s′

l=1 qdi(l) do
s′ = s′ + 1

end while
cdi = s′ with probability κdi(s, s

′), otherwise,
leave cdi unchanged

end for
end for

3. Model Inference

We provide update equations that are unique for this
model. The update equations for the rest of the pa-
rameters are similar to those in HDP (Teh et al., 2006).

DefineAs , {v : bsv = 1, v ∈ V} to be the set of indices

of bs that are utilized. Let n
(v)
st denote the number of

times that term v has been assigned to topic t in scale

s, and let n
(·)
st denote the number of times that all the

terms have been assigned to topic t in scale s.

The Gibbs sampling inference procedure is described
as follow:

• Sampling transition matrix P(s):

V
(s)
tm ∼ Beta(1 +

∑
d,i

1(z
(s+1)
di = t, z

(s)
di = m),

ζs +
∑
d,i

1(z
(s+1)
di > t, z

(s)
di = m)),

p
(s)
1m = V

(s)
1m , p

(s)
tm = V

(s)
tm

t−1∏
l=1

(1− V (s)
lm )

For new values, set p
(s)
Ts+1+1,m = 1 −

∑Ts+1

l=1 p
(s)
l,m

and draw a new column for P(s+1) from the prior.

• Sampling Bernoulli parameter τs and term scale
indicators bs:

p(τs, bs|−)

∝ p(bs|τs, b[s−1])p(τs|ψs)
∏

(d,i):cdi=s

p(wdi|bs)

= p(bs|τs, b[s−1])p(τs|ψs)
∫
dφst{p(φst|bs)∏

(d,i):cdi=s

p(wdi|φst)}

= p(bs|τs, b[s−1])p(τs|ψs)
Ts∏
t=1

Γ(γ|As|)
∏
v∈As

Γ(n
(v)
st + γ)

Γ|As|(γ)Γ(n
(·)
st + γ|As|)

where |As| =
∑
v bsv and Γ(·) is the gamma

function. We can iteratively sample bs condi-
tioned on τs and sample τs conditioned on bs by
this joint conditional distribution. In addition,
bS = 1−

∑S−1
h=1 bs.

• Sampling topic indicator z
(s)
di :

For s = 1,

p(z
(1)
di |−) ∝ p(z

(1)
di |θd)[p(wdi|φ1,z

(1)
di

)1(cdi = 1)

+p(z
(2)
di |z

(1)
di )1(cdi > 1)]

For s ≥ 2,

p(z
(s)
di |−) ∝ p(z

(s)
di |z

(s−1)
di )[p(wdi|φs,z(s)di

)1(cdi = s)

+p(z
(s+1)
di |z(s)di )1(cdi > s)]

After normalization, p(z
(s)
di |−) becomes a multi-

nomial distribution.

4. Empirical Study

In the following experiments, if without other speci-
fications, all the hyperparameters for the gamma dis-
tributions are set to Gamma(10−3, 10−3) and γ = 1,
with no tuning performed on these parameters. These
are the only parameters that need be set in the model,
with an approximate posterior distribution estimated
for all other parameters, based on the sampler. Within
the sampler, we employed 2500 burn-in iterations, and
we collected 500 samples after burn-in, taking every
fifth sample to approximate the posterior. From a rig-
orous mathematical perspective, the number of iter-
ations may still be too small to ensure convergence,
but in practice we find that they are large enough for
achieving reasonable results.

4.1. Quantitative assessment

We compare the performance of our model to LDA
(Blei et al., 2003) and nCRP (Blei et al., 2010). We
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denote the proposed model as HMT, for “hierarchical
Markov tree”, and we present our model in two forms.
The results denoted HMT-SD employ the scale depen-
dency on word usage within sub-topics, as discussed in
Section 2.2 (hence HMT-SD is our complete model).
The scale-dependent word assumption is optional, and
it can be removed if it is undesired. To examine the
importance of imposing this scale-dependency to the
word usage, we also consider HMT-NSD, in which
no scale-dependency is imposed on the use of words
within sub-topics; in this case bs is all ones, for all
scales s. The models are examined on the following
data sets:

• JCAM: a collection of 536 abstracts from the
Journal of the ACM from 1987 to 2004 and the
vocabulary size is 1539.1

• Psy. Review: a collection of 1281 abstracts from
Psychological Review from 1967 to 2003 and the
vocabulary size is 1971.

• 20 Newsgroups: A collection of 3000 documents,
randomly selected articles from the 20 News-
groups data set; the vocabulary size is restricted
to 5957 by a Porter stemmer.2

• NIPS: A collection of 1740 NIPS articles pub-
lished from 1988 to 1999, and the vocabulary size
is restricted to 7546 by a Porter stemmer.3

• Reuters: A collection of 3000 documents, ran-
domly selected documents from the Reuters-
21578 data set, and the vocabulary size is re-
stricted to 1671 by a Porter stemmer.4

For all data sets, terms that appear in fewer than six
documents were removed.

We first use the test set likelihood to evaluate the pre-
dictive performance of HMT. The common method to
evaluate predictive performance in topic model is to
use cross validation. Here we use five-fold cross vali-
dation. To calculate the conditional probability of the
test set given the training set, we use the same method
and same parameter settings as in nCRP (Blei et al.,
2010) and VB-nCRP (Wang & Blei, 2009b). Specifi-
cally, we set the depth S = 3, η = 1 and use J samples
and compute
p(wtest

1 , . . . ,wtest
Dtest
|wtrain

1 , . . . ,wtrain
Dtrain

,Model)

=
∏
d,i

1

J

J∑
j=1

S∑
s=1

1(c
(j)
di = s)

∑
t

θ̂
(j)
dt ψ

(j)
stwdi

1http://www.cs.princeton.edu/∼blei/downloads/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.cs.nyu.edu/∼roweis/data.html
4http://kdd.ics.uci.edu/databases/reuters21578/

where θ̂
(j)

d = P(s−1)(j) . . .P(1)(j)θ
(j)
d . Larger log like-

lihood is better, and the log likelihood is computed
by averaging across the collection samples. The mean
test set log likelihood values and the standard devia-
tions are shown in Table 1. For the LDA(Blei et al.,
2003) results, similar to (Blei et al., 2010), we first
run HMT-SD to obtain a posterior distribution over
the number of topics, and then run LDA multiple
times using the learned range of the number of top-
ics in HMT-SD. The nCRP results are directly from
(Wang & Blei, 2009b). In each case, the HMT-SD
achieves larger log likelihood than the three alterna-
tive models, significantly better than LDA. The per-
formance of HMT-SD is similar to that of nCRP in
JACM and does better in Psychological Review. As
stated in nCRP (Blei et al., 2010), for a larger corpora
the nCRP may be rigid for constraining to use only a
single path, but HMT-SD provides more flexibility in
selecting topics. From these results we also note that
the imposition of structure on the probability of using
words in sub-topics, as a function of scale s yields sig-
nificant improvements. Specifically, both HMT-NSD
and HMT-SD employ the same tree structure, while
the former does not impose structure within the prior
on word usage in scale-dependent sub-topics.
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Figure 3. Approximate posterior distribution (histogram)
on the number of topics at scales s = 2 and s = 3, for the
proposed model considering the 20 Newsgroup data.

4.2. Model structure and parsimony

Within the MCMC sampler, each collection sample
yields a unique topic tree. To get a sense of the vari-
ety of models that are manifested via these collection
samples, in Figure 3 we show a histogram of the num-
ber of topics at scales s = 2 and s = 3 for the 20
Newsgroup data set; similar results were found for the
other data sets. Note that these numbers of topics at
each scale were inferred efficiently via the retrospec-
tive sampler, and a similar distribution is found with
respect to the depth of the tree.
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Table 1. Test set per-word log likelihood for the five data sets, and four algorithms. The HMT-SD model is that proposed
here, and HMT-NSD is a comparison simplification. The LDA model is from (Blei et al., 2003) and the nCRP model is
from (Blei et al., 2010).

JCAM Psy. Review 20 Newsgroup NIPS Reuters

LDA -13.6237±0.0159 -14.6483±0.0192 -15.1791±0.0149 -16.2404±0.0183 −13.7142±0.0168
nCRP -5.3922±0.0052 -5.7834±0.0149 * * *
HMT-NSD -5.6048±0.0059 -5.7530±0.0153 -6.6949±0.0175 -6.8962±0.0178 -5.6575±0.0150
HMT-SD -5.2770±0.068 -5.4734±0.141 -6.2952±0.0135 -6.4665±0.0194 -5.3746±0.0105

To further examine the properties of the model, we
examine the number of words found in each topic in
different scale, on average. The results in Figure 4,
for the aforementioned models and data sets, indicate
that the HMT-SD model yields a more parsimonious
usage of words across topics. In Figure 4 we present
mean results, as well as the standard deviation. In
each case, the number of terms per topic in HMT-SD
is significantly less than that of HMT-NSD. This is
attributed to the HMT-SD prior that removes redun-
dancy of words at multiple scales (although there can
be redundancy within a single scale), and therefore the
topics tend to be more focused and less redundant. In
addition to aiding the ability to interpret inferred top-
ics, this construction improves quantitative log likeli-
hood results, as discussed above.

4.3. Interpreting the learned tree

In Figure 5 we present an example topic tree inferred
from the proposed model. In this analysis a single
root node was employed, meant to capture the ubiqui-
tous and non-informative words. The transition prob-
abilities from the root node to the second layer are
document-dependent, and all other transition prob-
abilities between layers are document-independent.
Within Figure 5, which corresponds to a typical col-
lection sample, we present the top-five most-probable
words within each sub-topic, and the arrows represent
non-zero transition probabilities. Note that sub-topics
at layer s = 3 often have multiple parents, in a sta-
tistical (Markovian) sense, this representing a unique
component of the proposed model.

Careful examination of Figure 5 demonstrates that
several interesting relationships are inferred between
sub-topics at different scales. For example there ap-
pear at layer s = 3 to be sub-topics on hockey and
baseball, and each of these share a parent at layer s = 2
that appears to capture sports in a generic sense. An-
other interesting example concerns a sub-topic at scale
s = 2 that focuses on systems and technology, and this
is connected to children sub-topics at layer s = 3 focus-
ing (separately) on bikes, cars, space travel, electronic

devices, software, and computer hardware. Similar
trees are manifested by the model in (Blei et al., 2010)
(the code for (Blei et al., 2010) was unavailable at the
time of writing to do a comparison). As discussed
above, two unique aspects of the proposed model are
the opportunity for a sub-topic to have more than one
parent, in a statistical sense, and also the lack of word
duplication between scales. Figure 1 presents a zoom-
in taken from Figure 5, in which the case of multiple
parents is observed.
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Figure 4. Number of terms per topic at scales s = 2 and
s = 3 for HMT-SD and HMT-NSD.

5. Conclusions

A new hierarchical tree-based topic model has been
presented. The model removes redundancies in two
ways: (i) sub-topics may have multiple parents,
thereby yielding a flexible, statistical branching struc-
ture; and (ii) if a word is used in a sub-topic at a
particular scale, it is not re-used at deeper scales. A
retrospective sampler is employed to infer both the
tree depth and width (the width is scale-dependent).
State-of-the-art results are achieved on five data sets,
with encouraging comparisons against recently devel-
oped related models5.

5This research was funded by AFOSR, ARO, NGA and
ONR.
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Figure 5. Example tree inferred from 20 Newsgroup data set; these results correspond to one (typical) collection sample.
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