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Abstract

We propose a novel problem formulation of
learning a single task when the data are pro-
vided in different feature spaces. Each such
space is called an outlook, and is assumed
to contain both labeled and unlabeled data.
The objective is to take advantage of the data
from all the outlooks to better classify each
of the outlooks. We devise an algorithm that
computes optimal affine mappings from dif-
ferent outlooks to a target outlook by match-
ing moments of the empirical distributions.
We further derive a probabilistic interpreta-
tion of the resulting algorithm and a sample
complexity bound indicating how many sam-
ples are needed to adequately find the map-
ping. We report the results of extensive ex-
periments on activity recognition tasks that
show the value of the proposed approach in
boosting performance.

1. Introduction

It is often the case that a learning task relates to
multiple representations, to which we refer as out-
looks. Samples belonging to different outlooks may
have varying feature representations and distinct dis-
tributions. Furthermore, the outlooks are not related
through corresponding instances, but just by the com-
mon task.

Multiple outlooks may be found in many real life prob-
lems. For example, in activity recognition when data
from different users, representing the outlooks, are col-
lected from different sensors. Note that each outlook
may have a totally different feature representations,
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while the recognition task is common to all outlooks.
The ability to learn from these different representa-
tions is formulated by multiple outlook learning. A
different example for multiple outlooks learning is clas-
sification of document corpora written in different lan-
guages. In this case, each language represents a differ-
ent outlook. In these situations, the transformations
between the outlooks are unknown and feature or sam-
ple correspondence is not available. Consequently, it
is rather difficult to learn the task at hand while ex-
ploiting the information in different representations.

The goal of multiple outlook learning is to use the
information in all available outlooks to improve the
learning performance of the task. We propose to ap-
proach this learning problem in a two step procedure.
First, we map the empirical distributions of the dif-
ferent outlooks one to another. After the outlooks’
distributions are matched, a generic classification al-
gorithm can be applied using the available examples
from all the outlooks.

This approach allows to transfer an outlook of which
we have little information to another where we have
more information. That is, mapping the data to the
same space effectively enlarges our sample size and
may also give us a better representation of the prob-
lem. We show that a classifier learned in the resulting
space may outperform each single classifier.

In general, matching multiple distributions, without
feature alignment or assuming a parametric model, is
a difficult task. Therefore, we propose to match the
empirical moments of the distributions as an approxi-
mation. We present an algorithm for finding one such
mapping. The algorithm’s objective is to find the op-
timal affine transformations of the outlooks’ spaces,
while maintaining isometry within classes. From a geo-
metric point of view, our algorithm is based on match-
ing the centers and the main directions of the outlooks’
sample distributions. One virtue of the algorithm is its
simple closed form solution.
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2. Related work

Learning from multiple outlooks is related to other se-
tups such as domain adaptation, multiple view learn-
ing and manifold alignment. The main challenge in
these setups, as in ours, is that the training and test
data are drawn from different distributions.

Domain adaptation tries to resolve a common scenario
when some changes have been made to the test dis-
tribution, while the labeling function of the domains
remains more or less the same. Some authors por-
tray this situation by assuming a single hypothesis may
classify both domains well (Blitzer et al., 2007), while
others assume the target’s posterior probability is
equal for the domains (Shimodair, 2000; Huang et al.,
2007). The latter assumption is also referred to as the
covariate shift problem.

Algorithms for domain adaptation may be roughly
divided to three categories. One approach is to re-
weigh the training instances so they better resemble
the test distribution (Shimodair, 2000; Huang et al.,
2007). Such algorithms are derived from the covari-
ate shift assumption, which is in some sense one of
the outlook mapping goals. A different approach
is to combine the classifiers learnt in each domain
(Mansour et al., 2009). Last, some works suggest
to change the feature representation of the domains.
This may be carried out by choosing a subset of fea-
tures (Satpal & Sarawagi, 2007), combination of fea-
tures (Daumé III, 2007), or by finding some structural
correspondence between features in different domains
(Blitzer et al., 2006). All the described approaches en-
tail an initial common feature representation for the
domains. Thus domain adaptation is a special case of
the multiple outlook problem, for the case of outlooks
with a common feature space. In Section 6 we show
that our approach can also be applied to this problem.

Multiple outlook learning is also closely related to the
multi-view setup (Rüping & Scheffer, 2005). In this
setup, each view contains the same set of samples rep-
resented by different features. Clearly, any multiple
view data is also some instance of a multiple outlook
data with the added requirement that each sample
has observations from multiple outlooks. One com-
mon approach is to map a pattern matrix of each view
to a consensus pattern by matching corresponding in-
stances (Long et al., 2008; Hou et al., 2010). Note
that in the multiple outlook framework each outlook
contains a unique set of samples, thus sample to sam-
ple correspondence is impossible. Amini et al. (2009)
considers the case when correspondence is missing for
some instances, but assumes the existence of a map-
ping functions between the views.

Multi-view learning is sometimes referred to as man-
ifold alignment. In manifold alignment we look for
a transformation of two data sets with sample pair-
wise correspondence that minimizes the distance be-
tween them, in an unsupervised (Wang & Mahadevan,
2008) or a semi-supervised (Ham et al., 2005) manner.
Wang & Mahadevan (2009) present manifold align-
ment without pairwise correspondence. To our knowl-
edge, this is the only work on manifold alignment that
does not assume a pairwise matching of the samples.
The algorithm presented in this work is not originally
suited for classification as our algorithm.

3. Mapping Two Outlooks

3.1. Problem Setting

The learner is given two outlooks belonging to sep-
arate input spaces X1 and X2 of dimension d1 and
d2 respectively, with a common target Y = {1, ..., c}.
We assume that all example pairs of a given outlook
j = 1, 2 are independently drawn from an unknown
distribution Dj , which is unique to each outlook. De-

note by X
(1)
i and X

(2)
i the data matrices of class i of

outlook 1 and 2, respectively. We use superscripts to
denote the outlooks’ index, and subscripts to denote
the classification class.

3.2. Multiple Outlook MAPping algorithm

In this section we present our main Multiple Outlook
MAPping algorithm (MOMAP) for matching the rep-
resentations of two outlooks. Throughout the deriva-
tions outlook 2 is mapped to outlook 1, which is some-
times referred to as the final outlook. Our goal is to
map an outlook where we have ample labeled data, to
an outlook where little labeled information is available.

As a preliminary step to the mapping algorithm scaling
is applied. The scaling is applied to each of the out-
looks separately, and aims to normalize the features of
all outlooks to the same range. Note that this stage
may be done using unlabeled data when available.

Next, we use the labeled samples to match the two
outlooks. The goal of this stage is to map the scaled
representations by rotation and translation. Specif-
ically, the mapping is performed by translating the
means of each class to zero, rotating the classes to fit
each other well, and then translating the means of the
mapped outlook to the final outlook.

Let
{

µ̂
(1)
i , µ̂

(2)
i

}c

i=1
be the set of empirical means of

the outlooks. We translate the empirical means of each
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class of both outlooks to zero:

X̂
(j)
i = X

(j)
i − µ̂

(j)
i i = 1, ..., c, j = 1, 2. (1)

Next, we turn to matching the main directions of the
classes by rotation. Note that a rotation matrix may
be defined in many manners. We search for mappings
in the set of all orthonormal matrices (rotation and
reflection). Our choice of mapping by rotation is mo-
tivated by its isometry property, which allows us to
maintain the relative distance between the samples.
We construct utilization matrices for each of the out-
looks as follows. Define D

(j)
i as the utilization matrix

of outlook j and class i. D
(1)
i and D

(2)
i are concate-

nated matrices constructed from the h ≤ min(d1, d2)
principal directions of the corresponding outlook and
class. That is, the h eigenvectors of the empirical

covariance matrices Σ̂
(1)
i , Σ̂

(2)
i corresponding to the h

largest eigenvalues.

Using the utilization matrices we find the rotation
matching the outlooks by solving the following opti-
mization problem:

{Ri} = arg min
{Ri}

c
∑

i=1

∥

∥

∥
RiD

(2)
i −D

(1)
i

∥

∥

∥

2

F
(2)

subject to: RT
i Ri = I i = 1, ..., c,

where ‖·‖F is the Frobenius norm.

To gain some intuition on Problem (2) we disassemble
a term in the sum of the objective function

argmin
∥

∥

∥
RiD

(2)
i −D

(1)
i

∥

∥

∥

2

F
= argmax

h
∑

l=1

v
(1)T
il Rv

(2)
il ,

where v
(j)
il (l = 1, ..., h) are the principal directions of

the ith class of outlook j. We obtain that Problem
(2) is equivalent to maximization of the sum of inner
products between the principal directions of outlook 1
and the rotated principal directions of outlook 2, which
in turn implies minimization of the first h principal
angles between the classes of both outlooks.

Although Problem (2) is not convex it can be solved in
closed form. For the solutions constructed in this stage
we borrow techniques from the literature of Procrustes
Analysis (Gower & Dijksterhuis, 2004). Problem (2) is
equivalent to

argmax
Ri

c
∑

i=1

tr
(

RiD
(2)
i D

(1)T
i

)

(3)

subject to: RT
i Ri = I i = 1, ..., c.

Problem (3) is separable, thus each component in the
sum may be optimized separately. In the following
derivations we drop the subscript i for brevity.

Algorithm 1 Matching two outlooks

Input: empirical moments µ̂
(j)
i ∀i, j.

for i = 1 to c do

X̂
(j)
i = X

(j)
i − µ̂

(j)
i j = 1, 2.

X̃
(2)
i = MatchByRotation(X̂

(1)
i , X̂

(2)
i ).

X
(2)
Mappedi

= X̃
(2)
i + µ̂

(1)
i .

end for

Output: X
(2)
Mappedi

∀i

Algorithm 2 MatchByRotation

Input: matrices X̂(1), X̂(2).
Construct matrices D(1), D(2).
Compute SVD factorization D(2)D(1)T = USV T .

R = V UT .
Output: X̃(2) = X̂(2)RT .

Let USV T be the singular value decomposition (SVD)
of D(2)D(1)T . Define Z = V TRU . Then,

tr
(

RD(2)D(1)T
)

= tr
(

RUSV T
)

=

tr (ZS) =
d

∑

k=1

zkkσk ≤
d

∑

i=k

σk,

where σk is the k-th singular value of D(2)D(1)T . The
upper bound is attained for R = V UT since in that
case Z = I (Algorithm 2).

After the rotation, we translate the classes to match
the original means of the final outlook. The above
derivation gives rise to an algorithm that matches two
given outlooks. The algorithm is described in Algo-
rithm 1.

Remark 1. Each outlook need not have the same di-
mension. In this case, the orthonormal constraint can
not be obtained as R is no longer a square matrix.
However, this problem can be easily solved. Suppose

that D
(1)
i and D

(2)
i have different numbers of rows.

Then, simply add rows of zeros to the smaller dimen-
sional configuration until the dimensions are equalized.
In this manner, we embed the smaller configuration in
the space of the larger one.

Remark 2. Algorithm 1 does not rely on any corre-
sponding instances in both outlooks . However, when
available, such instances may aid the mapping accu-
racy and can be easily incorporated into the algorithm.
It is possible to do so by adding columns of the corre-
sponding instances to the utilization matrices.
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4. Extension to Multiple outlooks

We present an extension of Algorithm 1 to the case
of multiple outlooks. The multiple outlook scenario
allows us to use the information available in all the
outlooks to allow better learning of each one. To do
so, we transform all the outlooks one to another. As
for two outlooks, we begin by translating the means of
each class of all the outlooks to zero. In the rotation
step, the optimal rotations are found by solving

min
{R

(j)
i

}

c
∑

i=1

∑

k<j

∥

∥

∥
R

(k)
i D

(k)
i −R

(j)
i D

(j)
i

∥

∥

∥

2

F
(4)

subject to: R
(j)T
i R

(j)
i = I ∀i, j.

Observe that Algorithm 2 produces an optimal solu-
tion with zero error, as there is always a perfect rota-
tion between two sets of h orthogonal vectors. There-
fore, one optimal solution of (4), which attains an ob-
jective value of zero, is to rotate all outlooks to a cho-
sen final outlook. Namely, for m outlooks m − 1 ro-
tation matrices are computed for each class. Finally,
shift the means of the rotated outlooks to those of the
final outlook.

If we want to switch the choice of final outlook, all
we need to do is apply the inverse mapping of the
relevant outlook to all mapped outlooks. For example,
to switch from outlook s to k one needs to apply the
following transformation:

X
(k)
i = R

(k)−1
i

(

X
(s)
i − µ̂

(s)
i

)

+ µ̂
(k)
i ∀i.

5. Analysis

In this section we give a probabilistic robust inter-
pretation of the rotation process, and prove a sample
complexity bound on the convergence of the estimated
rotation matrix .

5.1. Probabilistic Interpretation

In this section we discuss the effect of adding random
noise to the utility matrices on the optimal rotation
between two outlooks (Problem (2)). We do not as-
sume knowledge of the probability distribution of the
noise. Instead, we use its bounded total value for some
chosen confidence level. We show that the solution to
the noised problem is bounded by the sum of the solu-
tion to the original problem and a constant value that
depends on the noise. Notably, the noise only has an
additive effect to the bound.

Let ∆ be the additive random uncertainty to the

utility matrix D
(2)
i for some class i. Suppose that

this uncertainty follows an unknown joint distribu-
tion ∆ ∼ P. This uncertainty may be portrayed by a
chance-constrained extension of Problem (2) 1 :

min
RTR=I,τ

τ (5)

Pr∆∼P

{
∥

∥

∥
R(D(2) +∆)−D(1)

∥

∥

∥

F
≤ τ

}

≥ 1− η,

where η ∈ [0, 1] is the desired confidence level.

Optimization of the chance constrained problem is
natural, as it obtains, with high probability, the
optimal rotation. However, despite their intuitive
probabilistic form, chance constrained problems are
generally intractable (Shapiro et al., 2009), thus
we approximate Problem (5) as follows. We define
ρ∗ = infα {Pr∆∼P (‖∆‖F ≤ α) ≥ 1− η} and obtain that
with probability at least 1− η

∥

∥

∥
R(D(2) +∆)−D(1)

∥

∥

∥

F
≤ max

‖∆‖F≤ρ∗

∥

∥

∥
R(D(2) +∆)−D(1)

∥

∥

∥

F
.

Therefore, Problem (5) is upper bounded by the fol-
lowing minmax problem

min
RTR=I

max
‖∆‖F≤ρ∗

∥

∥

∥
R(D(2) +∆)−D(1)

∥

∥

∥

F
. (6)

This is the robust version to the original rotation prob-
lem, with the uncertainty set U = {∆ | ‖∆‖F ≤ ρ∗} 2.
Next, we construct the robust counterpart of (6).

Theorem 1. Problem (6) is equivalent to

min
RTR=I

(
∥

∥

∥
RD(2) −D(1)

∥

∥

∥

F

)

+ ρ∗.

The proof is provided in Harel & Mannor (2011). The
theorem shows that Problem (2) is robust to a pertur-
bation of a total bounded value. That is, for a bounded
noise, the only difference between the solution to the
original problem and its robust version (Problem (6))
is an additive constant ρ∗. From a probabilistic point
of view, the solution of this problem also provides a
bound on the chance constrained problem in (5).

5.2. Sample complexity bounds

We next provide a bound for the sample complexity of
the rotation step of the algorithm.

1Since Problem (2) is separable, the extension is done to
each class separately. We drop the subscript i, representing
the class, from the following derivations for brevity.

2The original rotation problem was actually the square
of the Frobenius error. However, the two problems are
equivalent since taking the square does not change the so-
lution.
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Assumption 1. (Gaussian Mixture) Each outlook is
generated by a unique mixture of c Gaussian distribu-
tions, where c is the number of classes. The samples
of each outlook are realizations of x ∼

∑c

i=1 wifi(x),
where fi(x) ∼ N (µi,Σi) and

∑c

i=1 wi = 1. We fur-
ther assume that ‖ExxT ‖ ≤ 1 for each component.

Theorem 2. Suppose that Assumption 1 holds. For
each outlook, let δ, εi, ε ∈ (0, 1), (i = 1, .., c) and sup-
pose that the number of samples for each class i satis-
fies:

ni ≥ C
dh2

ε2
i

log2
(

32dh2

ε2
i

)

log2
(

4hd

δ

)

.

Then
P

(
∥

∥

∥
R̂−R

∥

∥

∥
≤ ε

)

≥ 1− δ,

where, R̂ is the estimated rotation matrix found by Al-
gorithm 2, d is the dimension and C is a constant.

The proof of the theorem is provided in
Harel & Mannor (2011). Note that the sample
complexity of the mapping algorithm is dominated by
the rotation stage. In practice, the number of chosen
principal directions h is usually small. Also note that
the bound on the norm of the second moment in
Assumption 1 is achieved by the scaling stage.

6. Experiments

In this section we demonstrate our framework on activ-
ity recognition data, in which different users represent
different outlooks. In this application, the multiple
outlooks setup allows for valuable flexibility in real life
recordings. For example, some users may use a simple
sensor configuration for recordings, while others use a
complex sensor board of multiple sensors. Also, this
setup may resolve problems of varying sampling rates
when using different hardware and workloads.

In our experiments we test two setups: a domain adap-
tation setup and a multiple outlook setup. For the
domain adaptation setup a common feature represen-
tation is used, while for the multiple outlook setup a
unique feature space is used for each user.

6.1. Data set description and feature

extraction

The data set used for the experiments was collected
by Subramanya et al. (2006) using a customized wear-
able sensor system. The system includes a 3-axis
accelerometer, phototransistors for measuring light,
barometric pressure sensors, and GPS data. The data
consist of recordings from 6 participants who were
asked to perform a variety of activities and record the
labels. We used the following labels: walking, run-
ning, going upstairs, going downstairs and lingering.

After removing data with obvious annotation errors
the data consists of about 50 hours of recording, di-
vided approximately evenly among the 6 users. For
each user the activities are roughly divided into 40%
walking, 40 − 50% lingering, 2 − 5% running, 2 − 3%
going upstairs, and 2 − 3% going downstairs. See
(Subramanya et al., 2006) for further details on the
sensor system and the recordings.

From the raw data we extracted windowed samples
as follows. From the accelerometer data we used the
x-axes measurements sampled at 512Hz, which we dec-
imated to 32Hz. The barometric pressure sampled at
7.1Hz, was smoothed and interpolated to 32Hz. Next,
we applied a two-second sliding window over each
signal using a window of appropriate length. From
each window a feature vector is extracted containing
the Fourier coefficients of the accelerometer data, the
mean of the gradient of the barometric pressure, and
the mean values of the light signals. All together we
obtained 20-35 thousand samples for each user with 37
features.

As explained in Section 3.2, before mapping the out-
looks scaling should be applied to all the outlooks. For
all the experiments, we scale the data to [0,1]. To re-
duce the sensitivity of the scaling to outliers we first
collapse the extreme two percentile of the data to the
value of the extreme remaining values (also known as
Winsorization). Scaling parameters are chosen on the
training data and applied to the test data. This pre-
processing was applied to all baseline classifiers.

6.2. Domain Adaptation Setup

As mentioned above, multiple outlook learning may
also be applied for domain adaptation. We tested both
standard domain adaptation of two domains, as well
as multiple source domain adaptation.

For the two domain problem we adopted the commonly
used terminology in domain adaptation of source and
target domains. We applied Algorithm 1 for different
fractions of target labeled data and fully labeled source
data. The performance was computed by 10-fold cross-
validation, each fold containing random samples from
each class according to its fraction in the complete set.
The only parameter of the algorithm h was chosen on
a random split.

We test the success of the mapping algorithm by classi-
fication of the target test data with a classifier trained
on the mapped source data, denoted as the MOMAP
classifier (no target data was used for training). This
is a multi-class classification problem, with five possi-
ble labels. We use a multi-class SVM classifier with an
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RBF-kernel (C = 64, γ = 0.25 3) obtained by LIBSVM
software (Chang & Lin, 2001). The data are unevenly
distributed among the five classes, therefore we use the
balanced error rate (BER) as a performance measure:
BER = 1

c

∑c

i=1
1
ni
ei, where ei and ni are the numbers

of errors and number of samples in class i respectively,
and c is the number of classes.

We compare the MOMAP classifier to the following
baselines: a target only classifier, trained on the avail-
able labeled target data (TRG); a source only clas-
sifier, trained on the source data (SRC); a classifier
trained on all available labeled data of target and
source (ALL); and the domain adaptation algorithm
presented in (Daumé III, 2007) (FEDA). We also add
the ”optimal” error, obtained by training on the fully
labeled target data (OPT).

The results are presented in Figure 1. It can be ob-
served that the MOMAP classifier outperforms the
baseline classifiers for most fractions of target labeled
data. The algorithm performs well across all sets of
users, for example, for 5% labeled data it is signifi-
cantly better (p-value< 0.05) than the TRG, SRC and
FEDA classifiers for all sets, and significantly better
than the ALL classifier for 18 out of 30 possible sets
(see Table 1 in Harel & Mannor (2011)).

In the next experiment we consider mixtures of m

source domains with some labeled data (both train-
ing and test sets are mixtures). We use the extension
to multiple outlooks presented in Section 4 to find the
mappings of the sources to each outlook. We test the
classification performance on each component of the
mixture with a classifier trained on all the mapped
sources. The final performance measure is the mean
BER averaged on all the sources. As in the previ-
ous experiment, the evaluation was done by 10-fold
cross-validation, with the same classifier. The base-
lines are similar, with the change of the TRG to the
mean value of multiple classifiers trained in each do-
main, and the ALL baseline to a classifier trained on
all sources (the SRC classifier was not relevant). The
experiment was performed on all 20 triplet combina-
tions. Sample results are presented in Figure 2. These
trends were consistent across users, for example, for
15% of labeled data the MOMAP algorithm outper-
forms all other classifiers for 15 of the combinations
(p-value< 0.05). In the 5 remaining combinations, the
algorithm performed significantly better than the TRG
and FEDA algorithms, and equally well as the ALL
classifier (see Table 2 in Harel & Mannor (2011)). For

3The parameters were chosen on the target classifica-
tion problem. Common parameters were chosen for clear
performance comparison of the different classifiers.
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(a) User 5 → User 3
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(b) User 6 → User 2

Figure 1. Domain adaptation setup for 2 domains.
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Figure 2. Domain adaptation setup for multiple outlooks:
users 1,2 and 5.

larger portions of labeled data the MOMAP algorithm
also obtained smaller error than the ALL classifier (p-
value< 0.05). The effect of the ALL classifier may be
a result of some regularization obtained from training
on data from similar yet different domains.

6.3. Multiple Outlook Setup

We conducted three types of experiments for the mul-
tiple outlook setup, each with a different feature repre-
sentation. The experiments’ setup was similar to the
previous experiments with some adjustments to the
baselines: the SRC, ALL and FEDA baselines were no
longer relevant, as the outlooks’ features differ.

In the first experiment we tested the multiple outlook
algorithm on two outlooks for the case of different sen-
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(c) User 2 → User 6
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Figure 3. Two outlooks with different sensors. Final out-
look: accelerometer and pressure. Mapped outlook: ac-
celerometer, pressure and light sensors. The missing fea-
tures in the final outlook are replaces by noise.

sors and added noise features. For the mapped out-
look we used full feature representation (37 features).
For the target outlook we used the accelerometer’s
and pressure features, and excluded the light measure-
ments. Instead of the light features we added features
with Gaussian random noise (N (0, 1)). The experi-
ment was performed on all pair combinations. For 5%
labeled data of the learned outlook, the mean BER
of the MOMAP was 4.5% (±2.7%) lower than that of
the TRG classifier. The results for four user pairs are
presented in Figure 3. These results show that the
mapping was successful, as training on the mapped
data outperforms training on partial data in the tar-
get outlook. In Fig. 3(c) the MOMAP algorithm has
lower error than the OPT classifier for some fractions;
this may be a result of the added information in the
light features.

In the second experiment we tried to learn from two
outlooks with a different number of features result-
ing from different sampling rates. Specifically, for the
learned outlook we kept the full feature representation
as described in Section 6.1, while for the mapped out-
look we used the same type of features but with 30Hz
sampling rate instead of 32Hz. This resulted in 37
features in the target outlook and 35 in the mapped
one. Note that our algorithm may be easily modified
for this scenario; see Remark 1 in Section 3.2. For
5% labeled data the MOMAP algorithm had on aver-
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Figure 4. Multiple outlook learning for two outlooks with
different sampling rates.

age 5.9% (±2.4%) lower BER than the TRG classifier.
Figure 4 presents the results on four user pairs. In
Figs. 4(a) and 4(c) the MOMAP algorithm has lower
error than the OPT classifier. Observe that this is pos-
sible since the balanced error rate is presented, which
treats the error in different classes equally (namely,
the MOMAP classifier does not outperform the non-
balanced error).

In the third experiment we constructed the feature rep-
resentation of each outlook from the 33 accelerometer’s
features to which we added 10 features of Gaussian
noise (N (0, 1)). We then randomly permuted the order
of the features of each outlook. For this experiment,
we used samples belonging to the walking, running
and lingering classes, as we did not use the full feature
set. The experiment was performed for two outlooks as
well as for multiple outlooks. The results indicate the
performance boost from MOMAP especially for the
running activity. Due to space limitations we provide
the results in Harel & Mannor (2011).

7. Future Work

Our proposed approach is a first step in developing
the methodology for learning from multiple outlooks.
This approach may be extended to many interesting
directions. First, in this paper we only considered
affine mappings between the outlooks and a natural
extension is to consider richer classes of transforma-
tions such as piecewise linear mappings. Also, our ap-
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proach is batch in the sense that first all the data have
to be processed and then the classification algorithm
can be used. A different extension of practical interest
would be to develop an online version of the proposed
approach that takes samples one by one and gradually
improves the mapping. Finally, a major application
domain, of independent interest, is natural language
processing. Here the challenge would be to use a lan-
guage where labels are abundant to better classify in a
different language. The main obstacle here seems to be
the nature of representation: language data are often
represented as sparse vectors which may call for a dif-
ferent type of transformations between the outlooks.
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