
Task Space Retrieval Using Inverse Feedback Control

Nikolay Jetchev nikolay.jetchev@fu-berlin.de
Marc Toussaint marc.toussaint@fu-berlin.de

Machine Learning and Robotics Lab, FU Berlin, Arnimallee 7, 14195 Berlin, Germany

Abstract

Learning complex skills by repeating and
generalizing expert behavior is a fundamen-
tal problem in robotics. A common approach
is learning from demonstration: given exam-
ples of correct motions, learn a policy map-
ping state to action consistent with the train-
ing data. However, the usual approaches do
not answer the question of what are appropri-
ate representations to generate motions for
specific tasks. Inspired by Inverse Optimal
Control, we present a novel method to learn
latent costs, imitate and generalize demon-
strated behavior, and discover a task relevant
motion representation: Task Space Retrieval
Using Inverse Feedback Control (TRIC). We
use the learned latent costs to create mo-
tion with a feedback controller. We tested
our method on robot grasping of objects,
a challenging high-dimensional task. TRIC
learns the important control dimensions for
the grasping task from a few example move-
ments and is able to robustly approach and
grasp objects in new situations.

1. Introduction

Imitation learning is an important tool for training
robots in complex tasks (Argall et al., 2009). Us-
ing machine learning techniques to find structure and
learn policies from demonstrations of desired behavior
is often much more efficient than hand-crafting robot
motion controllers. However, the utility of the behav-
iors learned in this way is still limited by the implicit
assumptions made by the human designers. The ques-
tion of “what to imitate”, i.e. which aspects of the ob-
served motions should be duplicated, is not answered
in general.

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

This issue is particularly challenging in the context of
articulated robotics: to generate complex movements
for a certain task, a controller typically minimizes costs
in a special movement representation or with respect
to multiple task features simultaneously (e.g., collision
avoidance, hand positioning, finger alignment, etc).
Which features are suitable and how they are weighted
depends on the task at hand. The target of a good
motion is typically not a specific configuration state,
but a whole task manifold. The challenge in imita-
tion learning thus becomes to retrieve the latent move-
ment representation (which task features are used in
the controller) rather than to repeat a point-to-point
movement. As an example consider a robot grasp-
ing an object: from observing successful motions we
should learn that some finger configurations relative
to the object surface result in good motions and use
such representations in the controller, rather than fix
targets in the direct robot configuration space.

Task Space Retrieval Using Inverse Feedback Control
(TRIC) addresses the above issues by discovering la-
tent costs and latent features of these costs in data and
using them to generate motions, which has several ad-
vantages. First, it can handle example demonstrations
in high dimensional spaces and select the important
features for movement. Second, it can generalize well
to situations and constraints unseen during demon-
strations (e.g. grasping objects on different positions
and collision avoidance with new obstacles), because
the learned cost function defines a task manifold.

1.1. Related Work

Imitation learning via Direct policy learning (DPL)
(Pomerleau, 1991) is a popular approach for learning
from demonstration. In essence DPL takes demonstra-
tion data in the form of motion trajectories and uses
supervised learning to estimate a controller that would
reproduce the trajectories. This works well when the
exact motion reproduction is desired (gestures, point-
to-point motions), but it can have difficulties to gener-
alize and modify the behaviors in new situations. Dy-

Task Space Retrieval Using Inverse Feedback Control

namic Movement Primitives (Schaal et al., 2003) are
an advanced method that learns parameters of a dy-
namic system which defines the controller. However,
it still requires to pre-specify a task space in which the
attractor operates.

Inverse Optimal Control (IOC) (Ratliff et al., 2006),
also known as Inverse Planning or Inverse Reinforce-
ment Learning, takes demonstrations in some state
space, and learns a state cost function that gives rise
to a policy consistent with this data. IOC provides
a general framework to retrieve latent objectives (re-
wards or costs) in observed behavior. (Ratliff et al.,
2009) describes a combination of IOC and DPL.

Our approach TRIC jointly addresses the problems of
finding relevant features of the motion, learning the
behavior to imitate, and retrieving latent costs lead-
ing to such behavior. This is a different approach for
motion feature selection than looking at data variance
in an unsupervised way (Jenkins & Matarić, 2004).

(Muehlig et al., 2009; Billard et al., 2004) examine
different task spaces for robot motions and select the
best ones for reproducing different tasks. However,
both examine only a small pool of possible task spaces,
whereas our method can find rich motion representa-
tions from high dimensional task spaces.

Grasping is a challenging task, which has received at-
tention in the context of learning by demonstration
and robotics. (Tegin et al., 2009) acquires grasps
from human movements and repeats them in joint
space. (Kroemer et al., 2010) uses the hand fingertips
for grasping within the Dynamic Motion Primitives
framework. (Gienger et al., 2008) creates a task man-
ifold of presampled grasp positions and orientations
and a motion potential towards them. None of the
above works try to extract from data a representation
for grasping.

This paper will proceed with background on methods
we compare with or build on, namely DPL, IOC and
discriminative learning. In Section 3 we will present
our algorithm and give details of the loss function used
to train a cost function and how it is used for motion
control. We test the effectiveness of our method in a
robot grasping application in Section 4.

2. Background

2.1. Direct Policy Learning

A standard way to describe a robot trajectory is
{xt, ut}Tt=0, where xt represents the robot state at time
t and ut is the control signal (e.g. the rate of change
ẋt). DPL tries to find a policy π : xt 7→ ut from these

observations. Different assumptions can be made for
the choice of x,u and π (Pomerleau, 1991; Calinon &
Billard, 2007), with refinements like data transforma-
tions and active learning. Given a parameterization of
the policy, DPL essentially corresponds to a regression
problem, e.g. with loss:

Edpl =
T∑
t=0

‖π(xt)− ut‖2 (1)

where ‖.‖ denotes the L2 norm. Minimizing Edpl finds
a policy close in the least squares sense to the demon-
strations. The above loss can be extended to multiple
demonstration trajectories by averaging over them.

(Howard et al., 2009) introduces an interesting alter-
native loss for DPL:

Einc =
T∑
t=0

(‖ut‖ − π(xt)Tut/‖ut‖)2 (2)

This loss penalizes the discrepancy between the pro-
jection of the policy π(xt) on ut and the true control
ut. The motivation is that it can adapt robustly to
constraints (e.g. collisions with objects) unseen in the
demonstrations because of implicit regularization.

When the state and control spaces are high dimen-
sional DPL has a disadvantage: generalization is an
issue and would essentially require the data to cover
all possible situations. Our approach aims to improve
generalization by extracting the relevant task features
from data.

2.2. Inverse Optimal Control

Inverse Optimal Control (Ratliff et al., 2006) assumes
that policies π give rise to expected feature counts
µ(π) of feature vectors φ, often within a Markov Deci-
sion Process framework. A weight vector w is learned
by the following loss, such that the behavior demon-
strated by the expert π∗ has higher expected reward
(negative costs) than any other policy:

min ‖w‖2 (3)
s.t. ∀π wTµ(π∗) > wTµ(π) + L(π∗, π) (4)

The term wTµ(π) defines an expected reward, linear
in the features. The scalable margin L penalizes those
policies that deviate more from the optimal behavior
of π∗. The above loss can be minimized with a max
margin formulation. Efficient methods are required to
find the π that violates the constraints the most and
add it as new constraint.

Once the reward model is learned, another module is
required to generate motions maximizing the reward,

Task Space Retrieval Using Inverse Feedback Control

e.g. (Ratliff et al., 2006) uses an A∗ planner to find a
path to a target with minimal costs.

Learning a policy based on estimated costs is much
more flexible than DPL, and a simple cost function can
lead to complex optimal policies. In some domains it
is much easier to learn a mapping from state to cost,
than a mapping from state to action which is a more
complex and higher dimensional problem, especially
when considering actions in high dimensional contin-
uous spaces such as robot control. IOC can also often
generalize better to new situations, because states with
low costs create a task manifold.

2.3. Discriminative Learning

Our work will describe a method related to IOC, us-
ing a discriminative learning framework. Energy based
models (LeCun et al., 2006) provide a common frame-
work for many learning problems, including structured
output regression. Data is given of the form {xi, yi}:
pairs of input and output values. As in standard dis-
criminative approaches (e.g., structured output learn-
ing), the energy or cost f(xi, yi;w) provides a discrim-
inative function such that the true output should get
the lowest energy from the model f :

yi = arg min
y∈Y

f(xi, y) (5)

Training the parameter vector w of the model f is done
by minimizing a loss over the dataset. The loss should
have the property that f is penalized whenever the
true answer yi has higher energy than the false answer
with lowest energy which is at least distance r away:

ỹi = arg min
y∈Y,‖y−yi‖>r

f(xi, y) (6)

Instead of the common hinge loss Lhinge(xi, yi) =
max(0,m + f(xi, yi) − f(xi, ỹi)) we will be using the
alternative log loss:

Llog(xi, yi) = log(1 + ef(xi,yi)−f(xi,ỹi)) (7)

which is a soft form of Lhinge with infinite margin m.
Finding the most offending answer ỹi is very often a
complicated inference problem in itself.

3. Task Space Retrieval Using Inverse
Feedback Control

The essence of our algorithm is to discover latent costs
f that characterize the demonstrations: the teacher
movements always decrease f , which can be viewed
also as a motion potential. A central idea in our ap-
proach is to model f as a “sparse” function of a high-

dimensional feature vector y, which offers a large vari-
ety of potential geometric features that might be rel-
evant for a motion. The optimization of f implies a
choice of these features. In Section 3.1 we describe our
motion model, that is, how f implies the movement.
In Section 3.2 we define a training loss for learning f
from demonstrations. The terms of the loss are ex-
plained in Sections 3.3 and 3.4.

3.1. Robot Motion Model

We denote the vector of joint angles of the robot body
by q ∈ <n. A robot movement trajectory for T time
steps is {qi}Ti=1. We assume that for each joint config-
uration q we can compute a high-dimensional feature
vector φ(q) ∈ <d. The feature vector will typically
comprise all possible relative and absolute positions
and distances between all landmarks on the robot and
external objects—clearly, the size of the feature vector
is combinatorial in the number of objects and body
parts. It is the objective of learning to select relevant
features to describe the latent cost function f of a mo-
tion, see Figure 1. The features φ(q) are non-linear
in q and can be computed from the robot kinemat-
ics. E.g. if the task is to move the robot hand to a
target position, a properly chosen feature that codes
this distance will allow much easier control than the
robot joint configuration space. TRIC uses the rich-
ness of the representation φ(q) to learn a cost model
and select important features.

As in IOC, the learned cost function f : φ(q) 7→ <,
or equivalently f ◦ φ : q 7→ <, determines the mo-
tion (policy) of the system. We assume that, given f ,
the robot generates motion with a method commonly
used in robotics: motion rate control. More precisely,
the robot motion is generated by imposing a smooth
decreasing “motion” on f which is translated back to
joint angle motions using inverse kinematics (IK).

More formally, motion rate control can be defined as
computing a new robot pose qt+1 = arg minq C(q) in
each iteration by minimizing the objective function

C(q) = ‖q − qt‖2 + δ1‖f ◦ φ(q)− f ◦ φ(qt) + δ2‖2

+ Cprior(q) (8)

Áq y f f(y)

Figure 1. Motion representation scheme: the joints q are
mapped by φ to a high-dimensional feature vector y, which
is then used to find costs f(y). In general y has many more
dimensions than q and f should be sparse in y.

Task Space Retrieval Using Inverse Feedback Control

where the first term penalizes step length, the second
term aims for a decrease in f ◦ φ by a rate δ2, and
the third term imposes additional standard costs for
joint limits and collisions. The solution – assuming
local linearization of f ◦ φ and neglecting Cprior for
simplicity – is the standard IK equation

qt+1 = qt − λtJ](qt) = qt −
λt
‖J ‖2

J (qt) (9)

where J] is the pseudoinverse of J and λt is some
positive scalar. Since f is scalar and J is a vector, it
holds that J] = J /‖J ‖2. The derivative of f ◦φ with
respect to q is

J =
∂f ◦ φ
∂q

=
∂f

∂φ

∂φ

∂q
(10)

Iteratively making steps qt, qt+1, ... with this motion
model generates a continuous motion trajectory de-
creasing the costs f ◦ φ(q) = f(y). Note that our goal
is not to find global optima of the costs.

3.2. Training Loss for Cost f

The problem now becomes to learn costs f such
that our motion model generates motions that cor-
respond to the demonstrated behaviors. Let D =

{qit, yit,
∂φ

∂q
(qit)}

N,T
i,t be a set of N demonstration tra-

jectories of fixed length T time steps. The joint space
movements are projected to the feature space using
φ(qit) = yit.

We assume that f is parameterized by parameters w
– in Section 4 we will specify a specific parameteriza-
tion mixing linear and non-linear components, which
we evaluate in the experiments. We train the cost
function f based on the following loss:

L(D;w) =
N∑
i=1

T∑
t=1

(αnLn(yit;w)+αgLg(qit;w))+αw‖w‖1

(11)
The hyperparameters α = {αn, αg, αw} determine the
influence of the different loss terms. The L1 regulariza-
tion term ‖w‖1 in Equation (11) forces sparsity in the
parameters and indirectly performs feature selection
with respect to y. Because of the coupling f ◦ φ, the
sparsity of f means that the motion rate control will
lead to joint states changing some task dimensions of y
and not caring about others – which we call task space
retrieval and selection. Given the overall loss L(D;w)
we use gradient-based optimization to optimize with
respect to the parameters w.

The next sections will explain in more detail Ln and
Lg, and how they influence the motion cost f .

3.3. Discriminating Teacher Demonstrations
via Loss Term Ln

For optimal control we need a cost function f that is
consistent with the observed trajectories: the demon-
strations are assumed to be near optimal and have
low costs, which discriminate them from all other pos-
sible movements. The usual approaches to discrimina-
tive learning would require finding the most offend-
ing false answer during the loss minimization as in
Equation (6). However, in our case this is expen-
sive since it requires calls to the robot simulator to
find arg min f ◦ φ(q) repeatedly. To speed up train-
ing we create a small set of m = 1, ..,M of synthetic
”noisy“ samples which need to be discriminated from
the demonstrated trajectories:

q̃t,m = qt−1 +N
(
0, σ) (12)

ỹit,m = φ(q̃t,m) (13)

The noisy joint states q̃t are created by adding Gaus-
sian noise to the robot joint configuration of the pre-
vious time slice qt−1. We add noise on q and not on
y directly since the states y where the robot can be
are a manifold constrained by the robot kinematics.
We define weights equal to the distance to the true
demonstration trajectory ahead in time:

εim,t = min
γ∈{0,T−t}

|qit+γ − q̃it,m|2 (14)

Samples that are near a correct state qt+γ in the fu-
ture will have low weights. Samples that are away from
the true trajectory, or near some state qt−γ0 back in
time will have high weights and their loss contribu-
tion will be higher. Such sample weighting arises from
the assumption that the demonstrations in our mo-
tion model move to states of lower cost as time pro-
gresses, implicit in our motion model. The way we
create these synthetic samples and weight them is il-
lustrated in Figure 2.

The term Ln is then defined as:

Ln(yit;w) =
M∑
m=1

εm,t log(1 + ef(yi
t;w)−f(ỹi

t,m);w) (15)

An intuitive interpretation is that we “push down”
the energy f(y) of the true samples and “push up”
the energy of the artificial noisy samples, proportional
to their weights as in Figure 3, where for simplicity
q = y ∈ <2 . We use log loss similar to Equation (7).

Equation (15) has similarities with IOC and Equation
(3): the expected state features are our y, the compar-
ison with all policies π is replaced with comparing the
true sample yt and the noisy data points ỹt, and the

Task Space Retrieval Using Inverse Feedback Control

q t
q t¡1

~q t

Figure 2. The noise q̃t comes from a Gaussian centered at
qt−1. A few ”noisy“ samples are shown, colored by their
weights εm,t: low weights are green and high weights red.

q t
q t¡1

Figure 3. The loss term Ln pushes down the costs f ◦ φ(q)
near the true trajectory samples qt , and up the cost of the
generated noise. Red represents high cost.

scalable margin is the weight ε, which makes the cost
margins dependent on the distance of the false vector
to the experts’ demonstration.

3.4. Making the Derivative J Consistent with
the Demonstrations via term Lg

Our motion model (9) implies that the gradient J
should align with the relative steps of the demon-
strated trajectories in joint space. The second loss
term Lg reflects this property and is defined as:

Lg(qit;w) =
J (qit)

T

‖J (qit)‖
(qit − qit−1)
‖qit − qit−1‖

(16)

where J (qit)
T the gradient of f ◦ φ.

Note that computing
∂Lg
∂w

involves calculating

∂J
∂w

=
∂2f

∂φ∂w

∂φ

∂q
(17)

The first term on the right side can be calculated from
f , and the second is the so-called kinematic Jacobian.

It can be seen that Lg is related to (Howard et al.,
2009) and the term of Equation (2): it is minimized by
the same policy if we consider the normalized gradient
J (qi

t)
T

‖J (qi
t)‖

as control policy π(qt) and the control signals

ut = qt+1−qt

‖qt+1−qt‖ are normalized to constant length.

4. Experiments

The task we examine is grasping of objects by a robot.
Our robot is the Schunk LWA 3 arm with 7 Degrees
of Freedom (DoF) and Schunk SDH hand with 7 DoF,
making a joint configuration space q ∈ <14. We use as
demonstration source the method of (Dragiev et al.,
2011), which is an efficient human-designed controller
to grasp objects.The setup consists of the robot and a
grasp target.

We generate a dataset for training by translating the
position of the target object a1 in a regular grid
50 × 40 × 40cm in front of the robot, taking 3 posi-
tions in each grid dimension, leading to N = 27 dif-
ferent settings and training trajectories. Each grasp
movement is generated for 5 seconds, and we sampled
T = 40 time steps from it, once every 125ms. The tar-
get is grasped faster when the object is closer to the
robot, but TRIC easily handles trajectories not aligned
in time or with different durations. Unless stated oth-
erwise we generate M = 60 random samples by ran-
domly sampling collision-free joint configurations with
a normal distribution with σ = 0.05, corresponding to
0.05 radians joint angle standard deviation.

4.1. Choice of High Dimensional Features

We construct a rich feature space representation
through a set of 8 landmarks on the robot and the
grasp target object A = {ai}8i=1, shown in Figure 4.
This includes the center of the target object a1, the
three fingertips a2, a3, a4, the three lower digits a5,
a6, a7, and the palm center a8. We denote the posi-
tions of landmark a relative to the frame of object b
as xba. The feature space y = φ(q) consists of pairwise
landmark positions and their norms:

y = {xba, ‖xba‖}a∈A,b∈A,a6=b ∈ <224 (18)

These are chosen as a reasonable set to capture grasp
poses, but much larger feature spaces are possible.

We preprocess each dimension of y by rescaling it to
[0, 1]. Some features are redundant due to the specific

Figure 4. The landmark set A used to generate the features
y indicated by black dots.

Task Space Retrieval Using Inverse Feedback Control

geometry of the landmarks. We remove the redundant
features using correlation as a measure (Haindl et al.,
2006), resulting in the final motion features y ∈ <100.

The parametric form of the costs f is a sigmoid neural
network with K nodes combined with a linear term:

z =
1

1 + eW1y
(19)

f(y;w) = zTW2 + yTW3 (20)

The parameters w consist of W1 ∈ <K×d, W2 ∈ <K ,
W3 ∈ <K and z ∈ <K is the hidden layer.

With this model we let the loss minimization train-
ing decide on a trade-off between the linear and non-
linear cost function terms. We trained our models for
100 iterations with the BFGS method from the MAT-
LAB Optimization Toolbox. The training time scales
with K: for a linear model K = 0 it takes less than a
minute, and 30 minutes for K = 30.

We used Equation (9) for motion rate control using
the learned costs f ◦ φ(q). We rescaled W2 and W3

by dividing by |W2|+ |W3|, which does not change the
motion implied by the cost function, and allows for
better comparison of differently trained models. We
set δ1 to 1000 and δ2 to 0.03, as a reasonable motion
rate. We used the standard additional constraints on
collision avoidance and joint limit avoidance coded in
the term Cprior, with weights to ensure that the IK
controller stays collision free and within joint limits.

4.2. Results

We use the errors of the task variables defined in
(Dragiev et al., 2011) as a validation metric for grasp
quality: it requires that all fingers lie at the object
surface and oppose each other. This metric evaluates
the final grasping posture of motion with a number
between 0 and 1, where values below 0.25 are good
grasps. We show that our method TRIC learns an un-
derlying cost function of the demonstrated task. We
create a new set of 15 trajectories on random positions
within the training grid and evaluated the grasping
costs of different TRIC models with 5 seconds for ex-
ecution. The default values of the hyper-parameters
from Equation (11) are αn = 2, αg = 0.4, αw = 0.001,
and the other parameters are M = 60 samples, N = 27
trajectories, K = 30 sigmoids for f .

In a first experiment we test 4 variations of the TRIC
model by switching on and off the term Lg from Equa-
tion (10) and comparing a pure linear model (K = 0)
to a nonlinear network (K = 30). The setting of linear
f and no derivative consistency term Lg is similar to
a classical IOC method.

20 40 60
0

0.5

1

1.5

M noise samples

co
st

 K=0; α
g
 = 0

K=30; α
g
 = 0

K=0; α
g
 = 0.4

K=30; α
g
 = 0.4

Figure 5. The effect of changing M on TRIC.

 3 9 27
0

0.2

0.4

0.6

0.8

1

N train trajectories

co
st

 K=0; α
g
 = 0

K=30; α
g
 = 0

K=0; α
g
 = 0.4

K=30; α
g
 = 0.4

Figure 6. The effect of changing N on TRIC.

Figure 5 shows how sensitive the 4 methods are to
the number of samples M . More samples allow better
training of f , but with 60 samples the performance is
close to the teacher. We also investigated varying the
number of training trajectories N , by creating smaller
sets of 3 and 9 trajectories. Figure 6 shows that with
as few as 3 trajectories TRIC could learn grasping.
Overall, the parameter M seems more critical than
N , however the mediocre performance of TRIC with
K = 30 at N = 9 indicates that non-linear neural net-
works are sensitive to random initialization and small
training set.

From both Figures 5 and 6 we may conclude that more
complex models for f with K = 30 sigmoids can learn
better than pure linear models, however with the draw-
back of longer training time. The term Lg implying
the derivative constraint is beneficial and αg = 0.4
leads to better performance. The performance of the
Teacher from (Dragiev et al., 2011) was 0.06 ± 0.01
on the validation set, and the best TRIC models had
similar performance with 0.08± 0.01.

In a second experiment we implemented different base-
line DPL methods for comparison, using φ for state
space x, and qt+1 − qt for control space u (using the
high-dimensional features y for control was ineffec-
tive), and a neural network with 60 sigmoids to learn
π. Our results was that DPL with loss Equation (2)
could not learn the train data. DPL with loss Equa-
tion (1) had poor performance on the validation data.
The controller following π(xt) = ut+1 had problems
with generalization and instability, and resulted on
sub-optimal grasps even on the training set.

To test this more quantitatively we defined a new, sim-
pler validation set, consisting of (a) 30 scenarios from

Task Space Retrieval Using Inverse Feedback Control

 0 0.02 0.04
0

0.2

0.4

0.6

0.8

Perturbation from Train set σ

co
st

 DPL

Teacher

TRIC

Figure 7. Comparison to Direct Policy Learning with in-
creasing “distance” between training and test data.

(a) Grasping pose for
cylinder.

(b) Grasp the target
avoiding obstacle B.

Figure 8. Implicit obstacle avoidance and cylinder grasping
with TRIC.

the original train set, (b) 30 scenarios with added ran-
dom translation of the target position distributed as a
Gaussian with 2cm standard deviation, or (c) 30 sce-
narios created analogously with 4cm standard devia-
tion. Figure 7 shows how the results degrade for DPL
as the validation scenarios become remote from the
training samples, whereas TRIC remains robust.

In a third experiment we test TRIC on more complex
objects. We create a new set of 10 demonstrations,
by rotating an elongated cylinder (30cm height and
5cm radius) on its Y -axis by values uniform in [0, π/2]
radians. We then train TRIC with the default param-
eters and test the learned f on grasping of cylinders
rotated differently than the train set, see Figure 8(a).
The performance of TRIC with K = 30 (0.09 ± 0.02)
is similar to Teacher (0.07 ± 0.01). Linear TRIC has
cost 0.19 ± 0.02, thus, more complex motion policies
require non-linear models for f .

In a fourth experiment we examine how TRIC reacts
to an obstacle B in its path to the target – since our
motion model include a prior cost term avoiding ob-
stacles TRIC can in principle handle such cases even
when not present in the training set: in our evaluation
B appears only in the validation set, not in the train
set. TRIC is reasonably robust: the motion rate con-
troller stays out of collisions and a straight approach
to pose D is no longer feasible, but the grasping pose
C out of the many poses with low cost can be found,
see Figure 8(b). Clearly, this implicit local collision
avoidance behavior has limitations. In more complex
cluttered scenes the costs f might be used in a global
planner to avoid local minima.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

sc
or

e
s i(y

)

Feature Rank

Figure 9. Effect of L1-regularization: the features sorted
by score s(y).

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

a

b

x

0

5

10

15

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

a

b

y

0

5

10

15

20

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

a

b

z

0

10

20

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

a

b

n

0

10

20

30

Figure 10. A map of the feature scores s(y) represented
as pairwise distances. One plot each for the three spatial
dimensions (x,y,z) and the norm n = ‖xb

a‖. Columns code
index a and rows index b of the two compared landmarks.

4.3. Motion Feature Selection

To get an insight into the feature selection done im-
plicitly by the loss minimization of Equation (11), we
defined a score for each feature equal to a weighted sum
of the absolute values of coefficients of f from Equa-
tion (20): s(y) = |WT

1 ||W2| + |W3|. In Figure 9 we
display these scores on the 100 non-redundant dimen-
sions of y. It can be seen that the L1-regularization
selected about 40 of these features for the cost f .

Figure 10 shows the feature scores as they relate to
pairwise distances xba in Equation (18). It can be seen
that the features measuring relative distance of the
target object from the fingers are the most important
for the grasping task, which is a meaningful way to
construct features for a grasping task.

(a) First approach the
red target object and
open the fingers

(b) Finally align the fin-
gers close to the object’s
surface

Figure 11. Illustration of the overall grasping motion.

Task Space Retrieval Using Inverse Feedback Control

5. Conclusion

In this paper we presented a novel method for learn-
ing a latent cost function from demonstrations, find-
ing relevant task dimensions and generating motion.
TRIC can generalize to different situations unseen dur-
ing training. We tested its performance on a robot
grasping task, presented results showing the effect of
different training and model settings, and visualized
the extracted motion features.

Our method has some limitations. First, it is not suit-
able for periodic movements and would need to add
state information for previous time slices to deal with
more complex motions. Second, we assume an accu-
rate robot kinematic model and TRIC can be sensitive
to noise in the input features.

Promising future work is to couple TRIC with more
interesting object representations like implicit sur-
faces. Further, the analysis of human demonstrations
with TRIC may uncover interesting results concerning
which features underly human motion generation.

6. Acknowledgments

This work was supported by the German Research
Foundation (DFG), Emmy Noether fellowship TO
409/1-3. We would like to also thank the anonymous
reviewers for their feedback.

References

Argall, Brenna D., Chernova, Sonia, Veloso, Manuela,
and Browning, Brett. A survey of robot learning
from demonstration. Robotics and Autonomous Sys-
tems, 57:469–483, May 2009.

Billard, A., Epars, Y., Calinon, S., Cheng, G., and
Schaal, S. Discovering optimal imitation strate-
gies. Robotics and autonomous systems, Special Is-
sue: Robot Learning from Demonstration, 47(2-3):
69–77, 2004.

Calinon, Sylvain and Billard, Aude. Incremental learn-
ing of gestures by imitation in a humanoid robot. In
HRI ’07: Proceedings of the ACM/IEEE interna-
tional conference on Human-robot interaction, pp.
255–262, 2007.

Dragiev, Stanimir, Toussaint, Marc, and Gienger,
Michael. Gaussian process implict surface for ob-
ject estimation and grasping. In IEEE Int. Conf.
on Robotics and Automation (ICRA), 2011.

Gienger, Michael, Toussaint, Marc, Jetchev, Nikolay,
Bendig, Achim, and Goerick, Christian. Optimiza-

tion of fluent approach and grasp motions. In 8th
IEEE-RAS International Conference on Humanoid
Robots, 2008.

Haindl, Michal, Somol, Petr, Ververidis, Dimitrios,
and Kotropoulos, Constantine. Feature selection
based on mutual correlation. In CIARP, pp. 569–
577, 2006.

Howard, Matthew, Klanke, Stefan, Gienger, Michael,
Goerick, Christian, and Vijayakumar, Sethu. A
novel method for learning policies from variable con-
straint data. Autonomous Robots, 27:105–121, 2009.

Jenkins, Odest Chadwicke and Matarić, Maja J. A
spatio-temporal extension to isomap nonlinear di-
mension reduction. In 21st Int. Conf. on Machine
Learning (ICML), 2004.

Kroemer, Oliver, Detry, Renaud, Piater, Justus H.,
and Peters, Jan. Grasping with vision descriptors
and motor primitives. In ICINCO (2), pp. 47–54,
2010.

LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ran-
zato, Marc’Aurelio, and Huang, Fu-Jie. A tutorial
on energy-based learning. In Predicting Structured
Data, 2006.

Muehlig, Manuel, Gienger, Michael, Steil, Jochen J,
and Goerick, Christian. Automatic selection of task
spaces for imitation learning. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pp.
4996–5002, 2009.

Pomerleau, Dean A. Efficient training of artificial
neural networks for autonomous navigation. Neu-
ral Comput., 3:88–97, 1991.

Ratliff, Nathan, Ziebart, Brian, Peterson, Kevin, Bag-
nell, J. Andrew, Hebert, Martial, Dey, Anind K.,
and Srinivasa, Siddhartha. Inverse optimal heuristic
control for imitation learning. In Proc. of AISTATS,
pp. 424–431, 2009.

Ratliff, Nathan D., Bagnell, J. Andrew, and Zinkevich,
Martin A. Maximum margin planning. In 26th Int.
Conf. on Machine Learning (ICML), pp. 729–736,
2006.

Schaal, Stefan, Peters, Jan, Nakanishi, Jun, and
Ijspeert, Auke Jan. Learning movement primitives.
In International Symposium on Robotics Research,
pp. 561–572, 2003.

Tegin, Johan, Ekvall, Staffan, Kragic, Danica, Wikan-
der, Jan, and Iliev, Boyko. Demonstration-based
learning and control for automatic grasping. Intel-
ligent Service Robotics, 2:23–30, 2009.

