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Abstract

Bayesian treatments of Canonical Correla-
tion Analysis (CCA) -type latent variable
models have been recently proposed for cop-
ing with overfitting in small sample sizes, as
well as for producing factorizations of the
data sources into correlated and non-shared
effects. However, all of the current imple-
mentations of Bayesian CCA and its exten-
sions are computationally inefficient for high-
dimensional data and, as shown in this paper,
break down completely for high-dimensional
sources with low sample count. Further-
more, they cannot reliably separate the cor-
related effects from non-shared ones. We pro-
pose a new Bayesian CCA variant that is
computationally efficient and works for high-
dimensional data, while also learning the fac-
torization more accurately. The improve-
ments are gained by introducing a group
sparsity assumption and an improved varia-
tional approximation. The method is demon-
strated to work well on multi-label prediction
tasks and in analyzing brain correlates of nat-
uralistic audio stimulation.

1. Introduction

Canonical correlation analysis (CCA) is a method
for finding statistical dependencies between two data
sources, used for multi-view learning tasks (Hardoon
et al., 2004) and recently for multi-label prediction
(Rai & Daumé III, 2009; Sun et al., 2011). In this
paper we discuss Bayesian interpretation of CCA as
a latent variable model, and in particular point out
practical problems limiting the applicability of exist-
ing Bayesian CCA (BCCA) variants (Archambeau &
Bach, 2009; Klami & Kaski, 2007; Rai & Daumé III,
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2009; Wang, 2007). We then proceed to propose a
novel variant that makes BCCA a viable alternative
for real-world applications with high-dimensional data,
such as genome-wide measurements or neuroimaging
data.

BCCA is a latent variable model much like principal
component analysis (PCA) or factor analysis (FA), but
with full noise covariance matrix in place of the spher-
ical or diagonal noise of PCA and FA, respectively.
This is the main reason why BCCA has been of lim-
ited use in practice. For high-dimensional data infer-
ring the covariance matrix becomes impossible without
very strong prior assumptions, which in turn seriously
biases the results. While some low-rank approxima-
tions for the covariance matrix have been proposed
(Archambeau & Bach, 2009; Klami et al., 2010), none
of the solutions have been shown to work in practice.
Another problem in the standard BCCA formulation
is lack of identifiability; the solution is found only up
to an unknown rotation and scaling.

We solve these two problems with a simple modi-
fication to the model structure, enabling automatic
learning of a low-rank structure for the covariance
matrix, and with a variational approximation scheme
that solves the rotational disambiguity. First we re-
interpret the BCCA model as a simpler latent variable
model with specific kind of sparsity structure, and then
relax the model to one that learns the sparsity struc-
ture during inference, following a scheme akin to group
lasso formulation (Meier et al., 2008).

The identifiability problem, in turn, is solved by explic-
itly optimizing a variational lower bound with respect
to the unknown rotation and scaling. Here we use a
trick which has dramatically improved convergence of
factor analysis models (Luttinen & Ilin, 2010). For
CCA we not only get an increase in computational
speed, but optimization of the rotation also fixes the
components to be better interpretable. In particular,
the solution can be shown to extract components that
are maximally independent of each other, which is a
desirable property for exploratory analysis tasks.
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Inspired by the recent success of CCA-based models
in the task of multi-label prediction (Rai & Daumé
III, 2009; Sun et al., 2011), we first evaluate the per-
formance of the proposed variant in that task. Then,
to demonstrate the applicability of the model in un-
covering relationships in very high-dimensional data
sources, we apply it to analyzing brain activity (fMRI)
recordings done under naturalistic stimulation. More
specifically, we seek correlations between the raw voxel
activity of high-dimensional fMRI recordings and fea-
ture representations of natural music stimulation.

2. Bayesian CCA

Bayesian CCA (Wang, 2007; Klami & Kaski, 2007)
is a latent variable model for modeling relationships
between two random variables, y1 ∈ RD1 and y2 ∈
RD2 . The model assumes the generative latent process

z ∼ N (0, I)
y1 ∼ N (W1z,Ψ1) (1)
y2 ∼ N (W2z,Ψ2)

where N (µ,Ψ) denotes the normal distribution with
mean µ and covariance matrix Ψ, and the latent vari-
ables z ∈ RK capture the correlations between the
data sources. The model is further complemented with
priors for the linear transformations W1 ∈ RD1×K and
W2 ∈ RD2×K , as well as for the covariance matrices
Ψ1 and Ψ2. Typical choices would be automatic rele-
vance determination (ARD) prior for the projections,

p(β) =
K∏

k=1

G(βk|α0, β0) (2)

p(Wi) =
K∏

k=1

Di∏
d=1

N (w(i)
d,k|0, β

−1
k )

and Wishart distribution for the inverse covariance

Ψ−1
i ∼ W(S0, ν0). (3)

Here S0 denotes the scale matrix and ν0 the degrees
of freedom for the Wishart distribution, w(i)

d,k is the
weight for feature d of the component k in Wi, and
G(βk|α0, β0) is the gamma distribution evaluated at
βk. Small values for α0 and β0 result in the ARD
prior to driving unnecessary components to zero.

Both variational and sampling-based inference solu-
tions have been presented for Bayesian CCA, includ-
ing extensions relaxing the distributional assumptions
(Archambeau et al., 2006; Klami et al., 2010) or in-
corporating non-parametric elements (Rai & Daumé
III, 2009). To our knowledge, however, all of the pro-
posed Bayesian CCA models suffer from the same two

core problems that reduce their applicability in prac-
tical scenarios: learning the covariance matrices for
high-dimensional data is difficult, especially for small
sample sizes, and the inherent rotational unidentifia-
bility of the model. These problems are described in
detail in the following two subsections, together with
partial solutions proposed earlier.

2.1. Inferring the covariance matrices

On surface level the CCA model of (1) is very close
to a simpler model of Bayesian PCA (Bishop, 1999)
and other matrix factorizations formulated using la-
tent variables. The core difference is in the full covari-
ance matrices Ψ1 and Ψ2, introduced instead of sim-
ple spherical noise model Ψ = σ2I of PCA or diagonal
noise model Ψ = diag(σ2) of factor analysis. While
this difference might seem minor, it is necessary for
CCA to be able to focus on modeling the correlations
but at the same time it poses notable computational
difficulties in real applications.

Specifying a covariance matrix requires inferring
D(D + 1)/2 parameters. For increasing D and fixed
sample size N , the amount of data per element reduces
rapidly and inference slows down (the cost is cubic as
a function of D). Together these issues imply that the
existing Bayesian CCA solutions are applicable only
for scenarios with N � D, which is a fundamental lim-
itation since that is exactly the regime where already
the classical CCA model solvable by simple eigenvalue
decomposition is sufficiently accurate. While earlier
works have reported improved performance for BCCA
for small sample sizes, the experiments have always
had very lowD, at most around 10 (Archambeau et al.,
2006; Klami & Kaski, 2007; Klami et al., 2010).

For N � D one can simply specify a relatively non-
informative prior for Ψ by setting ν0 in (3) to a small
value. However, for scenarios with N ≈ D, the pos-
teriors of the Ψ become improper and tricks like in-
creasing the virtual sample count of the prior are re-
quired. This, in turn, makes the Wishart prior rela-
tively strong, severely biasing the whole posterior.

Both Archambeau & Bach (2009) and Klami et al.
(2010) have proposed solving the problem of inferring
high-dimensional covariance matrices by introducing
additional latent variables:

z, z1, z2 ∼ N (0, I)

y1 ∼ N (W1z + V1z1, σ
2
1I) (4)

y2 ∼ N (W2z + V2z2, σ
2
2I),

where simple gamma priors can be set for the in-
verses of the variance parameters σ2

1 and σ2
2 , and ARD
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can again be used for the extra projection matrices
V1 ∈ RD1×K1 and V2 ∈ RD2×K2 . By integrating out
z1 ∈ RK1 and z2 ∈ RK2 , the model can be shown
to be equivalent to imposing a low-rank assumption
Ψi = ViVT

i + σ2
i I for the covariances, which allows

decreasing the computational demand and increases
the amount of data per model parameter.

Also other forms of priors for low-rank approximations
of covariance matrices would apply, but the above one
has the advantage that instead of merely capturing
the correlations between the data sources it produces
a full factorization of the variation in data into shared
(z) and non-shared (z1 and z2) components. That is,
the low-rank approximation of the covariance matrices
is given in a form that can be interpreted in the same
way as the shared components.

While the above generalization solves the problem of
high-dimensional covariance estimation, it results in
other computational issues. First, it makes inferring
the number of components in the model more difficult:
Trying to simultaneously learn three component num-
bers (K,K1, and K2) with three separate ARD priors
is extremely sensitive to initialization. The reason is
that correctly identifying the shared and non-shared
components becomes tricky, since the non-shared com-
ponents can always be represented as shared ones with
an equal likelihood. The only information for identi-
fying the components comes from the prior. Conse-
quently, none of the authors proposing such extensions
have presented empirical results beyond simple toy ex-
periments.

2.2. Identifiability

As pointed out in all related works, the Bayesian CCA
model is unidentifiable with respect to linear transfor-
mations R of the latent variable space. This is unfor-
tunate as the underlying model itself is a linear one,
and hence a linear unidentifiability term undermines
much of the results. While the model retains good
prediction capability despite the unidentifiability, its
applicability to explorative data analysis through in-
terpretation of the components is limited.

The projection corresponding to the classical CCA so-
lution can be identified with a post-processing step
proposed by Archambeau et al. (2006). However, the
extra step is essentially equivalent to solving the clas-
sical CCA problem and hence many of the advantages
of Bayesian treatment are lost. While the transforma-
tion can easily be applied to the maximum likelihood
solution, it is unclear how the transformation works
for the full posterior distribution and whether similar
tricks can be derived for extensions of the CCA model.

3. Bayesian CCA via group sparsity

For solving the above two problems, we propose a novel
latent variable model and an associated inference pro-
cedure. The model stems from the factorized model
(4), but instead of explicitly specifying three differ-
ent sets of latent variables we assume sparsity with a
specific structure as described below, using only a sin-
gle set of components. We then apply a variational
approximation that fixes the rotational ambiguity by
explicitly seeking for maximally independent compo-
nents.

3.1. Model

By feature-wise concatenation x = [y1; y2], Archam-
beau & Bach (2009) wrote the factorized CCA model
(4) equivalently as

zc ∼ N (0, I)
x ∼ N (Wzc,Ψ),

where zc = [z; z1; z2] ∈ RKc , Kc = K+K1+K2, and Ψ
is a diagonal matrix that contains only values σ2

1 and
σ2

2 on the diagonal in D1 and D2 copies, respectively.
In other words, the model reduces to a simplified factor
analysis model, with a specific form of sparse structure
for the linear projection W, namely

W =
[

W1 V1 0
W2 0 V2

]
. (5)

It is notoriously difficult to infer the projection matrix
having this pre-specified structure, since it requires
inferring the complexities of each of the parts and
because local inference algorithms cannot easily re-
arrange components from one block to another. How-
ever, now CCA has been formulated as a factor anal-
ysis model which is a step forward. The remaining
problem is to build a model that automatically results
in learning a structure corresponding to (5) while be-
ing computationally tractable.

We base our solution on a simple group lasso -type of
sparsity (Meier et al., 2008). We observe that each
component, a column of W, is either dense or has a
specific sparsity structure: either the elements corre-
sponding to the first D1 dimensions or the elements
corresponding to the last D2 elements are zero. Con-
sequently, we can model W simply as a matrix whose
columns are group-wise sparse. This corresponds ex-
actly to the idea of group lasso, with the two data
sources specifying the grouping of the features.

We implement the sparsity by group-wise application
of an ARD prior, following the strong evidence of ARD
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in enforcing sparsity (Fujiwara et al., 2009),

p(W) =
Kc∏
k=1

[ D1∏
d1=1

N (wd1,k|0, α−1
1,k) (6)

D1+D2∏
d2=D1+1

N (wd2,k|0, α−1
2,k)
]
.

Here wdi,k denotes the feature weight di of the kth
component in W, and α−1

i,k is the variance of the
weights corresponding to the ith group of the kth com-
ponent. The model will automatically learn the right
kind of sparsity structure by inferring the posterior of
the α, whose elements each have the non-informative
gamma prior of ARD (2). The shared components will
have large variances α−1

1,k and α−1
2,k, whereas the com-

ponents specific to either data source will converge to
either one of them having a very low value, pushing
the projection weights towards zero. Re-arranging the
columns of W then reveals a structure like in (5). Fi-
nally, the model automatically infers the total number
of components by letting some components converge
to a low variance for both data sources. In practice,
we only need to set up one complexity parameter, the
maximal number of components Kc.

3.2. Inference

While any inference algorithm could be applied on the
above model, we propose here a specifically tailored
variational approximation to solve the rotational dis-
ambiguity in the CCA model. The key of the algo-
rithm is in optimizing a linear transformation of the
CCA subspace with respect to the variational lower
bound, as was earlier done for Bayesian factor analy-
sis by Luttinen & Ilin (2010).

We start with the mean-field approximation q(Θ) =∏
j q(θj) for the posterior p(Θ), factorized over all of

the elementary parts of the model. That is, the full
posterior is approximated by

q(Θ) = q(σ2
1)q(σ2

2)q(α1)q(α2)
D1+D2∏

d=1

q(wd)
N∏

n=1

q(zn).

Standard cyclical updates are performed for the sepa-
rate terms q, following the update rules for standard
Bayesian CCA (Wang, 2007) and PCA (Bishop, 1999).

After each round of updates comes the trick that not
only solves the rotation and scaling disambiguity but
also improves convergence and helps separating the
shared components from those specific to either data
set. The approximation includes a separate parame-
ter matrix R, which is a linear transformation applied

to W. On the other hand, z is multiplied by the in-
verse of R. Since W∗z∗ = (WR)(R−1z) = Wz, the
likelihood of the model is invariant to R.

The transformation is inferred by maximizing the vari-
ational lower bound with respect to R or, equiva-
lently, by minimizing the Kullback-Leibler divergence
between the approximation q and the prior p0,

arg min
R

〈
ln
q∗(Θ)
p0(Θ)

〉
q∗

, (7)

where the expectation is taken with respect to the
transformed approximation q∗. Here q∗ can be com-
puted easily based on the current estimates for q(w)
and q(z) through the transformation N (µ,Σ) →
N (Rµ,RΣRT ). For practical computation, (7) sim-
plifies into the cost presented in Appendix A, opti-
mized with unconstrained optimization.

Given a fixed likelihood, the only way the variational
bound can improve is by rotating the components
so that the posterior p(Θ) better matches the facto-
rial approximation q(Θ), which assumes independent
terms. Hence, maximizing the lower bound with re-
spect to R equals forcing the model to find compo-
nents that are a posteriori maximally independent of
each other. This is analogous to the classical CCA
solution requiring orthogonality of the components in
the latent space. Hence, the R minimizing (7) not
only provides a deterministic choice for the rotation
but also does it in a meaningful sense. It also fixes the
scaling invariance by encouraging z to have roughly
unit variance, using the projections W to encode the
scale of the observations.

3.3. Related work

Our model solves the difficulty of specifying the num-
bers of shared and non-shared components by relax-
ing the discrete choice via a group sparsity assump-
tion. Earlier Archambeau & Bach (2009) and Rai &
Daumé III (2009) have proposed CCA variants that
assume full sparsity for the projections, the former via
sparsity-inducing priors and the latter by construct-
ing an Indian buffer process prior (Ghahramani et al.,
2007) for choosing the active elements. The former ap-
proach still lacks the solution for identifying the shared
and non-shared components and the authors provide
no empirical experiments with the full CCA model.
The IBP-based model, in turn, retains the full-rank
noise covariances, preventing efficient and robust in-
ference for high-dimensional data.

A few other latent variable models can be seen as spe-
cial cases of the proposed model. Replacing the sepa-
rate ARD terms of the two data sources with a single
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one results in a variant of the supervised PCA (Yu
et al., 2006); it assumes all components to be shared,
and the amount of supervision can be controlled by
specifying different noise variances for the two sources.
Assuming additionally equal variances the model re-
verts to Bayesian PCA with efficient variational ap-
proximation due to the rotation optimization.

Recently Jia et al. (2010) proposed a related model
for learning factorized orthogonal latent spaces, moti-
vated by an earlier variant by Salzmann et al. (2010).
Their model learns the full factorization into shared
and source-specific components, hence identifying the
components, via learning a point solution of a similar
model as CCA with L1,∞-norm regularization. Our
solution offers the advantages of approximating the
full posterior distribution, which is especially useful
for real-world data analysis of small sample sizes.

4. Experiments

4.1. Inferring the covariance

First we demonstrate that the BCCA formulation of
(1) does not work for high dimensions, and that the
proposed model (4) implemented using the prior (6),
coined gsCCA for CCA via group sparsity, effectively
learns to model low-rank source-specific components.

We generated N = 100 samples with varying data di-
mensionality Di from (4), and fixed the component
numbers to K = 2,K1 = 5,K2 = 5. To evaluate
whether the models can learn the true shared compo-
nents, we create a separate binary label variable c ob-
tained by linearly separating the shared latent space.
We then measure the performance of gsCCA and reg-
ular BCCA by the accuracy of a leave-one-out nearest
neighbor classifier predicting c given the estimated z,
averaged over 10 different random data sets for each
dimensionality.

By changing the dimensionality of the data we can
move from scenarios where the noise covariance Ψ is
of full rank (Di < Ki) to where it is not. For the
regime with full-rank covariance (or equivalently low
data dimensionality) the two models have equal per-
formance (Fig. 1), but with larger D the standard
BCCA model breaks down completely, eventually cap-
turing the shared variation even worse than Bayesian
PCA that does not even attempt finding just the cor-
relations. This shows that the standard BCCA model
requires full rank noise covariance, which prevents it
from working with D > N and in practice already
well below that in most cases. For N ≈ D the BCCA
model does not work at all, despite the underlying sim-
ple structure correctly captured by the new model.
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Figure 1. Toy data demonstration showing that the stan-
dard Bayesian CCA formulation (BCCA) is not capable
of modeling data when their dimensionality D1 = D2 ap-
proaches the number of training samples (here N = 100).
The proposed model gsCCA, Bayesian CCA via group
sparsity, extracts the low-rank representation and is not
influenced by the data dimensionality. Bayesian PCA
(BPCA) is included as a reference, to demonstrate how
BCCA is severely misled by the strong priors needed for
the covariance matrices, obtaining eventually worse accu-
racy than a model that does not even attempt to extract
the correlations. The performance is here measured indi-
rectly by the accuracy of classifying a variable known to
depend only on the shared variation.

4.2. Multi-label prediction

4.2.1. Setup

Recently CCA-type matrix factorization methods have
attracted attention in the task of multi-label predic-
tion (Rai & Daumé III, 2009; Sun et al., 2011). Given
an input matrix Y2 and set of labels collected as an
output matrix Y1, the task is to predict the outputs
for new inputs. While the task is solvable with a sep-
arate predictor for each label, learning the prediction
tasks jointly will often increase the accuracy. CCA-
type models learn dependencies between the tasks and
the input features, extracting a low-rank representa-
tion that can predict in both directions with a single
model.

The predictive distribution p(ŷ1|y2) can be approxi-
mated by fixing the projections W to the point esti-
mates of the variational approximation, and by finding
q(z) for the new observation as in the learning phase.
The resulting integral then gives the mean prediction

ŷ1 = 〈W1z〉 = 〈W1σ
−2
2 ΣW2y2〉, where

Σ = (I + 〈σ−2
2 WT

2 W2〉)−1.
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To measure the multi-label classification accuracy of
the gsCCA model we applied it on 10 benchmark data
sets from the Mulan library (Tsoumakas et al., 2010)
using the existing split into training and test sets. The
label information is encoded into Y1 so that each col-
umn represents a class and contains binary indicators
of class membership. Note that the samples typically
belong to several classes. Since the labels are discrete,
we feed the predicted values of y1 through a simple
threshold filter with the threshold for each class cho-
sen to maximize the accuracy on the training data.

4.2.2. Results

First we show how the proposed CCA variant outper-
forms both classical CCA and the standard Bayesian
CCA by Wang (2007). For BCCA we set the maxi-
mal number of components to K = min(D1, D2, 50),
and for classical CCA we chose the number of com-
ponents by 10-fold cross-validation within the training
set. For gsCCA we set Kc to the minimum of 100 and
the number of components extracted by BPCA. For
gsCCA and BCCA we started the optimization from
10 different random initializations and chose the so-
lution that resulted in the best lower bound for the
training data. Table 1 shows that the gsCCA model is
the best of the CCA variants on all but one data set,
and Table 2 shows gsCCA is much faster to compute
for high-dimensional data than BCCA, despite our im-
plementation of BCCA including the optimizaton of R
to speed up convergence.

We also compared the gsCCA model to three recent
multi-label prediction models, RAKEL (Tsoumakas &
Vlahavas, 2007) and MLKNN (Zhang & Zhou, 2007) as
implemented in the Mulan library, and reverse multi-
label prediction model by Petterson & Caetano (2010).
As shown in Table 1, gsCCA outperforms the com-
parison models systematically for the cases with very
large number of labels (D1), with the exception of the
Corel5-k data set. This demonstrates that CCA-type
models are particularly useful for multi-label predic-
tion tasks with an extreme number of labels, most
likely because more information can then be extracted
from the dependencies between the labels. The im-
provements presented in this paper are needed espe-
cially for that domain.

For cases with a low number of labels (below 20 for the
first three data sets), MLKNN outperforms gsCCA.
This is understandable as it is a model specifically de-
signed for multi-label prediction and it explicitly max-
imizes the prediction accuracy, in contrast to gsCCA
that is a generative model for both data sources. Nev-
ertheless, gsCCA outperforms the two other compari-

son methods even for data sets with few labels.

4.2.3. Brain response to natural stimulation

Compared to earlier Bayesian CCA models the
key strengths of gsCCA are applicability to high-
dimensional data and unambiguity of the components.
These make it ideal for analyzing real-world measure-
ment collections such as the hundreds of thousands of
brain voxels measured with fMRI. Often the purpose
of the experiments is to understand still unknown phe-
nomena, making interpretable components a necessity.

We applied the new CCA model for analyzing the
brain response to natural music. A classical neurosci-
entific experiment would seek to find the voxels associ-
ated with some specific stimulus. With natural stimu-
lation, however, we do not have well-defined repeated
triggers but instead need to seek for correlations be-
tween the brain activity and any feature representation
or reference signals extracted from the stimulus. CCA
is a model well-suited for this task (Fujiwara et al.,
2009).

We applied the model to fMRI recordings of a single
subject listening to a sequence of three music pieces,
consisting of N = 137 samples with a 2-second inter-
val. We randomly selected a subset of D2 = 50, 000
voxels to create a data set with more than two orders
of magnitude more features than samples. The other
data source contains a 28-dimensional vector of music
features extracted with the MIR toolbox (Lartillot &
Toiviainen, 2007). We then sought to predict the z-
score normalized stimulus features y1 for left-out time
slices (7-fold cross-validation) based on the brain ac-
tivity y2.

We compared the predictive performance of the CCA
model with a multiple output linear regression model
applied for predicting voxel activities by Palatucci
et al. (2009). For gsCCA we set the maximum number
of components Kc equal to N within the training data,
and for the comparison method we chose the regu-
larization coefficient by further cross-validation within
the training sets. Averaged over all 28 stimulus fea-
tures, the mean-square prediction error for gsCCA was
0.61, which is significantly (paired t-test, p < 0.001)
better than the score of 0.68 for the multiple output
linear regression model. Classical CCA computed in
the kernel form was unable to predict the stimuli bet-
ter than the label noise (score of 1.0 due to z-score
normalization) and BCCA would be well beyond fea-
sible in terms of computational load. The improved
prediction accuracy, however, is merely a demonstra-
tion that the model can extract relevant information.
Interpretation of the results in terms of studying the
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Table 1. Prediction errors (Hamming loss) for 10 benchmark data sets sorted by the increasing number of labels D1. For
each data set the best method has been boldfaced. The proposed model (gsCCA) outperforms the classical CCA and
Bayesian CCA (BCCA) for almost all data sets. For cases with a large number of labels gsCCA outperforms also designated
multi-label prediction models RAKEL and MLKNN, showing that the full strength of modeling the dependencies between
the labels is best utilized for high number of labels. The figures for the reverse multi-label prediction model (RML) were
taken from (Petterson & Caetano, 2010), Ntrain is the number of training samples, and D2 is the input dimensionality.
The values missing for BCCA were excluded due to too long computation time (more than 5 hours per run).

Dataset D1 D2 Ntrain gsCCA CCA BCCA RML RAKEL MLKNN
emotions 6 72 391 0.223 0.232 0.329 0.225 0.223 0.209
scene 6 294 1211 0.105 0.332 0.162 0.127 0.115 0.0953
yeast 14 103 1500 0.202 0.205 0.211 - 0.233 0.198
genbase 27 1186 463 0.00093 0.0022 0.00093 - 0.0011 0.0052
medical 45 1449 333 0.0124 0.0174 0.0276 - 0.0113 0.0188
enron 53 1001 1123 0.0465 0.0766 0.0607 - 0.0509 0.0514
mediamill 101 120 30933 0.0309 0.161 0.0305 - 0.0335 0.0314
bibtex 159 1836 4880 0.0131 0.0138 - - 0.0144 0.0140
Corel5-k 374 499 4500 0.0094 0.0099 0.0098 - 0.0096 0.0093
delicious 983 500 12920 0.0182 0.0183 - - 0.0185 0.0183

Table 2. Average computation times for gsCCA and BCCA (in minutes) until convergence (relative change of the lower
bound below 10−6). For small dimensionalities the computational demands of the methods are comparable, but for high
dimensionality the BCCA model becomes infeasible.

Method emotions scene yeast genbase medical enron mediamill bibtex Corel5-k delicious
gsCCA 3 13 2 11 14 13 33 14 4 26
BCCA 1 8 2 46 79 289 95 >300 104 >300

actual identified components is left for future work.

5. Discussion

All existing Bayesian implementations of canonical
correlation analysis (CCA) suffer from issues with
identifiability, high computational load, and poor ac-
curacy with high-dimensional data and/or low sample
sizes. In this paper we proposed a novel latent vari-
able formulation for learning Bayesian CCA, with a
new variational approximation that solves the prob-
lems of the earlier variants. In particular, we now have
a model that can effectively be applied to data sets
with thousands or tens of thousands of dimensions, as
demonstrated by the experiments in the paper, while
learning a full factorization of the data into compo-
nents explaining correlations between the sources and
non-shared variation.

The proposed group sparsity approach, as well as op-
timizing for the rotation, could be incorporated into
a number of existing CCA extensions. The element-
wise sparse solutions of Archambeau & Bach (2009)
and Rai & Daumé III (2009) could be applied to the
parts of the projection vectors that were not pushed
to zero by the group sparsity requirement. The model
could also be used as a part of a mixture of CCAs

(Klami & Kaski, 2007), and it could be extended to
robust (Archambeau et al., 2006) or exponential fam-
ily (Klami et al., 2010) likelihoods. The latter could
be done by incorporating techniques like (Khan et al.,
2010) for variational inference of exponential families.

One shortcoming of the current model is that the ro-
tation maximizes independence of the whole posterior
approximation, which implies independence of both
the latent variables z and the projection vectors wj .
Ideally, a CCA model would only require indepen-
dence over the latent variables, though independence
of wj might help interpretation. Also, we resorted to
generic unconstrained optimization of (7) for solving
the transformation; analytic approximations might be
possible as well, reducing the computational cost fur-
ther to the level of factor analysis models.
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A. Optimizing the rotation and scaling

Following the derivation for the factor analysis model
presented by Luttinen & Ilin (2010), the cost function
(7) becomes, omitting constants,

L =
1
2
tr(R−1〈ZT Z〉R−T )− C log |R|

+
2∑

i=1

Di

2
log

K∏
k=1

rT
k 〈WT

i Wi〉rk, (8)

where C = (D1 + D2 − N), rk is the kth column of
R, 〈ZT Z〉 =

∑
n〈znzT

n 〉 contains the sum of the sec-
ond moments for the latent variables, and similarly
〈WT

i Wi〉 =
∑

d〈w
(i)
d w(i)T

d 〉 has the second moments
for the projection matrix rows w(i)

d for the two data
sources indexed by i. For factor analysis the corre-
sponding problem has an analytical solution through
diagonalization R = UΛV. Here, however, the sum of
two separate log-product terms in (8) prevent straight-
forward analytical solution. In practice, solving the
transformation by computing the gradient and apply-
ing standard BFGS optimization with initial choice of
R = I results in sufficiently efficient algorithm.


