
Incremental Basis Construction from Temporal Difference Error

Yi Sun yi@idsia.ch
Faustino Gomez tino@idsia.ch
Mark Ring mark@idsia.ch
Jürgen Schmidhuber juergen@idsia.ch

IDSIA, USI & SUPSI, Switzerland

Abstract

In many reinforcement learning (RL) sys-
tems, the value function is approximated as
a linear combination of a fixed set of basis
functions. Performance can be improved by
adding to this set. Previous approaches con-
struct a series of basis functions that in suf-
ficient number can eventually represent the
value function. In contrast, we show that
there is a single, ideal basis function, which
can directly represent the value function.
Its addition to the set immediately reduces
the error to zero—without changing existing
weights. Moreover, this ideal basis function
is simply the value function that results from
replacing the MDP’s reward function with its
Bellman error. This result suggests a novel
method for improving value-function estima-
tion: a primary reinforcement learner esti-
mates its value function using its present ba-
sis functions; it then sends its TD error to a
secondary learner, which interprets that error
as a reward function and estimates the corre-
sponding value function; the resulting value
function then becomes the primary learner’s
new basis function. We present both batch
and online versions in combination with in-
cremental basis projection, and demonstrate
that the performance is superior to existing
methods, especially in the case of large dis-
count factors.

1. Introduction

The state space of most real-world reinforcement learn-
ing (RL) problems is too large to permit a tabular
representation of the value function, and therefore the

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

value function must be approximated. Linear func-
tion approximators (LFAs) are popular for this pur-
pose due to their theoretical simplicity and low compu-
tational complexity (Sutton and Barto, 1998; Boyan,
2002; Lagoudakis and Parr, 2003; Sutton et al., 2009;
Maei and Sutton, 2010). Learning in LFAs hinges
on two intertwined subproblems: weight optimization,
which aims to effectively compute the weights for a
given set of basis functions, and basis discovery, which
is concerned with finding good basis functions.

The last two decades have seen significant progress
addressing weight optimization, particularly in the
context of temporal-difference (TD) methods (Sutton,
1988). Second-order TD-methods such as residual gra-
dient (Baird, 1995) and LSTD (Bradtke et al., 1996;
Boyan, 2002; Geramifard et al., 2006) have become
standard tools for solving reinforcement learning prob-
lems with thousands of basis functions. More recently,
second-order, online TD-methods with complexity lin-
ear in the number of basis functions have successfully
solved large-scale problems with tens of thousands of
basis functions (Sutton et al., 2008; 2009).

While the weight optimization problem has largely
been solved, the basis discovery problem remains open.
A significant fraction of the existing approaches make
use of the so-called Bellman error basis functions
(BEBFs; Wu and Givan (2005); Keller et al. (2006);
Parr et al. (2007); Mahadevan and Liu (2010)), which
capture the intuition that the “Bellman error, loosely
speaking, point[s] towards the optimal value func-
tion” (Parr et al., 2007). Because a sequence of nor-
malized BEBFs form an orthonomal basis of the space
in which the value function resides, any value function
can be exactly represented given a sufficient number of
BEBFs (Parr et al., 2007; Mahadevan and Liu, 2010).
Some approaches that do not rely on BEBFs include
the construction of reward-insensitive “proto value”
basis functions from the expansion of the Graph Lapla-
cian (Mahadevan et al., 2006), basis selection under
sparsity constraints (Kolter and Ng, 2009), and basis
projection from predictive compression of observations

Incremental Basis Construction from Temporal Difference Error

(Boots and Gordon, 2010).

In this paper, we pursue an entirely different idea for
basis-function generation. Instead of constructing a
sequence of basis functions that, in sufficient number,
can eventually represent the value function, we aim to
do so with a single new basis function. Our approach
is based on the simple insight that, for a given MDP
and set of basis functions, there is an ‘ideal’ basis func-
tion, which can theoretically reduce the error to zero
immediately. This ideal basis function is simply the
value function that results from replacing the MDP’s
reward function with its Bellman error. We refer to
this basis function as the ‘Value Function of the Bell-
man Error,’ and denote it V-BEBF. V-BEBF allows
the value function to be represented exactly, without
affecting the optimal weight values for the current ba-
sis functions.

This finding directly transforms basis discovery into
a reinforcement learning problem, suggesting a novel
approach for incrementally expanding the set of basis
functions: a primary reinforcement learner estimates
its value function over a set of basis functions; it then
uses its TD-error as the reward function for a second
reinforcement learner on the same MDP; the resulting
value function is returned to the primary learner as a
new basis function. We present both batch and online
versions of this approach using the linear basis projec-
tion framework suggested by Boots and Gordon (2010)
and Ghavamzadeh et al. (2010). We then demonstrate
the effectiveness of both approaches experimentally.

The formulation of V-BEBF is detailed in Section 3,
after some necessary background material presented in
Section 2. Incremental basis projection with V-BEBF
is described in Section 4, and empirical studies are
presented in Section 5.

2. Background

Without loss of generality, we describe V-BEBF with
respect to value-function estimation for a Markov De-
cision Process (MDP) with fixed policy, a finite state
space S = {1, . . . , S}, an expected reward function1 r,
and a discount factor γ ∈ [0,1). Let P be the transition
matrix of the Markov chain resulting from marginal-
izing out the actions, then the value function v solves
the Bellman equation

v = r + γPv.

which can be conveniently written as

v = L−r, (1)

1With a little abuse of terminology, we will not distin-
guish between a function f on S and an S-by-1 column
vector [f (1) , . . . , f (S)]⊺.

where2 L = I − γP .

When S is too large for v to be maintained in tabu-
lar form, it is common to approximate v via a linear
combination of basis functions Φ = [φ1,⋯, φN] such
that

v ≃∑
N

n=1 θnφn = Φθ,

where N ≪ S and θ = [θ1, . . . , θN]
⊺

are the correspond-
ing weights. The Bellman error is given by

ε = r + γPΦθ −Φθ = r −LΦθ = L (v −Φθ) .

Clearly, ε = 0 if and only if v = Φθ.

When the basis functions are fixed, the weights can
be obtained using second-order TD methods, which
minimize quadratic objective functions of the form

J = (L−ε)⊺K (L−ε) = (v −Φθ)
⊺
K (v −Φθ) . (2)

The solution is computed either explicitly, or through
(stochastic or batch) gradient descent. The posi-
tive semi-definite matrix K differs from method to
method, and examples include Krg = L

⊺DL for resid-

ual gradient (Baird, 1995), Kgtd = (ΦDL)
⊺
(ΦDL)

for GTD(0) (Sutton et al., 2008), and Klstd =

L⊺ΠDDΠDL for LSTD (Bradtke et al., 1996) and
TDC (Sutton et al., 2009). Here D is the diagonal
matrix whose diagonal is the sample distribution of
the states (which coincides with the stationary distri-
bution of P if the learning is on-policy and the Markov
chain is ergodic), and ΠA = Φ (Φ⊺AΦ)

−
Φ⊺A is the pro-

jection operator with respect to the (semi) inner prod-
uct defined by A as ⟨v1, v2⟩A = v⊺1Av2, for a given Φ,
and an arbitrary positive semi-definite matrix A.

The negative gradient of the objective function J with
respect to θ is

−
1

2
▽θ J = Φ⊺KL−ε,

and the weights minimizing J , to which the second
order TD methods converge, are given by

θ̂ = (Φ⊺KΦ)
−

Φ⊺Kv.

Note that the optimal approximation of the value func-

tion is simply Φθ̂ = ΠKv, which is the projection of v
into the space spanned by the basis functions, but with
respect to the (semi) inner product ⟨⋅, ⋅⟩K .

When K is chosen as Kgtd or Klstd, θ̂ coincides with

the TD fixpoint θ̂td = (Φ⊺DLΦ)
−

Φ⊺Dr. It also follows
that the Bellman error corresponding to the optimal
weights is

ε̂ = r −LΦθ̂ = L (v −ΠKv) ,

2The inverse and transpose of an arbitrary matrix A is
denoted A− and A⊺, respectively.

Incremental Basis Construction from Temporal Difference Error

and the minimum of the objective function is

Ĵ = min
θ
J = v⊺Kv − (ΠKv)

⊺
K (ΠKv) . (3)

3. The ideal basis function from
TD-error

Once the optimal weights have been found, no more
improvement can be made to the value-function ap-
proximation with the given basis functions. To fur-
ther improve performance, additional basis functions
can be added. If Φ+ = [Φ ⋮ φ], and θ+ = [θ⊺ ⋮ 1]⊺, where
[A ⋮ B] is the matrix with A and B juxtaposed, then
the Bellman error becomes

ε+ = r −LΦ+θ+ = r −LΦθ −Lφ

= L (v −Φθ − φ)

= L (L−ε − φ) .

Ideally, we should choose φ = L−ε = v − Φθ, so that
ε+ is reduced to 0, and the value function is exactly
represented by v = Φ+θ+.

The key insight is that φ = L−ε is the solution of the
Bellman equation φ = ε + γPφ, namely, φ is the value
function of the original Markov chain when its reward
function is equal to the Bellman error, ε. Since ε is also
the expectation of the TD-error, φ can be computed
by solving a second reinforcement learning problem, in
which the TD-error of the first is used as the reward
in the second.

The choice of φ above depends on both Φ and the cur-
rent weights θ, which change during learning. How-

ever, in the limit θ converges to θ̂, so we can remove
this dependency and define the Value Function of the

Bellman Error, V-BEBF, as φ̂ = L−ε̂, or equivalently
through the Bellman equation

φ̂ = ε̂ + γP φ̂. (4)

We argue that φ̂ is the ideal basis function for two

reasons. First, adding φ̂ allows the value function to
be represented exactly, since by Eq.1

v = L−r = L− (r −LΦθ̂ +LΦθ̂)

= L− (ε̂ +LΦθ̂)

= φ̂ +Φθ̂.

Second, as can also be seen from this last equation,

adding φ̂ does not change any of the optimal weights

for the existing basis functions. Therefore, when φ̂ is
added, there is no need to re-adjust the weights learned

previously. It is straightforward to verify that φ̂ (up
to a non-zero multiplicative constant) is the only basis
function possessing these two properties. Moreover,

0 = −
1

2
▽θ J ∣

θ=θ̂
= Φ⊺KL−ε̂ = Φ⊺Kφ̂, (5)

indicating that φ̂ is orthogonal to the first N basis
functions with respect to the (semi) inner product
⟨⋅, ⋅⟩K .

3.1. Comparison with BEBFs

The idea of generating basis functions from Bellman
error has been explored several times in the literature.
In particular, Parr et al. (2007) carried out a theoret-
ical study, where they pointed out that a sequence of
normalized BEBFs, ε̂ in our terminology3, form an or-
thonormal basis in RS with respect to ⟨⋅, ⋅⟩D, assuming
that Klstd is used in the objective function. As a con-
sequence, repeatedly adding BEBFs eventually allows
any value function to be represented exactly. A recent
variation, namely the Bellman Average Reward Bases
(BARBs), replaces the very first BEBF, r, with P∞r,
where P∞ = limn→∞ Pn. BARBs are equivalent to
BEBFs if P is ergodic, yet demonstrate faster conver-
gence otherwise, particularly when γ → 1 (Mahadevan
and Liu, 2010).

The formulation of V-BEBF bears a clear resemblance
to BEBF in that it is also based on the Bellman error.
However, there is a key difference. In the worst case,
representing a value function requires a whole sequence
of BEBFs, even if all BEBFs are computed exactly.
In contrast, a single additional V-BEBF, if computed
exactly, is sufficient to represent the value function. In
fact, when the initial basis function set is empty, the
first V-BEBF is simply L−r, the value function itself.

The difference between V-BEBF and BEBF is cap-
tured by the following proposition (the proof is de-
ferred to the appendix), and illustrated by the example
in Figure.3.1.

Proposition 1 Consider the objective function J as
defined in Eq.2, with K an arbitrary fixed positive def-
inite matrix. Let Ĵ and Ĵ+ be the minimum of J as
defined in Eq.3 corresponding to the basis functions Φ
and [Φ ⋮ ε̂]. Then

ρ =
Ĵ+
Ĵ

≤ γ2,

with the equality holding iff r is chosen such that

1. ΠKPv = ΠKPΦθ̂;

2. φ̂⊺Kφ̂ = φ̂⊺P ⊺KPφ̂;

3. φ̂⊺KPφ̂ = γφ̂⊺Kφ̂.

3The sequence of BEBFs is constructed iteratively, such

that φ1 = r, and φk+1 = ε̂(k) = r − LΦ(k)θ̂(k), where Φ(k)
=

[φ1,⋯, φk] and θ̂(k) are the optimal weights.

Incremental Basis Construction from Temporal Difference Error

γ=0.7

γ=0.85

γ=0.5

ρ1/2

γ=0.99

γ=0.96

Figure 1. Consider a simple two-state MDP with transi-

tion matrix P = [
0 1
1 0

] , and let K = L⊺DL, so that
J is the MSBE. Assume initially there are no basis func-
tions. In this case the first BEBF is r, and the V-BEBF

L−r is the value function itself. The figure shows how ρ
1
2

varies with γ and r. When r varies on the unit circle (dot-
ted black circle), the distance between the points on the

butterfly-shaped curve and the origin denotes ρ
1
2 , and each

curve corresponds to a different γ. The blue dots show
where ρ achieves its maximum (computed from Proposi-
tion 1). It can be seen that when γ approaches 1, the
worst-case ρ approaches the unit circle, which indicates
less and less improvement when the BEBF is added. Note
that ρ is always zero when r is exactly on [cos π

4
, sin π

4
]
⊺

and [cos 3π
4
, sin 3π

4
]
⊺
, the eigendirections of L, but changes

abruptly when r leaves the first eigendirection.

In particular, when K is chosen as either L⊺DL or
D, ρ corresponds to the Mean Square Bellman error
(MSBE) and the Mean Square Value Error (MSVE),
respectively, and the fraction of improvement from
adding a BEBF is only 1− γ2 in the worst case. How-
ever, if the V-BEBF is added as the new basis func-
tion, the new minimum of J is always 0 since the value
function is represented exactly.

An analysis in a similar spirit was proposed by Ma-
hadevan and Liu (2010), who showed that the error
in approximating the value function using the first m
BEBFs is bounded in terms of the Chebyshev polyno-
mial of degree m and the condition number of L. Our
result, albeit less general, is simpler to interpret and
allows construction of the worst-case scenario.

3.2. Approximating V-BEBF

In theory, the V-BEBF can be computed as the value
function of the Markov chain using TD-error as the re-
ward, provided that the weights for the current basis

functions are set optimally. In practice, the V-BEBF
has to be approximated and three sources of errors
are anticipated. First, the exact representation of V-
BEBF (as well as BEBF) requires storage of size S,
which is not available in the first place. Therefore,
function approximation must be used. Second, the

convergence of θ to θ̂ happens only asymptotically, and
thus only the TD-errors, ε, corresponding to the cur-
rent θ can be used as the reward. Finally, error arises
when estimating V-BEBF from a finite set of samples.
Formally, let B be the set of functions from which the
representations of V-BEBF approximators are chosen,
and let

φ̂θ = arg min
φ∈B

∥φ −L−ε∥

be the best-in-class given θ, then the error between an

estimate φ and φ̂, the exact V-BEBF, is bounded by

∥φ − φ̂∥ ≤ ∥φ̂θ −L
−ε∥ + ∥Φθ̂ −Φθ∥ + ∥φ − φ̂θ∥ ,

with the three items on the right hand side correspond-
ing to the three sources of error. As a result, though
only one V-BEBF is needed in principle, in practice
we still rely on repeatedly adding new approximations
of V-BEBFs to compensate for the error in the es-
timation, as well as changes in the policy and non-
stationarities in the environment.

4. Incremental basis projection with
V-BEBF

The result in the previous section suggests a way to
improve value function approximation incrementally,
whereby a primary reinforcement learner receives re-
ward from the environment, modifies its value function
estimate over a set of basis functions, and propagates
the TD-error to a secondary reinforcement learner,
which estimates the value function of the TD-error,
i.e., an approximation of V-BEBF, which then be-
comes the new basis function used by the primary
learner.

The secondary learner can use any form of approxi-
mator for V-BEBF. However, in this paper, V-BEBF
is combined with a simple linear architecture, which
we refer to as linear basis projection (LBP). In LBP,
the primary reinforcement learner uses a set of N ‘re-
fined’ basis functions Φ = [φ1,⋯, φN], that are lin-
ear combinations of a set of M ‘raw’ basis functions,
Ψ = [ψ1,⋯, ψM], where N ≪M , such that

φn =∑
M

m=1wm,nψm = Ψwn,

where wn = [w1,n, . . . ,wM,n]
⊺

are the mixing coeffi-
cients. Let W = [w1, . . . ,wN], then Φ = ΨW . The
objective is then to build W . The main advantage of
LBP is that it reduces the prior knowledge required in

Incremental Basis Construction from Temporal Difference Error

designing the basis functions: one may simply generate
a large set of raw basis functions, with the hope that
it is representative enough for the task even though
each single basis function may be only marginally re-
lated. In particular, Ghavamzadeh et al. (2010) con-
sidered the theoretical property when W are chosen
i.i.d. Gaussian; Boots and Gordon (2010) proposed a
method where W is chosen to retain maximum predic-
tive information. In addition, basis function selection
under sparsity constraints (Kolter and Ng, 2009) can
also be seen as a special case where the W are sparse
binary matrices with each wn containing exactly one
non-zero entry.

Our approach combines V-BEBF with LBP, in the
sense that mixing coefficients w are generated by the
secondary learner such that Ψw approximates the V-
BEBF, and w is added as a new column of W , which
amounts to adding V-BEBF as a new refined basis
function. We refer to this new approach Incremental
Basis Projection with V-BEBF, or IBP-V.

4.1. Batch IBP-V

We explore the case where the primary and

the secondary learner use LSTD4. Let θ̂raw =

(Ψ⊺DLΨ)
−

Ψ⊺Dr be the LSTD solution using the raw

basis functions, θ̂ref = (Φ⊺DLΦ)
−

Φ⊺Dr be the LSTD
solution using the refined basis functions. Then by
definition the solution of V-BEBF is given by

ŵvbebf = (Ψ⊺DLΨ)
−

Ψ⊺Dε̂ref (6)

= θ̂raw −Wθ̂ref , (7)

where ε̂ref = r −LΨWθ̂ref is the Bellman error. Note

that θ̂raw = ŵvbebf +Wθ̂ref , which indicates that a sin-
gle LSTD solution of the V-BEBF allows the exact

representation of θ̂raw. Also, note that the LSTD so-
lution of the BEBF can be derived by just replacing
(Ψ⊺DLΨ)

−
with (Ψ⊺DΨ)

−
in Eq.6.

This naive implementation of IBP-V offers no compu-

tational advantage over directly computing θ̂raw, since
starting from an empty W , the first V-BEBF is ex-

actly θ̂raw. Without assumptions about the sparsity of

the basis functions, the exact computation of θ̂raw re-
quiresO (M2T) time andO (M2) storage (Geramifard
et al., 2006), which is often not feasible. For this rea-
son, we consider using only B ≪M randomly chosen
raw basis functions to approximate each V-BEBF (see
Algorithm 1). If N V-BEBFs are constructed in to-
tal to approximate the value function, then the overall
computational cost is O (MT)+O (NB2T)+O (N3T),

4For succinctness, we use the exact sample distribution
D and transition matrix P . But in practice, both D and
P must be replaced by their finite sample approximations.

Algorithm 1 Batch-IBP-V5

Input: samples (st, st+1, rt)
T
t=1, discount factor γ, raw

basis functions ψ1, . . . , ψM , number of basis func-
tions for each V-BEBF B, maximum number of
refined basis functions N

Output: mixing matrix W , weights over refined basis
functions θ

1: W ← []; θ ← []

2: while n < N do
3: Select U ⊂ {1, . . . ,M} with ∣U ∣ = B
4: for t = 1 to T do
5: ω ← [ψ1 (st) , . . . , ψM (st)]
6: ωp ← [ψ1 (st+1) , . . . , ψM (st+1)]
7: δt ← rt + γωpWθ − ωWθ
8: end for
9: wr ← LSTD((st, st+1, δt)

T
t=1 , γ,Ψ[U])

10: w ← 0M×1; w[U] ← wr; W ← [W ⋮ w]

11: θ ← LSTD((st, st+1, rt)
T
t=1 , γ,ΨW)

12: n← n + 1
13: end while

where the three terms correspond respectively to the
cost of computing M raw basis functions, N V-BEBFs,
and the weights over the refined basis functions for N
times. The storage cost is O (NB)+O (B2)+O (N2),
with the first term being the storage for W .

Algorithm 1 raises the issue of how to choose N , the
number of refined basis functions to construct, and
B, the number of raw basis functions used to gener-
ate each refined basis functions. The following analy-

sis shows that we can choose N = B = (cM)
1
2 , where

c = − log ε, with the guarantee that at least 1−ε fraction
of the raw basis functions are covered when construct-
ing the refined basis functions. In addition, with this
choice of N,B, the computational complexity becomes

O ((cM)
3
2 T) in time and O (c2M) in storage. To see

this, note that the probability of a raw basis function

getting selected at least once is 1− (1 − B
M

)
N

, and our
assumption requires

1 − (1 −
B

M
)

N

≥ 1 − ε, or N ≥
− log ε

− log (1 − B
M

)
.

Assume B
M

= o (1), and note that − log (1 − x) > x. It

suffices that NB > cM , and letting N = B = (cM)
1
2

gives the complexity result.

5We assume the subroutine LSTD(samples, γ, basis)
produces LSTD estimates of the weights for the provided
samples, i.e., triples (st, st+1, rt), and basis functions. Also,
for an arbitrary set of integers U , w[U] denotes the sub-
vector with entries indexed by U .

Incremental Basis Construction from Temporal Difference Error

Algorithm 2 Online-IBP-V6

Input: sample trajectory (st, st+1, rt), discount fac-
tor γ, raw basis functions ψ1, . . . , ψM , steps before
adding each V-BEBF C

Output: mixing matrix W , weights over refined basis
functions θ

1: c← C
2: W ← []; θ ← []; w ← 0M×1
3: repeat
4: ω ← [ψ1 (st) , . . . , ψM (st)]
5: ωp ← [ψ1 (st+1) , . . . , ψM (st+1)]
6: δ ← rt + (γωp − ω)Wθ

7: θ ← θ + αδ (ωW)
⊺

8: w ← w + α (δ + γωpw − ωw)ω⊺
9: c← c − 1

10: if c = 0 then
11: c← C
12: W ← [W ⋮ w]; θ ← [θ⊺ ⋮ 0]⊺; w ← 0M×1
13: end if
14: until trajectory ends

4.2. Online IBP-V

Batch IBP-V can be modified to work online, e.g., by
replacing LSTD with iLSTD (Geramifard et al., 2006).
One may instead use the linear complexity methods
such as TD or TDC (Sutton et al., 2009; Maei and
Sutton, 2010), (see Algorithm 2), so that the com-
plexity of each time step is O (MN) if all raw basis
functions are used to estimate the V-BEBF or BEBF,
or O (BN) if only B raw basis functions are used. In
practice, N can be controlled by dynamically removing
refined basis functions whose weights are very small. If
N is upper bounded by a constant, then online IBP-V
is linear in the number of raw basis functions. It is also
worth mentioning that this structure offers additional
advantages in terms of convergence speed due to the
low dimensionality of the resulting primary reinforce-
ment learning problem.

5. Experiments

Batch and online IBP-V were tested on randomly gen-
erated7 Markov chains with 500 states and a branching
factor (the number of successor states) of 5. All exper-
iments used binary raw basis functions over the states,
that were generated by filling Ψ with i.i.d. Bernoulli

6For simplicity, assume TD is used in both the primary
and secondary learner (see line 7 and 8), which can be
replaced by other algorithms. Also, the learning rates are
fixed to α.

7We use the method described in http://webdocs.cs.
ualberta.ca/~sutton/RandomMDPs.html

variables with p = 0.2. The error was measured using

η (W,θ) =
(θ̂raw −Wθ)

⊺
Ψ⊺DΨ (θ̂raw −Wθ)

θ̂⊺rawΨ⊺DΨθ̂raw
, (8)

which is the normalized MSVE with respect to the best

possible value function approximation Ψθ̂raw from the
current set of raw basis functions. The initial W is set
to empty so that the initial value of η is always 1.

For the batch case, IBP-V was compared with its
BEBF counterpart, termed IBP-B, and random fea-
ture projection, described by Ghavamzadeh et al.
(2010). The number of raw basis functions, B, used
to compute each V-BEBF or BEBF, and the number
of refined basis functions N generated in total, were
both set to

√
5M .

For the online case, IBP-V was compared to IBP-B
with both B =M (each refined basis function uses all
of the raw basis functions), and B =M/2 (each refined
basis function uses half of the randomly selected raw
basis functions). A refined basis function was added
after every 5000 time steps. To provide a baseline,
these four incremental approaches were compared to
TD using only the raw basis functions. All TD updates
used the same learning rate 0.05.

For all experiments, each method was run 100 times
with γ = {0.9,0.99,0.99} and M = {200,1000} raw ba-
sis functions, for a total of six different comparisons in
both the batch and online settings.

5.1. Results: Batch

Figure 2 plots the error, η, against the number of re-
fined basis functions added. Each curve is the average
of 100 runs, each of which is based on an indepen-
dent sample of the Markov chain and the set of raw
basis functions, and a trajectory of length T = 5000
is used. (The error bar is small thus is omitted).
It can be seen that both IBP-V and IBP-B perform
significantly better than random feature projection.
It is also clear that when γ approaches 1, the dif-
ference between adding IBP-V and IBP-B increases
dramatically—when γ = 0.999, the error decreases ex-
tremely slowly as more BEBFs are added, which co-
incides with Proposition 1. For smaller γ, the differ-
ence between BEBF and V-BEBF diminishes, since
BEBF can be seen as V-BEBF with discount factor
0. In addition, although each V-BEBF is constructed
from a much smaller number of raw basis functions,
(e.g., B = 70 for M = 1000), the error still decreases
rapidly as the number of V-BEBFs is increased, and
our heuristic choice of B and N is shown to be quite
effective.

http://webdocs.cs.ualberta.ca/~sutton/RandomMDPs.html
http://webdocs.cs.ualberta.ca/~sutton/RandomMDPs.html

Incremental Basis Construction from Temporal Difference Error

 1

0.5

0.7
0.6
0.5
0.4
0.3

0.1
0.2

 1
0.9

no. refined basis functions

!=0.99

 1
0.9
0.8

0.8

0.4

0.7

!=0.999 !=0.999

!=0.9

M=200

0.3

0.1
0.2

!=0.9

M=1000

!=0.99

 0.2
 0.1

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.2
 0.1

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.2
 0.1

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1

 1

0.2
0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.6

IBP!B
RFP

 0 70 60 50 40 30 20 10 0 30 25 20 15 10

IBP!V

 5

Figure 2. Results for batch IBP. Each graph shows the
performance of the three methods compared, IBP-V, IBP-
B, and random feature projection (RFP), in terms of the
error η (Eq.8) against the number of refined basis function
added (averaged over 100 runs).

5.2. Results: Online

Figure 3, plots the log error, log10 η, against time-
steps. Note the ‘stair’ shape of the curves for both
IBP-V and IBP-B caused by the abrupt error drop
each time a new refined basis function is added. These
curves can be smoothened by combining the weights
for both the refined basis functions and the current
V-BEBF, using Eq.6. It can be seen that when the
discount factor approaches 1, the first few V-BEBFs
added are far more effective than the BEBFs added.
Also, it is curious that IBP-V outperforms the base-
line TD method after only a few basis functions are
added. A possible explanation is the combined effect
of the low dimensionality of the primary learner, and
the less correlated weights over the different V-BEBFs,
by Eq.5. In addition, the version with B =M/2 yields
similar performance as compared to the TD-method
which uses all of the raw basis functions.

6. Conclusion

We have presented a novel and powerful approach for
basis-function generation, and have demonstrated its
potential in combination with incremental basis pro-
jection. The result opens a new direction in auto-
matic basis construction and can be extended in var-
ious ways: The general idea of using V-BEBF, the
‘Value Function of the TD-error’, as basis functions

 0

M=1000M=200

 50 40

!0.8

!1.2

!1.0

 0

!0.2
!0.4
!0.6

!1.2

!0.2

!1.4
!1.6

!0.8
!1.0

!0.4

!0.6

!0.8

!1.2

!1.0

!0.1

!0.2

!0.3

!0.5

!0.4

!0.6

!0.2
!0.4

 30 20 10 50 40 30

!0.6

!1.2
!1.4
!1.6

!0.8
!1.0

!0.2

!0.4

!0.6

!0.8

!1.2

!1.0

!0.2

!0.4

!0.6

time!steps x 10
 20 10

 0
TD
IBP!B
IBP!B!sps
IBP!V
IBP!V!sps
IBP!V!cor

!=0.99

!=0.999

!=0.9 !=0.9

!=0.999

!=0.99

Figure 3. Results for online IBP. Each graph shows
the performance of the six methods compared, IBP-V/B
(B =M), IBP-V/B (B =M/2, tailed ‘-sps’), TD, and IBP-
V with correction using Eq.6 (tailed ‘-cor’), in terms of
log10 η against time (averaged over 100 runs). The vertical
dotted lines indicate the moments at which a new refined
basis function is added. Notice that each time a new basis
function is added, the error drops abruptly.

is not restricted to linear architectures nor to Marko-
vian processes. Both batch and online IBP-V show
promising performance, even with the most naive im-
plementation, which suggests substantial room for fur-
ther development.

References

L. Baird. Residual algorithms: Reinforcement learning
with function approximation. In ICML’95, 1995.

B. Boots and G. J. Gordon. Predictive state temporal
difference learning. In NIPS’10, 2010.

J. A. Boyan. Technical update: Least-squares tempo-
ral difference learning. Machine Learning, 49:233–
246, 2002. ISSN 0885-6125.

S. J. Bradtke, A. G. Barto, and L. P. Kaelbling. Lin-
ear least-squares algorithms for temporal difference
learning. Machine Learning, 22:33–57, 1996.

A. Geramifard, M. Bowling, and R. S. Sutton. Incre-
mental least-squares temporal difference learning. In
AAAI’06, 2006.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and
R. Munos. Lstd with random projections. In
NIPS’10, 2010.

P. W. Keller, S. Mannor, and D. Precup. Auto-
matic basis function construction for approximate

Incremental Basis Construction from Temporal Difference Error

dynamic programming and reinforcement learning.
In ICML’06, 2006.

Z. J. Kolter and A. Y. Ng. Regularization and feature
selection in least-squares temporal difference learn-
ing. In ICML’09, 2009.

M. G. Lagoudakis and R. Parr. Least-squares policy
iteration. Journal of Machine Learning Research, 4:
1107–1149, 12 2003. ISSN 1532-4435.

H. R. Maei and R. S. Sutton. Gq(λ): A general gra-
dient algorithm for temporal-difference prediction
learning with eligibility traces. In AGI’10, 2010.

S. Mahadevan and B. Liu. Basis construction from
power series expansions of value functions. In
NIPS’10, 2010.

S. Mahadevan, M. Maggioni, and C. Guestrin. Proto-
value functions: A laplacian framework for learning
representation and control in markov decision pro-
cesses. Journal of Machine Learning Research, 8:
2007, 2006.

R. Parr, C. Painter-Wakefield, L.-H. Li, and
M. Littman. Analyzing feature generation for value-
function approximation. In ICML’07, 2007.

R. S. Sutton. Learning to predict by the methods
of temporal differences. Machine Learning, 3:9–44,
1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A
convergent o(n) algorithm for off-policy temporal-
difference learning with linear function approxima-
tion. In NIPS’08, 2008.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar,
D. Silver, C. Szepesvári, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference
learning with linear function approximation. In
ICML’09, 2009.

J.-H. Wu and R. Givan. Feature-discovering approx-
imate value iteration methods. In SARA’05, pages
321–331, 2005.

Appendix

Proof of Proposition 1. Let φ be the new basis
function, then the minimum of the objective functions
Ĵ and Ĵ+ without and with φ added are given respec-
tively by Eq.3 and

Ĵ+ = v⊺Kv − v⊺K [Φ, φ] ([Φ, φ]
⊺
K [Φ, φ])

−
[Φ, φ]

⊺
Kv.

Change variables for simplicity: Write K = A⊺A, u =

Av, Ψ = AΦ, ψ = Aφ, then Ĵ = u⊺ (I −Π)u = u⊺V u,
where Π = Ψ (Ψ⊺Ψ)

−
Ψ⊺, and V = I − Π. Note that

Π = Π2, V = V 2. From block matrix inversion and

Kailath variant,

[
Ψ⊺Ψ Ψ⊺ψ
ψ⊺Ψ ψ⊺ψ]

−
= [

(Ψ⊺Ψ)
−

0
0 0

] +
1

ψ⊺V ψ
vv⊺,

where v = [−ψ⊺Ψ (Ψ⊺Ψ)
−
,1]

⊺
, therefore

Ĵ+ = u⊺V u −
u⊺V ψ ⋅ ψ⊺V u

ψ⊺V ψ
.

Note that here the additional basis function is the
BEBF, so φ = ε̂ = LA−V u, therefore

ρ =
Ĵ+
Ĵ

= 1 −
(u⊺V ψ) (ψ⊺V u)
(ψ⊺V ψ) (u⊺V u)

= 1 −
(u⊺V ALA−V u)2

(u⊺V A−⊺L⊺A⊺V ALA−V u) (u⊺V u)

= 1 −
(z⊺KLz)2

(z⊺L⊺A⊺V ALz) (z⊺Kz)
,

with z = A−V u = A−V AL−r. Also,

A⊺V A = A⊺
(I −Ψ (Ψ⊺Ψ)

−
Ψ⊺

)A ≺ A⊺A =K,

thus

ρ ≤ 1 −
(z⊺KLz)2

(z⊺L⊺KLz) (z⊺Kz)
.

And the equality holds if and only if

(I − V)ALz = (I − V)ALA−
⋅ V AL−r = 0.

Simplify this equation gives the first condition.

Now assume that the equality holds, and expand L =

I − γP , then

ρ = 1 −
(z⊺Kz − γz⊺KPz)2

z⊺Kz ⋅ z⊺ (I − γP)
⊺
K (I − γP) z

= γ2 ⋅
(z⊺Kz) (z⊺P ⊺KPz) − (z⊺KPz)2

z⊺Kz ⋅ z⊺ (I − γP)
⊺
K (I − γP) z

.

Write x = Az, y = APz = APA−x, then

ρ = 1 −
⟨x,x − γy⟩

2

∥x∥
2
∥x − γy∥

2
= γ2

⟨x,x⟩ ⟨y, y⟩ − ⟨x, y⟩
2

∥x∥
2
∥x − γy∥

2
,

where ⟨x, y⟩ = x⊺y and ∥x∥
2
= ⟨x,x⟩. We show that

∥x∥
2
∥x − γy∥

2
≥ ∥x∥

2
∥y∥

2
− ⟨x, y⟩

2
.

Indeed,

∥x∥
2
∥x − γy∥

2
− ∥x∥

2
∥y∥

2
+ ⟨x, y⟩

2

= (γ ∥x∥
2
− ⟨x, y⟩)

2
+ (1 − γ2) ∥x∥

2
(∥x∥

2
− ∥y∥

2
) ,

and notice that y = APA−x and P is a transition ma-
trix, so all the eigenvalues of APA− are smaller or

equal than 1, therefore ∥y∥
2
≤ ∥x∥

2
. Also, the equality

holds iff: a) ∥x∥
2
= ∥y∥

2
and b) ⟨x, y⟩ = γ ∥x∥

2
, which

correspond to the second and the third condition.

