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Abstract

In this paper, we tackle the problem of learn-
ing a linear regression model whose param-
eter is a fixed-rank matrix. We study the
Riemannian manifold geometry of the set
of fixed-rank matrices and develop efficient
line-search algorithms. The proposed algo-
rithms have many applications, scale to high-
dimensional problems, enjoy local conver-
gence properties and confer a geometric ba-
sis to recent contributions on learning fixed-
rank matrices. Numerical experiments on
benchmarks suggest that the proposed algo-
rithms compete with the state-of-the-art, and
that manifold optimization offers a versatile
framework for the design of rank-constrained
machine learning algorithms.

1. Introduction

Learning a low-rank matrix from data is a fundamen-
tal problem arising in many modern machine learning
applications: collaborative filtering (Rennie & Srebro,
2005), classification with multiple classes (Amit et al.,
2007), learning on pairs (Abernethy et al., 2009), di-
mensionality reduction (Cai et al., 2007), learning of
low-rank distances (Meyer et al., 2011) and low-rank
similarity measures (Shalit et al., 2010), multi-task
learning (Evgeniou et al., 2005), just to name a few.

Parallel to the development of these new applica-
tions, the ever-growing size and number of large-scale
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datasets demands machine learning algorithms that
can cope with very large matrices. Scalability to high
dimensional problems is therefore a crucial issue in the
design of algorithms.

Most of the recent algorithmic contributions on learn-
ing low-rank matrices have been proposed in the con-
text of matrix completion. Convex relaxations based
on the nuclear norm or trace norm heuristic (Fazel,
2002; Cai et al., 2008) have attracted a lot of atten-
tion as theoretical performance guarantees are avail-
able (Bach, 2008; Recht et al., 2010). However, an in-
trinsic limitation of the approach is that the rank of in-
termediate solutions cannot be bounded a priori. For
large-scale problems, memory requirement may thus
become prohibitively large. A different yet comple-
mentary approach that resolves this issue, assumes
a fixed-rank factorization of the solution and opti-
mize the corresponding non-convex optimization prob-
lem (Rennie & Srebro, 2005; Keshavan et al., 2010;
Jain et al., 2010; Shalit et al., 2010). Despite the po-
tential introduction of local minima, fixed-rank fac-
torizations achieve very good performance in prac-
tice. Moreover, Keshavan et al. (2010) and Jain et al.
(2010) show that performance guarantees are also pos-
sible when a good heuristic is available for the initial-
ization.

In this paper, we pursue the research on fixed-rank fac-
torizations and study the Riemannian geometry of two
particular fixed-rank factorizations (Sections 2 and 3).
We build on recent advances in optimization on Rie-
mannian matrix manifolds (Absil et al., 2008) and ex-
ploit the manifold geometry of the search space. We
design novel line-search algorithms for learning a lin-
ear regression model whose parameter is a matrix
W ∈ F(r, d1, d2), the set of d1-by-d2 matrices of a
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given rank r. The resulting algorithms (Section 4) gen-
eralize our recent work on symmetric fixed-rank pos-
itive semidefinite matrices (Meyer et al., 2011), they
scale to high dimensional problems and connect with
the recent contributions on learning low-rank matri-
ces. Numerical experiments (Section 5) are performed
on benchmark problems for which the proposed algo-
rithms compete with the state-of-the-art.

2. Quotient Geometry of Fixed-Rank

Matrix Factorizations

We review two fixed-rank matrix factorizations and
study the corresponding quotient manifold geometries.
The quotient nature of the underlying search space
stems from the fact that an element W ∈ F(r, d1, d2) is
represented by an entire equivalence class of matrices.

The factorizations of interest are rooted in the thin
singular value decomposition (SVD)

W = UΣVT ,

where U ∈ St(r, d1) = {U ∈ R
d1×r : UT U = I},

V ∈ St(r, d2), and Σ ∈ R
r×r is diagonal with posi-

tive entries. The SVD exists for any W ∈ F(r, d1, d2).

2.1. Balanced Factorization

The SVD can be rearranged as

W = (UΣ
1

2 )(Σ
1

2 VT ) = GHT ,

where G = UΣ
1

2 ∈ R
d1×r
∗ and H = VΣ

1

2 ∈ R
d2×r
∗ are

full-rank matrices. The resulting factorization is not
unique since the group action

(G,H) 7→ (GM−1,HMT ), (1)

where M ∈ GL(r) = {M ∈ R
r×r : det(M) 6= 0},

leaves the original matrix W unchanged.

The map (1) allows us to identify the search space of
interest with the quotient space

F(r, d1, d2) ≃ (Rd1×r
∗ × R

d2×r
∗ )/GL(r), (2)

which represents the set of equivalence classes

[(G,H)] = {(GM−1,HMT ) : M ∈ GL(r)}. (3)

Among the set of representatives (G,H) in (3), bal-
anced factorizations are of particular interest. A fac-
torization W = GHT is balanced if GT G = HT H.
Balanced factorization are well-known in model re-
duction and system approximation (Helmke & Moore,
1996), they ensure good numerical conditioning and

robustness to noise. Helmke & Moore (1996) show
that balanced factorizations are characterized as the
critical points of the cost function

b(G,H) = ‖G‖2
F + ‖H‖2

F . (4)

within an equivalence class (3).

2.2. Polar Factorization

A second interesting factorization is obtained by con-
sidering the following group action on the SVD,

(U,Σ,V) 7→ (UO,OT ΣO,VO),

where O ∈ O(r), the set of r-by-r rotation matrices.
Since OT ΣO now represents a positive definite matrix,
this gives us the fixed-rank factorization

W = UBVT ,

where U ∈ St(d1, r), V ∈ St(d2, r), and B ∈ S+(r),
the set of r-by-r positive definite matrices. The alter-
native choice B positive definite instead of B diagonal
removes the discrete symmetries induced by the arbi-
trary order on the singular values. The search space is
again a quotient manifold

F(r, d1, d2) ≃ (St(d1, r)×S+(r)×St(d2, r))/O(r), (5)

which represents the set of equivalence classes

[(U,B,V)] = {(UO,OT BO,VO) : O ∈ O(r)}. (6)

Since U and V are orthogonal matrices, the polar fac-
torization automatically encodes the property of a bal-
anced factorization. Another nice property of the fac-
torization is that ‖W‖2

F = ‖B‖2
F . A regularization on

‖W‖2
F is thus very cheap because it only involves a

matrix of size r, with typically r ≪ d1, d2.

3. Geometry of Line-Search Algorithms

with Fixed-Rank Constraints

This section studies the first-order quotient geometry
of the factorizations W = GHT = UBVT . It also in-
troduces the key concepts and notations that allow a
systematic derivation of line-search algorithms on quo-
tient manifolds. Proofs for all the propositions below
are provided as supplementary material.

3.1. Line-Search Algorithms on Riemannian

Matrix Manifolds

This section summarizes the exposition of Absil et al.
(2008, Chapters 3 and 4). An abstract line-search algo-
rithm on a manifold W is based on the update formula

Wt+1 = RWt
(stξWt

),
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where the search direction ξWt
is an element of the

tangent space TWt
W at Wt. The scalar st > 0 is the

step size. The retraction RWt
is a local update map-

ping from the tangent space TWt
W to the manifold

W. Let f : W → R be a smooth real-valued function
on the manifold. When the search direction ξWt

coin-
cides with −grad f(Wt), a gradient descent algorithm
to minimize f on the manifold is obtained (Figure 1).

Figure 1. Line-search algorithm on a manifold.

The manifold is endowed with a metric g(ξW, ζW),
which is an inner product between elements ξW, ζW
of the tangent space TWW at W.

The Riemannian gradient grad f(Wt) at Wt is com-
puted according to the chosen metric. It is defined as
the unique element grad f(W) ∈ TWW that satisfies

Df(W)[ξW] = g(grad f(W), ξW),∀ξW ∈ TWW. (7)

The quantity Df(W)[ξW] is the directional derivative
of f(W) in the direction ξW.

In a nutshell, a quotient manifold is a set of equiv-
alence classes. A simple example is the Grassmann
manifold Gr(r, d), the set of r-dimensional subspaces
in R

d, regarded as a set of r-dimensional orthogonal
frames that cannot be superposed by a rotation.

For a quotient manifold W = W/ ∼, where W is the
total space and ∼ is the equivalence relation that de-
fines the quotient, a tangent vector ξ[W] ∈ T[W]W at
[W] is restricted to the directions that do not induce a
displacement along the set of equivalence classes [W].

This is achieved by decomposing the tangent space in
the total space TWW into complementary spaces

TWW = VWW ⊕HWW.

The vertical space VWW is the set of directions that
contains tangent vectors to the equivalence classes.
The horizontal space HWW is a complement of the
vertical space VWW in TWW, that allows us to rep-
resent tangent vectors to the quotient space. Indeed,

with such a decomposition of TWW, a given tangent
vector ξ[W] ∈ T[W]W at [W] is uniquely represented
by a tangent vector ξ̄W ∈ HWW that satisfies

Dπ(W)[ξ̄W] = ξ[W].

The mapping π is the quotient map π : W 7→ [W].
The tangent vector ξ̄W ∈ HWW is called the hori-

zontal lift of ξ[W] at W. Provided that the metric
ḡ(ξ̄W, ζ̄W) in the total space is invariant along equiv-
alence classes, it defines a metric on the quotient

g(ξ[W], ζ[W]) , ḡ(ξ̄W, ζ̄W).

Natural displacements on the manifold are performed
by following geodesics (paths of shortest length on the
manifold) starting from W and tangent to ξW. This
is performed by means of the exponential map

Wt+1 = ExpWt
(stξWt

),

which induces a line-search algorithm along geodesics.
However, the geodesics are generally either expensive
to compute or not available in closed-form.

A more general update formula is obtained if we relax
the constraint of moving along geodesics. The retrac-
tion mapping RWt

(stξWt
), locally approximates the

exponential mapping. It provides an attractive alter-
native to the exponential mapping in the design of op-
timization algorithms on manifolds, as it reduces the
computational cost of the update while retaining the
main properties that ensure convergence results.

3.2. Geometry of the Balanced Factorization

We endow the space R
d1×r
∗ × R

d2×r
∗ with the metric,

ḡ((ξ̄G, ξ̄H), (ζ̄G, ζ̄H)) = Tr((GT G)−1ξ̄ T
G ζ̄G)

+ Tr((HT H)−1ξ̄ T
H ζ̄H),

(8)

which is chosen to be invariant along the set of equiv-
alence classes (3).

Proposition 3.1. The quotient manifold (2) endowed

with the Riemannian metric (8) admits a set of hori-

zontal vectors (ξ̄G, ξ̄H) ∈ R
d1×r × R

d2×r that satisfies

ξ̄ T
GG(HT H) = (GT G)HT ξ̄H. (9)

The next proposition show that the chosen metric is
invariant along the set of equivalence classes (3).

Proposition 3.2. Let ξ[(G,H)] be a tangent vector to

the quotient (2) at [(G,H)]. The horizontal lifts of

ξ[(G,H)] at (G,H) and at (GM−1,HMT ) are related

as follow, ∀M ∈ GL(r),

(ξ̄GM−1 , ξ̄HMT ) = (ξ̄G · M−1, ξ̄H · MT ).

Therefore, the metric (8) is invariant along the set (3).
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A simple and efficient retraction is provided by the
following formulas

RG(sξ̄G) = G + sξ̄G,

RH(sξ̄H) = H + sξ̄H.
(10)

3.3. Geometry of the Polar Factorization

The space St(r, d1)×S+(r)×St(r, d2) is endowed with
the metric

ḡ((ξ̄U, ξ̄B, ξ̄V), (ζ̄U, ζ̄B, ζ̄V)) =

Tr(ξ̄ T
U ζ̄U) + Tr(B−1ξ̄BB−1ζ̄B) + Tr(ξ̄ T

V ζ̄V).
(11)

Proposition 3.3. The quotient manifold (5) endowed

with the Riemannian metric (11) admits a set of hor-

izontal vectors (ξ̄U, ξ̄B, ξ̄V) defined as

ξ̄U = USkew(A) + U⊥, A ∈ R
r×r, UT

⊥U = 0,

ξ̄B = B
1

2 Sym(∆)B
1

2 , ∆ ∈ R
r×r,

ξ̄V = VSkew(D) + V⊥, D ∈ R
r×r, VT

⊥V = 0,

with the additional condition

B(Skew(A) + Skew(D))B = ξ̄BB − Bξ̄B.

We have defined the functions Sym(∆) = (∆+∆T )/2
and Skew(A) = (A−AT )/2. We now show that metric
(11) is invariant along the equivalence classes (6).

Proposition 3.4. Let ξ[(U,B,V)] be a tangent vector

to the quotient (5) at [(U,B,V)]. The horizontal lifts

of ξ[(U,B,V)] at (U,B,V) and at (UO,OT BO,VO)
are related as follow, ∀O ∈ O(r),

(ξ̄UO, ξ̄OT BO, ξ̄VO) = (ξ̄U · O,OT · ξ̄B · O, ξ̄V · O).

Therefore, the metric (11) is invariant along (6).

We choose the following retraction

RU(sξ̄U) = qf(U + sξ̄U),

RB(sξ̄B) = B
1

2 exp(sB− 1

2 ξ̄BB− 1

2 )B
1

2 ,

RV(sξ̄V) = qf(V + sξ̄V),

(12)

where qf(·) is a function that extracts the orthogonal
factor of the QR-factorization of its argument.

4. Linear Regression under Fixed-Rank

Constraints

In this section, we exploit the quotient geometries pre-
sented previously to develop line-search algorithms for
the following regression problem.

Given data matrix instances X ∈ R
d2×d1 , scalar obser-

vations y ∈ R, and a linear regression model expressed
as ŷ = Tr(WX), solve

min
W∈Rd1×d2

EX,y{ℓ(ŷ, y)}, s.t. rank(W) = r. (13)

The loss ℓ(ŷ, y) penalizes the discrepancy between the
observed value y and the value predicted by the model
ŷ. A typical choice for regression is ℓ(ŷ, y) = 1

2 (ŷ−y)2.
Although the focus of this paper is on linear regression
and on a quadratic cost function, more general cost
functions can be treated equally.

Since EX,y{·} cannot generally be computed ex-
plicitely, classical iterative approaches such as batch
gradient descent minimize instead the empirical risk

fn(W) =
1

n

n∑

i=1

ℓ(ŷi, yi),

over a finite dataset {(Xi, yi)}n
i=1. Online gradient de-

scent algorithms consider datasets with possibly infi-
nite number of samples {(Xt, yt)}t≥0, and process the
samples one at a time or by mini-batches. At time t,
online algorithms minimize the instantaneous cost

ft(W) =
1

b

t+b∑

τ=t

ℓ(ŷτ , yτ ),

where b is the mini-batch size. When b = 1, one recov-
ers plain stochastic gradient descent. To shorten the
exposition, the development are presented for stochas-
tic gradient descent versions of algorithms only. We
denote by f the function minimized at each iteration.

4.1. Regression with a Balanced Factorization

We now derive a line-search algorithm to solve (13)
using a balanced factorization of W = GHT . With
this factorization, the cost function is

f(G,H) =
1

2
(Tr(GHT X) − y)2.

Applying formula (7) to this cost function yields

gradG f = (ŷ − y)XT H(GT G),

gradH f = (ŷ − y)XG(HT H).

Combining the horizontal gradient of this cost function
with retraction (10) yields the online algorithm

G̃t = Gt − st(ŷt − yt)X
T
t Ht(G

T
t Gt),

H̃t = Ht − st(ŷt − yt)XtGt(H
T
t Ht).

(14)

This update has computational complexity O(d1d2r).
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To balance a given factorization W̃t = G̃tH̃
T
t ,

Helmke & Moore (1996) propose the update,

Gt+1 = G̃t exp(αt(H̃
T
t H̃t − G̃T

t G̃t)),

Ht+1 = H̃t exp(αt(G̃
T
t G̃t − H̃T

t H̃t)),
(15)

with a step size αt = 1/(2λmax(G̃T
t G̃t +H̃T

t H̃t)). The
complexity of a balancing step is O((d1 + d2)r

2 + r3).

Notice that Gt+1H
T
t+1 = W̃t and that the fixed points

of (15) are balanced. A justification for the step size
selection along with a detailed convergence proof is
provided in Helmke & Moore (1996, Theorem 6.1).

The proposed cascaded algorithm asymptotically con-
verges to a local minimum of the cost function with a
balanced factorization. The insight comes from geom-
etry: (14) is a gradient update on the quotient man-
ifold (Rd1×r

∗ × R
d2×r
∗ )/GL(r), it is unaffected by the

choice of the representative (G,H) in the fiber (3). In
contrast, (15) is a gradient update in the fiber (3) for
the cost function (4). In the quotient manifold, algo-
rithm (14) is “blind” to the change of representative
that results from (15). The sequence of iterates thus
converges to a fiber that minimizes the cost function.
But the balancing algorithm (15) guarantees that the
asymptotic factorization also minimizes the cost (4),
implying the balancing condition GT G = HT H.

Connection with Existing Work The proposed
algorithm is closely related to the gradient descent ver-
sion of MMMF (Rennie & Srebro, 2005). However, in
contrast to the gradient descent version of MMMF, the
proposed algorithm is invariant along an equivalence
class (3). This resolves the issue of choosing an appro-
priate step size when there is a discrepancy between
‖G‖F and ‖H‖F . This situation leads to a slow con-
vergence of the MMMF algorithm, whereas the pro-
posed algorithm is not affected (Figure 2). To illus-
trate this effect, the two algorithms are compared in
batch mode with data generated from the model (18).
For both algorithms, the step size is computed using
the Armijo rule (Nocedal & Wright, 2006). The initial
discrepancy between the factors is ‖G0‖F ≈ 5‖H0‖F .

The Loreta algorithm (Shalit et al., 2010) also fits in
the considered optimization framework. This algo-
rithm relies on an embedded geometry of F(r, d1, d2),
while the focus of this paper is on quotient geometries.
For rank-one data, Loreta has the same complexity as
update (14) but a significantly larger constant factor.

Optimizing the Algorithm for Rank-One Data

Updates (14)-(15) can be optimized in the setting
Xt = xtz

T
t , with xt ∈ R

d2 and zt ∈ R
d1 . This set-

ting is important for applications (see Section 5).
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Figure 2. The proposed algorithm resolves the issue of
choosing an appropriate step size when there is a discrep-
ancy between ‖G‖F and ‖H‖F , a situation that leads to a
slow convergence of the MMMF algorithm.

Algorithm 1 summarizes the optimizations. The com-
plexity of update (14) reduces to O((d1 + d2)r). As
we observe empirically that (15) rapidly converges to
a balanced factorization, the balancing update is per-
formed only every τB iterations to ensure a good nu-
merical conditioning of the algorithm.

Regularization Although the rank constraint al-
ready performs a spectral regularization on W, it is
useful in practice to add a pointwise regularization

f(G,H) =
1

2
(Tr(GHT X) − y)2 +

λ

2
‖GHT ‖2

F .

The regularizer ‖GHT ‖2
F is chosen because it is

invariant along the set of equivalence classes (3)
as opposed to the common choice ‖G‖2

F + ‖H‖2
F

(Rennie & Srebro, 2005). Update (14) becomes

G̃t = Gt − st(ŷt − yt)X
T
t Lt − λRt(G

T
t Gt),

H̃t = Ht − st(ŷt − yt)XtRt − λLt(H
T
t Ht),

where Lt = Ht(G
T
t Gt) and Rt = Gt(H

T
t Ht). This

modification does not increase significantly the com-
putational cost, since the regularization term have
common subexpressions with the gradient of the loss.
However, a more efficient approach is obtained using
the polar factorization W = UBVT .

4.2. Regression with Cheap Regularization

With the factorization W = UBVT , the cost becomes

f(U,B,V) =
1

2
(Tr(UBVT X) − y)2. (16)

Applying formula (7) to this cost function and project-
ing onto the set of horizontal vectors gives us

gradU f = (ŷ − y)(XT VB − USym(UT XT VB)),

gradB f = (ŷ − y)BSym(VT XU)B,

gradV f = (ŷ − y)(XUB − VSym(VT XUB)).
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Algorithm 1 Balanced factorization

Input: {(xt, zt, yt)}t≥0 (dataset), (G0,H0) (initial
factorization), T ≥ 0 (number of iterations), st > 0
(sequence of step size), τB ≥ 1 (balancing period).
Output: a factorization (GT ,HT ).
Set τ = τB , and compute S0 = GT

0 G0, R0 = HT
0 H0

for t = 0 to T − 1 do

Pick a sample (xt, zt, yt)
Set x̄t = HT

t xt, z̄t = GT
t zt, st = Stx̄t, rt = Rtz̄t

Predict ŷt = x̄T
t z̄t and set βt = st(ŷt − yt)

Update G̃t = Gt − βtzts
T
t

Update H̃t = Ht − βtxtr
T
t

Update S̃t = St − βtz̄ts
T
t − βtstz̄

T
t + β2

t ‖z̄t‖
2
2sts

T
t

Update R̃t = Rt−βtx̄tr
T
t −βtrtx̄

T
t +β2

t ‖x̄t‖2
2rtr

T
t

Set τ = τ − 1
if τ ≤ 0 then

Perform a balancing step with (15)
Set St+1 = GT

t+1Gt+1, Rt+1 = HT
t+1Ht+1

Set τ = τB

else

Set Gt+1 = G̃t and Ht+1 = H̃t

Set St+1 = S̃t and Rt+1 = R̃t

end if

end for

Combining this gradient with the retraction (12) yields

Ut+1 = qf(Ut − stet(Yt − UtSym(UT
t Yt))),

Bt+1 = B
1

2

t exp(−stetB
1

2

t Sym(Ψt)B
1

2

t )B
1

2

t ,

Vt+1 = qf(Vt − stet(Zt − UtSym(UT
t Zt))),

(17)

where we have defined et = ŷt − yt, Yt = XT
t VtBt,

Zt = XtUtBt, and Ψt = VT
t XtUt.

Connection with Existing Work The OptSpace
algorithm (Keshavan et al., 2010) also relies on the
factorization W = UBVT , but with B ∈ R

r×r. It
alternates between a gradient descent step on U and
V in the Grassmann manifold for fixed B, and a
least-square estimation of B for fixed U and V. The
proposed algorithm is different from OptSpace in the
choice B positive definite versus B ∈ R

r×r. As a con-
sequence, each step of the algorithm retains the geom-
etry of a SVD factorization. Our algorithm also dif-
fers from OptSpace in the simultaneous and progres-
sive nature of the updates. Furthermore, the choice
B ≻ 0 allows us to derive alternative updates based
on different metrics on the set S+(r). This flexibility
is exploited in Meyer et al. (2011) to show that met-
rics of S+(r) are connected to Bregman divergences
and information geometry.

Algorithm 2 Polar factorization

Input: {(xt, zt, yt)}t≥0 (dataset), (U0,B0,V0)
(initial factorization), T ≥ 0 (number of iterations),
st > 0 (sequence of step size).
Output: a factorization (UT ,BT ,VT )
for t = 0 to T − 1 do

Pick a sample (xt, zt, yt)
Set x̄t = VT

t xt, z̄t = UT
t zt

Set st = B
1

2

t x̄t, rt = B
1

2

t z̄t, s̄t = B
1

2

t st, r̄t = B
1

2

t rt

Predict ŷt = rT
t st and set et = ŷt − yt

Set Ut+1 = qf(Ut − stet(zts̄
T
t − UtSym(z̄ts̄

T
t )))

Set Bt+1 = B
1

2

t exp(−stetSym(str
T
t ))B

1

2

t

Set Vt+1 = qf(Vt − stet(xtr̄
T
t − VtSym(x̄tr̄

T
t )))

end for

The SVP algorithm (Jain et al., 2010) is based on the
SVD factorization W = UBVT with B diagonal. The
algorithm can be interpreted in the considered frame-
work as a gradient descent algorithm along with an
efficient SVD-based retraction exploiting the sparse
structure of the gradient.

Simonsson & Eldén (2010) considered the variant fac-
torization W = UZT , where U ∈ St(r, d1) and Z ∈
R

d2×r
∗ . Although they propose a Newton’s algorithm,

the corresponding gradient descent version directly fits
into the considered optimization framework.

This variant factorization is also exploited by the
GROUSE algorithm (Balzano et al., 2010). This on-
line algorithm estimates the subspace U with a gra-
dient descent on the Grassmann manifold while the
remaining factor Z is computed using least-squares.

Optimizing the Algorithm for Rank-One Data

Algorithm 2 summarizes the optimizations. The qf
function can be implemented using rank-one updates
of the QR factorization (Daniel et al., 1976). This re-
duces the cost of a QR factorization to O(dr), com-
pared to O(dr2) when it is computed from scratch.

Each update of Algorithm 2 costs O((d1 + d2)r + r3).

Regularization With a regularizer ‖W‖2
F , the cost

function of interest becomes

f(U,B,V) =
1

2
(Tr(UBVT X) − y)2 +

λ

2
‖B‖2

F ,

and only the update of B needs the cheap modification

Bt+1 = B
1

2

t exp(−st(B
1

2

t (etSym(Ψt) + λBt)B
1

2

t )B
1

2

t .
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Figure 3. Left. Learning on pairs (toy data): both online (a) and batch (b) algorithms perform well compared to the
existing approaches. Right. Matrix completion on synthetic data. The proposed algorithms compete with state-of-the-art
low-rank matrix completion algorithms, both in terms of time to reach convergence (c) and test error (d).

5. Experiments

We now focus on two applications and illustrate the
behavior of the proposed algorithms on benchmarks.

5.1. Learning on Pairs

Given data x ∈ R
d1 and z ∈ R

d2 associated with two
type of samples, learning on pairs amounts to learn a
model ŷ : R

d1 × R
d2 → R from data {(xi, zi, yi)}

n
i=1.

When the regression model ŷ is a fixed-rank bilinear
form ŷ = zT Wx, the problem boils down to the con-
sidered regression problem with the choice X = xzT .

Applications of this learning framework include graph
inference (Bleakley & Yamanishi, 2009) and collabora-
tive filtering with attributes (Abernethy et al., 2009).

Toy Data We generate data according to

yi = zT
i W⋆xi + ǫi, i = 1, ..., n, (18)

where W⋆ ∈ F(50, 25, 5), zi ∈ R
50 and xi ∈ R

25 have
entries drawn from a standard Gaussian distribution.
Gaussian noise ǫi ∼ N (0, 10−2) is added to the data.

We first show that the proposed algorithms perform
well in the online setting (Figure 3(a)). The dataset
is generated from (18), 40, 000 samples are used for
learning and 10, 000 for testing. At each iteration, the
algorithms pick a sample at random and update the
model. The algorithms all process the same set of sam-
ples. The step size is selected during a pre-training
phase of 5, 000 iterations, the step size leading to the
smallest train error is retained. Figure 3(a) reports the
test error as a function of the training time. The pro-
posed algorithms compete with Loreta (Shalit et al.,
2010) and with an online version of MMMF. Balanc-
ing reduces the time to achieve convergence.

We now test the proposed algorithms in batch mode.
Using (18), we generate a dataset of 3, 000 samples and

compute the test error as a function of the approxima-
tion rank (Figure 3(b)). The validation protocol is
90/10 train/test split. The results are averaged over
10 random partitions. The regularization parameter λ
is selected using cross-validation. Not surprisingly, the
competing algorithms all achieve a minimal error when
the rank equals the rank of the target model. When
the rank further increases, the algorithms start overfit-
ting. These observations suggest to increase progres-
sively the value of the rank until satisfactory results
are achieved or until performance degrades.

5.2. Low-Rank Matrix Completion

Let W⋆ ∈ R
d1×d2 be a matrix whose entries W⋆

ij are
given only for some (i, j) ∈ Ω. The set Ω is a sub-
set of the complete set of entries. Low-rank matrix
completion amounts to solve

min
W∈Rd1×d2

‖PΩ(W) − PΩ(W⋆)‖2
F , s.t. rank(W) = r,

where PΩ(W)ij = Wij if (i, j) ∈ Ω, and 0 otherwise.

This problem is recast in the considered regression
framework if each known entry W⋆

ij with (i, j) ∈ Ω

is an observation yij and Xij = eje
T
i , where ej ∈ R

d2

and ei ∈ R
d1 are canonical basis vectors. This gives

us the regression model ŷij = Tr(Weje
T
i ) = Wij .

The proposed algorithms are run in batch mode
and are compared to: a gradient descent ver-
sion of MMMF (Rennie & Srebro, 2005), OptSpace
(Keshavan et al., 2010), SVP (Jain et al., 2010), AD-
MiRA (Lee & Bresler, 2010), a matching pursuit based
algorithm, and SVT (Cai et al., 2007), a nuclear norm
minimization based algorithm. We use Matlab code
provided by the respective authors except for MMMF
for which we use our own implementation.

Synthetic Data with Uniform Sampling Follow-
ing Jain et al. (2010), we generate random rank-2 ma-
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trices W⋆ ∈ R
d×d of various sizes d and sample a frac-

tion p = 0.1 of entries for learning. Figure 3(c) reports
the time taken by the algorithms to reach a root mean
square error (RMSE) of 10−3 on the learning set. The
corresponding RMSE on the test set is presented in
Figure 3(d). Results are averaged over 10 runs. The
proposed algorithms compete with the other methods
both in terms of convergence speed and test error.

MovieLens Data Finally, we compare the fixed-
rank factorization based algorithms on the 1M Movie-
Lens collaborative filtering data, which contains one
million ratings for 6,040 users and 3,952 movies. We
average the test RMSE for different values of the rank
over 10 random 90/10 train/test partitions. Results
are presented in Table 1. The proposed algorithms
compete with the other methods. The algorithm based
on the polar factorization achieved the smallest RMSE
for rank 10 and 12. Standard deviations of the errors
are not reported since they were not significant.

Table 1. Test RMSE on Movielens data

r Bal. Pol. MMMF SVP Opt. ADMiRa

2 0.90 0.89 0.88 0.89 0.90 1.11
3 0.90 0.89 0.88 0.88 0.90 1.09
5 0.90 0.87 0.86 0.88 0.90 1.07
7 0.88 0.86 0.86 0.89 0.89 1.04
10 0.88 0.85 0.86 0.90 0.89 1.04
12 0.88 0.85 0.87 0.92 0.89 1.03
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