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Abstract
Laplacian embedding provides a low-
dimensional representation for the nodes of
a graph where the edge weights denote pair-
wise similarity among the node objects. It is
commonly assumed that the Laplacian embed-
ding results preserve the local topology of the
original data on the low-dimensional projected
subspaces,i.e., for any pair of graph nodes
with large similarity, they should be embedded
closely in the embedded space. However, in
this paper, we will show that the Laplacian
embedding often cannot preserve local topology
well as we expected. To enhance the local topol-
ogy preserving property in graph embedding,
we propose a novel Cauchy graph embedding
which preserves the similarity relationships of
the original data in the embedded space via a
new objective. Consequentially the machine
learning tasks (such ask Nearest Neighbor type
classifications) can be easily conducted on the
embedded data with better performance. The
experimental results on both synthetic and real
world benchmark data sets demonstrate the
usefulness of this new type of embedding.

1. Introduction

Unsupervised dimensionality reduction is an important
procedure in various machine learning applications which
range from image classification (Turk & Pentland, 1991)
to genome-wide expression modeling (Alter et al., 2000).
Many high-dimensional real world data often intrinsically
lie in a low-dimensional space, hence the dimensionality of
the data can be reduced without significant loss of infor-
mation. From the data embedding point of view, we can
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classify unsupervised embedding approaches into two cat-
egories. Approaches in the first category are to embed data
into a linear space via linear transformations, such as prin-
ciple component analysis (PCA) (Jolliffe, 2002) and mul-
tidimensional scaling (MDS) (Cox & Cox, 2001). Both
PCA and MDS are eigenvector methods and can model lin-
ear variabilities in high-dimensional data. They have been
long known and widely used in many machine learning ap-
plications.

However, the underlying structure of real data is often
highly nonlinear and hence cannot be accurately approx-
imated by linear manifolds. The second category ap-
proaches embed data in a nonlinear manner based on differ-
ent purposes. Recently several promising nonlinear meth-
ods have been proposed, including IsoMAP (Tenenbaum
et al., 2000), Local Linear Embedding (LLE) (Roweis &
Saul, 2000), Local Tangent Space Alignment (Zhang &
Zha, 2004), Laplacian Embedding/Eigenmap (Hall, 1971;
Belkin & Niyogi, 2003; Luo et al., 2009), and Local Spline
Embedding (Xiang et al., 2009)etc. Typically, they set up
a quadratic objective derived from a neighborhood graph
and solve for its leading eigenvectors: Isomap takes eigen-
vectors associated with the largest eigenvalues; LLE and
Laplacian embedding use eigenvectors associated with the
smallest eigenvalues. Isomap tries to preserve the global
pairwise distances of the input data as measured along the
low-dimensional manifold; LLE and Laplacian embedding
try to preserve local geometric relationships of the data.

As one of the most successful methods in transductive in-
ference (Belkin & Niyogi, 2004), spectral clustering (Shi
& Malik, 2000; Simon, 1991; Ng et al., 2002; Ding et al.,
2001), and dimensionality reduction (Belkin & Niyogi,
2003), Laplacian embedding seeks a low-dimensional rep-
resentation of a set of data points with a matrix of pairwise
similarities (i.e. a graph data) Laplacian embedding and the
related usage of eigenvectors of graph Laplace matrix was
first developed in 1970s. It was calledquadratic placement
(Hall, 1971) of graph nodes in a space. The eigenvectors of
graph Laplace matrix were used forgraph partitioningand
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connectivity analysis (Fiedler, 1973). This approach be-
came popular in 1990s for circuit layout in VLSI commu-
nity (please see the review (Alpert & Kahng, 1995)), and
graph partitioning (Pothen et al., 1990) for domain decom-
position, a key problem in distributed-memory computing.
A generalized version of graph Laplacian (p-Laplacian)
was also developed for other graph partitioning (Bühler &
Hein, 2009; Luo et al., 2010).

It is generally considered that Laplacian embedding has the
local topology preservingproperty: a pair of graph nodes
with high mutual similarities are embedded nearby in the
embedding space, whereas a pair of graph nodes with small
mutual similarities are embedded far-way in the embedding
space. Local topology preserving property provides a ba-
sis for utilizing the quadratic embedding objective function
asregularization in many applications (Zhou et al., 2003;
Zhu et al., 2003; Nie et al., 2010). Such assumption was
considered as a desirable property of Laplacian embedding,
and many previous research work used it as the regulariza-
tion term to embed the graph data with preserving local
topology (Weinberger et al.; Ando & Zhang).

In this paper, we point out the perceived local topology
preserving property of Laplacian embedding does not hold
in many applications. More precisely, we first give a pre-
cise definition of the local topology preserving property,
and then show Laplacian embedding often gives an em-
bedding without preserving local topology in the sense that
node pairs with large mutual similarities are not embedded
nearby in the embedding space. After that, we will propose
a novel Cauchy embedding method that not only has nice
nonlinear embedding properties as Laplacian embedding,
but also successively preserves the local topology existing
in original data. Moreover, we introduce Exponential and
Gaussian embedding approaches that further emphasize the
data points with large similarities to have small distancesin
embedding space. Our empirical studies on both synthetic
data and real world benchmark data sets demonstrate the
promising results of our proposed methods.

2. Laplacian Embedding

We start with a brief introduction to Laplacian embed-
ding/Eigenmap. The input data is a matrixW of pairwise
similarities amongn data objects. We viewW as the edge
weights on a graph withn nodes. The task is to embed
the nodes of the graph into1-D space with coordinates
(x1, · · · , xn). The objective is that ifi, j are similar (i.e.,
wij is large), they should be adjacent in embedded space,
i.e., (xi − xj)

2 should be small. This can be achieved by
minimizing (Hall, 1971; Belkin & Niyogi, 2003)

min
x

J(x) =
∑

ij

(xi − xj)
2wij . (1)

The minimization of
∑

ij(xi − xj)
2wij would getxi = 0

if there is no constraint on the magnitude of the vectorx.
Therefore, the normalization

∑

i x2

i = 1 is imposed. The
original objective function is invariant if we replacexi by
xi+a wherea is a constant. Thus the solution is not unique.
To fix this uncertainty, we can adjust the constant such that
∑

xi = 0 (xi is centered around 0). With the centering
constraint,xi have mixed signs. With these two constraints,
the embedding problem becomes:

min
x

∑

ij

(xi − xj)
2wij , s.t.

∑

i

x2

i = 1,
∑

i

xi = 0. (2)

The solution of this embedding problem can be easily ob-
tained, because

J(x) = 2
∑

ij

xi(D −W )ijxj = 2xT (D −W )x, (3)

whereD = diag(d1, · · · , dn), di =
∑

j Wij . The ma-
trix (D −W ) is called as the graph Laplacian and the em-
bedding solution of minimizing the embedding objective is
given by the eigenvectors of

(D −W )x = λx. (4)

Laplacian embedding has been widely used in machine
learning, and often asregularization for embedding the
graph nodes with preserving local topology.

3. The Local Topology Preserving Property of
Graph Embedding

In this paper, we study the local topology preserving prop-
erty of the graph embedding. We first provide definition of
local topology preserving, and show that in contrary to the
widely accepted conception, Laplacian embedding may not
preserve the local topology of original data in the embed-
ded space for many cases.

3.1. Local Topology Preserving

We first provide a definition oflocal topology preserving.
Given a symmetric (undirected) graph with edge weights
W = (wij), and a corresponding embedding(x1, · · · ,xn)
for the n nodes of the graph. We say that the embedding
preserves local topology if the following condition holds

if wij ≥ wpq, then (xi − xj)
2 ≤ (xp − xq)

2,∀ i, j, p, q.
(5)

Roughly speaking, this definition says that for any pair of
nodes(i, j), the more similar they are (the bigger the edge
weightwij is), the closer they should be embedded together
(the smaller|xi − xj | should be).

Laplacian embedding has been widely used in machine
learning with a perceived notion of preserving local topol-
ogy. As a contribution of this paper, we point out here that
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this perceived notion of local topology preserving is in fact
false in many cases.

Our finding has two aspects. First, at large distance (small
similarity):

The quadratic function of the Laplacian embed-
dingemphasizesthelarge distancepairs, which
enforces node pair(i, j) with smallwij to be sep-
arated far-away.

Second, at small distance (large similarity):

The quadratic function of the Laplacian embed-
ding de-emphasizesthe small distance pairs,
leading to many violations of local topology pre-
serving at small distance pairs.

In the following, we will show examples to support our
finding. One consequence of the finding is thatk Near-
est Neighbor (kNN) type classification approach will per-
form poorly because they rely on the local topology prop-
erty. After that, we propose a new type of graph embed-
ding method which emphasizes the small distance (large
similarity) data pairs and thus enforces the local topology
preserving in embedded space.

3.2. Experimental Evidences

Following the work of Isomap (Tenenbaum et al., 2000)
and LLE (Roweis & Saul, 2000), we do experiments on
two simple “manifold” data (C-shape and S-shape). For the
manifold data in Figure 1, if the embedding preserveslocal
topology, we expect the 1D embedding1 results will sim-
ply flatten (unroll) the manifold. In the Laplacian embed-
ding results, the flattened manifold consists of data points
ordered asx1, x2, x3, · · · , x56, x57. This is not a simple
unrolling of the original manifold. The Cauchy embedding
(see§4) results are a simple unrolling of the original mani-
fold — indicating alocal topology preservingembedding.
For the visualization purpose, we use the blue lines to con-
nect the data points which are neighboring in the embedded
space.

We also apply Laplacian embedding and Cauchy embed-
ding to some manifolds which have a little more com-
plicated structures, see Figure 2. The manifolds lie on
four letters “I”, “C”, “M”, “L”. Each letter consists of
150 2D data points. One can see that Cauchy embed-
ding results (bottom row of Figure 2) preserve more lo-
cal topology than Laplacian embedding (top row). No-
tice that Cauchy embedding and Laplacian embedding give
the identical result for the latter “L”. Because the mani-
fold of the “L” shape is originally smooth. However, for

1The 1D embedding is identical to an ordering of graph nodes.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
1 2

3

4

5

7
9

18

19
20

21

22

23

34
35

36

37
38

39

49

5051

52

53

54
55

56 57

68

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

12

20

29

36

45

54

55
56

57

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

12 3
4

5

6

7

8
9

10

14

15

16

17

18

19

20

21
22

27

28

30

31

33

34
35

36
37

40
4142

43

44
45

46

47
48

49
50

51

52
54 56

57
6061

62
63

67 68

69

70 71

72

73

74

75

76

77

78

79
80

81

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3
4

10
16

25

27

35

45

54

57

70

78
79

80

81

Figure 1.Embedding results comparison. A C-shape and S-shape
manifold dataset are visualized in both figures. After performing
Laplacian embedding (left) and Cauchy embedding (right), we
use the numbers 1, 2,· · · to indicate the ordering of data points
on the flattened manifold. For the visualization purpose, we use
the blue lines to connect the data points which are neighboring in
the embedded space.

other shapes of manifolds, such as, “M”, the Cauchy em-
bedding gives perfectly local topology preserving results,
while the Laplacian embedding leads to disordering on the
original manifold. For both Figures 1 and 2,wij is com-
puted aswij = exp (−‖xi − xj‖

2/d̄2) whered̄ is the av-
erage Euclidean distance among all the data points,i.e.
d̄ = (

∑

i6=j ‖xi − xj‖)/(n(n− 1)).
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Figure 2.Embedding the “I”, “C”, “M”, “L” manifolds 2D data
points using Laplacian embedding (top) and Cauchy embedding
(bottom). The ordering scheme is the same as in Figure 1.
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4. Cauchy Embedding

In this paper, we propose a new graph embedding approach
that emphasizes short distance, and ensure that locally, the
more similar two nodes are, the closer they will be in the
embedding space.

We motivate our approach as the following. Starting with
the Laplacian embedding. The key idea is that for a pair
(i, j) with largewij , (xi − xj)

2 should be small such that
the objective function is minimized. Now, if(xi − xj)

2 ≡
Γ1(|xi − xj |) is small, so is

(xi − xj)
2

(xi − xj)2 + σ2
≡ Γ2(|xi − xj |).

Furthermore, functionΓ1(·) is monotonic as is function
Γ2(·). Therefore, instead of minimizing the quadratic func-
tion of Eq. (2), we minimize

min
x

∑

ij

(xi − xj)
2

(xi − xj)2 + σ2
wij , (6)

s.t., ‖x‖2 = 1, eT x = 0.

The function involved can be simplified, since

(xi − xj)
2

(xi − xj)2 + σ2
= 1−

σ2

(xi − xj)2 + σ2
.

Thus the optimization for the new embedding is

max
x

∑

ij

wij

(xi − xj)2 + σ2
, (7)

s.t.
∑

i

x2

i = 1,
∑

i

xi = 0.

We call this new embedding as Cauchy embedding because
f(x) = 1/(x2 + σ2) is the usual Cauchy distribution.

The most important difference between the objective func-
tion of Cauchy embedding [Eq. (6) or Eq. (7)] vs. the
objective function of Laplacian embedding [Eq. (1)] is
the following. For Laplacian embedding, large distance
(xi − xj)

2 terms contribute more because of the quadratic
form, whereas for Cauchy embedding, small distance(xi−
xj)

2 terms contribute more. This key difference ensures
Cauchy embedding exhibits stronger local topology pre-
serving property.

4.1. Multi-dimensional Cauchy Embedding

For representation simplicity and clarity, we consider 2D
embedding first. For 2D embedding, each nodei is em-
bedded in 2D space with coordinates(xi, yi). The usual

Laplacian embedding can be formulated as

min
x,y

∑

ij

[(xi − xj)
2 + (yi − yj)

2]wij , (8)

s.t. ‖x‖2 = 1, eT x = 0, (9)

‖y‖2 = 1, eT y = 0, (10)

xT y = 0, (11)

wheree = (1, · · · , 1)T . The constraintxT y = 0 is impor-
tant, because without it, the optimization obtains its opti-
mal value atx = y.

The 2D Cauchy is motivated with the following optimiza-
tion

min
x,y

∑

ij

(xi − xj)
2 + (yi − yj)

2

(xi − xj)2 + (yi − yj)2 + σ2
wij , (12)

with the same constraints Eqs. (8-11). This is simplified to

max
x,y

∑

ij

wij

(xi − xj)2 + (yi − yj)2 + σ2
. (13)

In general, thep-dimensional Cauchy embedding toR =
(r1, · · · , rn) ∈ <p×n is obtained by optimizing

max
R

J(R) =
∑

ij

wij

‖ri − rj‖2 + σ2
, (14)

s.t. RRT = I, Re = 0. (15)

4.2. Exponential and Gaussian Embedding

In Cauchy embedding the short distance pairs are empha-
sized more than large distance pairs, in comparison to
Laplacian embedding. We can further emphasize the short
distance pairs andde-emphasize large distance pairs by
the followingGaussian embedding:

max
x

∑

ij

exp

[

−
(xi − xj)

2

σ2

]

wij , (16)

s.t., ‖x‖2 = 1, eT x = 0, (17)

or theexponential embedding

max
x

∑

ij

exp

[

−
|xi − xj |

σ

]

wij , (18)

s.t., ‖x‖2 = 1, eT x = 0, (19)

In general, we may introduce thedecay function Γ(dij)
and write the three embedding objective as

max
x

∑

ij

Γ(|xi − xj |)wij , s.t., ‖x‖2 = 1, eT x = 0, (20)
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Here is a list of decay functions:

Laplacian embed: ΓLaplace(dij) = −d 2

ij (21)

Cauchy embed: ΓCauchy(dij) =
1

d2

ij + σ2
(22)

Gaussian embed: ΓGaussian(dij) = e−d2

ij/σ2

(23)

Exponential embed: Γexp(dij) = e−dij/σ (24)

Linear embed: Γlinear(dij) = −dij (25)

Notice that linear embed here is equivalent to thep-
Laplacian whenp→ 1 (Bühler & Hein, 2009). It is easy to
generalize to other decay functions. We discuss two prop-
erties for decay functions.
(1) There is one requirement on decay functions:Γ(d) must
be a monotonically decreasing asd increases. If this mono-
tonicity is violated, the embedding is not meaningful.
(2) A decay function is undefined up to a constant,i.e.,
Γ′(dij) = Γ(dij) + c leads to the same embedding for any
constantc.

One can see the different behaviors of these decay func-
tions as|Γ(d)| vs d, which are shown in Figure 3. We see
that inΓLaplace(d) andΓlinear(d), large distance pairs dom-
inate, whereas inΓexp(d), ΓGaussian, andΓCauchy(d), small
distance pairs dominate.

dij−d2

ij

−dij

e−d2

ij/σ2

e−dij/σ

1

d2

ij + σ2

Figure 3.Decay functions for 5 different embedding approaches:
−d2

ij for Laplacian embedding,1/(d2

ij + σ2) for Cauchy embed-

ding,e−d2

ij/σ2

for Gaussian embedding,e−dij/σ for Exponential
embedding, and−dij for linear embedding.

4.3. Algorithms to Compute Cauchy Embedding

Our algorithm is based on the following theorem.

Theorem 1 If J(R) defined in Eq. (14) is Lipschitz contin-
uous with constantL ≥ 0, and

R∗ = arg min
R
‖R−

(

R̃ +
1

L
OJ(R̃)

)

‖2F , (26)

s.t. RRT = I,Re = 0,

thenJ(R∗) ≥ J(R̃).

Proof. SinceJ(R) is Lipschitz continuous with constant
L, from (Nesterov, 2003), we have

J(X) ≤ J(Y )+ 〈X −Y,OJ(X)〉+
L

2
‖X −Y ‖2F ,∀X,Y

By apply this inequality, we further obtain

J(R̃) ≤ J(R∗)+〈R̃−R∗,OJ(R̃)〉+
L

2
‖R̃−R∗‖2F , (27)

By definition ofR∗, we have

‖R∗ −

(

R̃ +
1

L
OJ(R̃)

)

‖2F

≤ ‖R̃−

(

R̃ +
1

L
OJ(R̃)

)

‖2F =
1

L2
‖OJ(R̃)‖2F ,

or

‖R∗ − R̃‖2F − 2〈R∗ − R̃,
1

L
OJ(R̃)〉+

1

L2
‖OJ(R̃)‖2F

≤
1

L2
‖OJ(R̃)‖2F ,

‖R∗ − R̃‖2F + 2〈R̃−R∗,
1

L
OJ(R̃)〉 ≤ 0, (28)

By combining Eq. (27) and Eq. (28) and notice thatL ≥ 0,
we have

J(R∗) ≥ J(R̃),

which completes the proof.

Further more, for Eq. (26), we have the following solution,

Theorem 2 R∗ = V T is the optimal solution of Eq. (26),
whereUSV T = M(I − eeT /n), is the Singular Value
Decompotition (SVD) ofM(I − eeT /n) and M = R̃ +
1

LOJ(R̃).

Proof. Let M = R̃ + 1

LOJ(R̃), by applying the La-
grangian multipliersΛ andµ, we get following Lagrangian
function,

L = ‖R−M‖2F + 〈RRT − I,Λ〉+ µT Re, (29)

By taking the derivativew.r.t. R, and setting it to zero, we
have

2R− 2M + ΛR + µeT = 0, (30)

SinceRe = 0, andeT e = n, we haveµ = 2Me/n, and

(I + Λ)R = M(I − eeT /n), (31)

SinceUSV T = M(I − eeT /n), we let R∗ = V T and
Λ = US − I, then the KKT condition of the Lagrangian
function is satisfied. Notice that the objective function of
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Eq. (26) is convexw.r.t R. ThusR∗ = V T is the optimal
solution of Eq. (26).

From the above theorem, we use the following algorithm to
solve the Cauchy embedding problem.

Algorithm . Starting from an initial solution and an initial
guess of Lipschitz continuous constantL, we iteratively up-
date the current solution until convergence. Each iteration
consists of the following steps:
(1) ComputeM ,

M ← R +
1

L
∇J(R) (32)

(2) Compute the SVD ofM(I−eeT /n): USV T = M(I−
eeT /n), and setR← V T ,
(3) If Eq. (28) does not hold, increaseL by L← γL.

We use the Laplacian embedding results as the initial solu-
tion for the gradient algorithm.

5. Experimental Results

5.1. Experiments on Image Embedding

We are going to demonstrate the advantages of Cauchy Em-
bedding using two-dimensional visualization. We select
four letters in BinAlpha data set2, (“C”, “P”, “X”, “Z”) and
four digits from MNIST (Cun et al., 1998) (“0”, “3”, “6”,
“9”) and scale the data such that the average pairwise dis-
tance is 1. Algorithm in§4.3 is run with the default settings
mentioned above. The embedding results are drawn in Fig-
ure 4(a) and 4(b).

In Laplacian embedding results, all images from different
groups collapse together, except some outliers.E.g. in left
panel of Figure 4(a), letters “C” and “P”, and “Z” are visu-
ally difficult to be distinguished from each other. Thus, one
image of letter “P” is far way from all other images. How-
ever, in Cauchy embedding results, the distance among im-
ages are balanced out with much more clear visualizations.
By employing the minimum distance penalty, the objects
are distributed more evenly.

5.2. Embedding on US Map

In the previous sections, we provide insight analysis of
the ordering capacity of Cauchy Embedding. here we em-
ploy our algorithm on the 49 cities in United State (cap-
itals of 48 states in US mainland plus Washington DC).
In this experiment, we seek a path through all cities using
the first embedding directions of both Laplacian embed-
ding and Cauchy embedding. For both method, we con-
struct the map using the spherical distances among cities:
wij = exp

(

−d2

ij/d̄2
)

wheredij is the spherical distance

2http://www.cs.toronto.edu/∼roweis/data.html

between cityi andj, andd̄ is the average pairwise distance
of all the selected 49 cities. Then standard Laplacian and
Cauchy embedding with default settings are employed.

For Laplacian Embedding, the cities are sorted by the sec-
ond eigenvector of graph Laplacian. Here we assume that
all cities lie in a 1-D manifold. The results are shown in
Figure 5(a) and 5(b). In Figure 5(a), the terminal cities are
Olympiafrom west andAugustafrom east. Thus the path
has to be go though all other cities in the middle. Thus the
total path is long. However, Cauchy Embedding result cap-
tures the tight 1-D manifold structure, see Figure 5(b). The
terminal cities arePhoenixin Arizona andSacramentoin
California. And the resulting path goes through all cities in
an efficient order.

5.3. Classification And Smoothness Comparisons

We use five data sets to demonstrate the classification per-
formance in the embedded space of Exponential embed-
ding and Cauchy embedding algorithms, and compare them
to Laplacian embedding. The data sets include 9 UCI data
sets, AMLALL, CAR, Auto, Cars, Dermatology, Ecoli,
Iris, Prostate, and Zoo3, and two public image data set:
JAFFE4, AT&T 5.

The classification accuracy is computed by the nearest
neighbor classifier on the embedded space,i.e. using the
Euclidean distance on the embedding space to establish the
nearest neighbor classifier. The embedded dimension and
σ in Laplacian embedding are tuned such that the Lapla-
cian embedding method reaches its best classification ac-
curacy whereσ is the Gaussian similarity parameter to
computeW : wij = exp (−‖xi − xj‖

2/σ2). Then we
use the Laplacian embedding result as initialization to run
Exponential embedding and Cauchy embedding, respec-
tively. The results of classification accuracy on the embed-
ded space of Laplacian, Gaussian, Exponential and Cauchy
methods are recorded respectively, and are reported in Ta-
ble 1. From the results we can see that Exponential embed-
ding and Cauchy embedding tend to outperform Laplacian
embedding in terms of classification accuracy.

We also evaluate the improvement of Eq.(5) as follows. We
find 50 pairs of data points with the greatestWij and pick
up all possible pairs of(i, j), 2500 combinations in total,
to check how many of them conflict with Eq.(5). The num-
bers of violations for Laplacian, Gaussian, Exponential and
Cauchy methods are also reported in Table 1.

3http://www.ics.uci.edu/ mlearn/MLRepository.html
4http://kasrl.org/jaffe.html
5http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/

att faces.tar.Z
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Figure 4.2D visualizations on two data sets for Laplacian Embedding (left), Cauchy Embedding (middle) and Cauchy Embedding with
minimum distance penalty (right) using Eq. 24.

(a) Laplacian Embedding result (b) Cauchy Embedding result

Figure 5.Cities ordering by Laplacian Embedding and Cauchy Embedding. For Laplacian Embedding, the cities are sorted by the second
eigenvector of graph Laplacian.

6. Conclusion

Although many previous research work used Laplacian em-
bedding as the regularization item to embed the graph data
with preserving local topology, in this paper, we point
out such perceived local topology preserving property of
Laplacian embedding does not hold in many applications.
In order to preserve the local topology in original data on
low-dimensional manifold, we proposed a novel Cauchy
Graph Embedding that emphasizes short distance and en-
sures that the more similar two nodes are, the closer they
will be in the embedding space. Experimental results
on both synthetic data and real world data demonstrate
Cauchy embedding can successfully preserve local topol-
ogy on projected space. Classification results on five data

sets show Cauchy embedding achieve higher accuracy than
Laplacing embedding.
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