
Approximation Bounds for Inference using Cooperative Cuts

Stefanie Jegelka jegelka@tuebingen.mpg.de

Max Planck Institute for Intelligent Systems, Tübingen, Germany

Jeff Bilmes bilmes@u.washington.edu

University of Washington, Seattle, WA 98195, USA

Abstract

We analyze a family of probability distribu-
tions that are characterized by an embedded
combinatorial structure. This family includes
models having arbitrary treewidth and
arbitrary sized factors. Unlike general models
with such freedom, where the “most probable
explanation” (MPE) problem is inapprox-
imable, the combinatorial structure within our
model, in particular the indirect use of sub-
modularity, leads to several MPE algorithms
that all have approximation guarantees.

1. Introduction

Our interest is in the “most probable explanation”
(MPE) problem: given a probability distribution p(x) =
1
Z exp(−E(x)) where x = (x1, x2, . . . , xn) ∈ Dn for
some discrete domain D, find

x∗ ∈ argmax
x

p(x), or equivalently, x∗ ∈ argmin
x

E(x),

where E(x) is an “energy” function. In this work, we
assume all variables are binary, i.e., D = {0, 1}.

Without any restrictions placed on E, it is easy to see
that there is not much hope for efficient inference, even
if we consider bounded approximations. For example,
assume that E is given by an oracle, and let y ∈ {0, 1}n
be an unknown vector. Consider the energy E(x) = 1
if x = y, and E(x) = γ(n) otherwise, where γ(n) > 1
could be any (polynomial-time) computable function
of n. With only polynomially many queries to E, it
is exponentially unlikely to identify y, and since γ(n)
is almost arbitrary, no approximation guarantee of any
form is possible in polynomial time. The exponential

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

difficulty of approximate inference in such unrestricted
models, therefore, is worse than that implied by the
well known fact that MPE is NP-hard and not constant-
factor approximable (Abdelbar & Hedetniemi, 1998).

Thus, model restrictions are often applied to allow
for exact or good approximate inference in polynomial
time. These are either structural, such as treewidth
or factor size, or functional, such as submodularity.
There are often problems with such restrictions,
however, such as the well known drawbacks of local
pairwise random fields in computer vision. Our work
herein is motivated by finding new combinatorial
structures that go beyond the previous restrictions but
still, as opposed to the introductory example, enable
inference with a bounded approximation factor. Thus,
we devote a major part of this paper to algorithms
and approximation bounds. The model we address
indeed includes non-local and rich energy functions,
and consequently improves, e.g., image segmentation
results substantially (Jegelka & Bilmes, 2011).

The common structural restrictions for tractability
correspond to factorizations of p. Let p factor with
respect to a graphical model G = (V,E) comprising
n = |V| nodes and edge set E. The decisive parameter
indicating the complexity of MPE in G is the treewidth
(Chandrasekaran et al., 2008). The treewidth is one
less than the size of the maximum clique in a minimum
triangulation. Generally, finding the MPE takes time
exponential in the treewidth when it is known.

In general, we write E(x) =
∑
φ∈ΦEφ(xφ) where

Φ corresponds to the set of factors comprising the
distribution. Viewed as a bipartite (factor) graph,
each φ ∈ Φ is the subset of nodes φ ⊆ V involved in
a factor. Many approximate inference algorithms rely
on maxφ∈Φ |φ| being small. For example, the cost of
sending messages even in loopy belief propagation is
exponential in |φ|. Therefore, maxφ∈Φ |φ| (which we
call the factorwidth) may also be seen as a complexity
parameter for certain approximate inference algorithms.

Approximation Bounds for Inference using Cooperative Cuts

Nevertheless, treewidth and factorwidth are not the
only characterizations of tractability. In fact, exact
polynomial-time MPE is possible even with maximum
treewidth and factorwidth if E is restricted in other
ways. A recent class of energy functions having received
attention in the vision community is that of submod-
ular functions. A function g : 2V → R is submodular if
for all A,B ⊆ V, g(A) + g(B) ≥ g(A ∪B) + g(A ∩B).
The following notation should cause no confusion: let
X(x) ⊆ V be the set of nodes vi ∈ V whose correspond-
ing variable xi is one, i.e., X(x) = {vi ∈ V : xi = 1}.
We can then define an energy function via g as
E(x) = g(X(x)), and finding an assignment that
minimizes the energy is equivalent to finding the subset
X ⊆ V that minimizes g. When g is submodular, this
can be done in polynomial time (Fujishige, 2005). As
an example of a submodular g that places restrictions
neither on treewidth nor factorwidth, consider the
submodular function g(S) = −

∑
i

∏
v∈S wi,v, where

0 ≤ wi,v ≤ 1 is a set of coefficients ∀i and v ∈ V.

Submodular function minimization is not currently a
low-order polynomial time algorithm. In some cases,
however, much faster inference is possible. For example,
if g may be written as g(S) =

∑
(v,v′)∈N gv,v′(S ∩

{v, v′}), where each gv,v′(·) is a submodular function
over a size-2 ground set {v, v′}, and N is a set of
node-pairs, then MPE reduces to a minimum (s, t)-cut
(Boykov & Jolly, 2001; Kolmogorov & Zabih, 2004) on
a graph G = (V, E). We call G the structure graph to
clearly distinguish it from the graphical model G. In
particular, G has terminal nodes s, t, and a node vi for
each variable xi. For a set of nodes X ⊂ V, we define
its cut as δ(X) = {(u, v) ∈ E|u ∈ X ∪ {s}, v ∈ V \X}.
A labeling x induces a partition of V and thus an (s, t)-
cut δ(X(x)). The graph G has weights w : E → R+

and is designed such that its cut equals the energy:

E(x) =
∑

e∈δ(X(x))

w(e) , w(δ(X(x))). (1)

Let C∗ ⊆ E be the optimal cut, and X∗ the nodes
reachable from s after removal of C∗; then C∗ = δ(X∗)
and x∗i = 1 if and only if vi ∈ X∗. To achieve such
efficiency, the construction must be limited to pairwise
energies (a factorwidth of 2). Higher order models may
be obtained by adding variables, but at additional cost.

Even though submodular energies are widely applica-
ble, there are still cases where submodularity can be
limiting. For example, applications that traditionally
have been well suited to submodular functions (such
as information cascades) sometimes have exceptions
to their submodularity (Sheldon, 2010).

In this paper, we define a class of energies

C

s t

Figure 1. Illustration of a label cost function. Labels are
indicated by line style. Cut C cuts four edges with two
different labels, hence the cost is f(C) = 2.

that are neither submodular nor restricted in
treewidth/factorwidth, but still have limited generality
in order to retain approximate optimizability. While an
application of these energies is addressed in (Jegelka &
Bilmes, 2011), we here focus on the theoretical aspects
of the problem and propose a set of approximation
algorithms for finding MPE, by finding a minimum of
the energy. The key feature for deriving approximation
bounds is a new structural characterization that
relies on a generalization of graph cuts. Although the
energies are not submodular, our construction exploits
submodularity indirectly. Theorem 7 backs up our
approximation factors by giving a lower bound.

1.1. The generalized cut model

Similar to the graph cut analogy (1), we define a set
Fcoop of energies that are representable by generalized
cuts, i.e., cooperative cuts in a structure graph G.
Definition 1 (Cooperative Cut). Given a graph G =
(V, E) with nodes s, t ∈ V, the cost of an (s, t)-cut
C ⊆ E is measured by a nondecreasing submodular
function f : 2E → R+ defined on sets of edges.

Note that f is defined on edges, not nodes. Here,
a cut is a set of edges whose removal disconnects s
and t. A submodular function satisfies diminishing
marginal costs: for all A ⊆ B ⊆ E \ {e}, it holds that
f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). In common
minimum cut, f would be the sum of edge weights.
This is a modular function, that is, it satisfies diminish-
ing costs with equality. A cooperative cut replaces the
usual sum of weights by a more general submodular
cost function f that couples the edge weights.

A simple illustrative example of a submodular function
is the following: each edge has a label, and the cost of a
set of edges is the number of distinct edge labels in the
set. Figure 1 illustrates this cost. Other submodular
functions include entropy, matroid rank functions and
concave functions of sums.

The family Fcoop contains all energy functions that can
be represented as a cooperative cut in an appropriate
structure graph G with a submodular f such that

Ef (x) = f(δ(X(x))). (2)

Approximation Bounds for Inference using Cooperative Cuts

(a) structure graph (b) factor graph

Figure 2. Effect of coupling edges. (a) structure graph G,
where coupled edges have the same color; (b) factor graph
corresponding to G. Coupled edges couple their incident
nodes, and lead to large factors.

Eq. 1 is a special case of Eq. 2, because sums of weights
are also submodular. In general, the submodular cost f
couples sets of edges, such that f(A)+f(B) > f(A∪B)
(in Fig. 1, this happens if A and B contain edges with
the same label). As a result, Ef usually has neither of
the common simplifying properties mentioned in the
introduction, and thus imposes neither of those restric-
tions on models: (1) all nodes incident to coupled edges
are coupled, too, and hence also their corresponding
random variables (Fig. 2). Since f can couple up to
all edges, the corresponding graphical model can have
arbitrarily large treewidth and factorwidth. (2) The
energy Ef in Eq. 2 is in general not submodular. It
is subadditive, but subadditivity alone is not enough
for tractability: our introductory intractable example
is in fact subadditive. In applications, coupling occurs
if variables belong to the same greater structure, e.g.,
in images, to the same object boundary.

In view of (1) and (2), it becomes decisive that G
endows the potentials in Fcoop with structure. Before
we explain how to exploit the structure, we remark that
MPE inference for distributions in Fcoop is equivalent
to cooperative cut in G, thanks to Eq. 2. Thus, we
strive to solve the following problem:

min f(C) s.t. C ⊆ E is an (s, t)-cut in G. (3)

For ease of notation, we proceed using the cut formu-
lation (3). Since the cut cost f(C) is equivalent to the
potential, all guarantees transfer to the potential.

1.2. Preliminaries and notation

We are given a graph G = (V, E) with m = |E| edges.
We assume the submodular cost function f : 2E → R+

to be normalized, f(∅) = 0, and nondecreasing: if
A ⊆ B, then f(A) ≤ f(B). We note that a non-
negative submodular set function is also subadditive:
f(A) + f(B) ≥ f(A ∪B). A matroid rank function is
an integral submodular function with f(e) ∈ {0, 1} for
all e ∈ E . The convolution of two submodular functions
f, g is defined as (f ∗ g)(B) = minA⊆B f(A) + g(B \A).
More details about submodular functions can be found
in (Fujishige, 2005). We denote the feasible set of all

cuts by C ⊂ 2E . Sometimes, we consider a set A ⊆ E
by its indicator χA ∈ {0, 1}E , where χA(e) = 1 if and
only if e ∈ A. In the sequel, C∗ = argminC∈C f(C)
is the optimal solution of Problem (3). An algorithm
with approximation factor α ≥ 1 finds a solution Ĉ
that satisfies f(Ĉ) ≤ αf(C∗). For simplicity, we state
the results mostly in terms of directed graphs – they
do extend to undirected graphs as well, however.

In the next several sections, we give a variety of
algorithms that approximately solve Problem (3) and
also provide approximation bounds. In Section 3,
which gives a lower bound for approximability, we see
that there can be no constant factor approximation for
this problem. On the other hand, the class of problems
is still within the realm of approximability, unlike the
more general case mentioned in Section 1.

2. Algorithms

We aim for approximation algorithms for Problem (3).
First, we build on a generalized maxflow-mincut duality,
and later show two alternative techniques. The first
algorithm differs from any of the algorithms for related
submodular-cost problems. The main idea is to replace
f by a tractable approximation f̂ whose deviation from
f is limited. We will use the following lemma.

Lemma 1. Let Ĉ ∈ argminC∈C f̂(C) for an approxi-
mation f̂ of f , with f(A) ≤ f̂(A) for all A ⊆ E, and
f̂(C∗) ≤ αf(C∗) for C∗ ∈ argminC∈C f(C). Then
f(Ĉ) ≤ αf(C∗).

Proof. Since f̂(Ĉ) ≤ f̂(C∗), we have that f(Ĉ) ≤
f̂(Ĉ) ≤ f̂(C∗) ≤ αf(C∗).

Lemma 1 immediately gives a bound for the simple
linearization f̂add(A) =

∑
e∈A f(e). Thanks to the

subadditivity of f , f(A) ≤ f̂add(A). To derive α,
consider the extreme case of a label cost where all edges
have the same label. Then f(A) = 1 for all A ⊆ E , but
f̂add(A) = |A|. Thus, α can be as large as |C∗| = O(m).

2.1. Approximation with polymatroidal
network flows

We now find a tractable approximation f̂ of f that is
better than f̂add. Note that Problem (3) is hard because
f is globally non-separable: the cost of remote edges e1,
e2 can interact, so that f({e1, e2})� f(e1) +f(e2). In
contrast, the standard minimum cut with a separable
sum of edge weights is solvable efficiently.

Therefore, we design f̂ to be globally separable, but
a locally tight approximation. To measure the cost

Approximation Bounds for Inference using Cooperative Cuts

s

v1

v2

v3

v4

v5

v6

t

Figure 3. Approximation of a cut cost. Red edges are in
CΠ

v4 (head), blue dashed edges in CΠ
v3 (tail), and the green

dash-dotted edge in CΠ
v6 (head).

of an edge set C ⊆ E , we partition C into groups
Π(C) = {CΠ

v }v∈V , where the edges in CΠ
v must be

incident to v. That is, we assign each edge either to its
head or to its tail node (Fig. 3). Let PC be the family
of all such partitions (which vary in the head or tail
assignment of each edge). We define an approximation

f̂(C) = min
Π(C)∈PC

∑
v∈V

f(CΠ
v) (4)

that decomposes across node neighborhoods, but is ac-
curate within a group CΠ

v . Thanks to the subadditivity
of f , f̂ is an upper bound on f , and we use the tightest
possible such approximation. Instead of Problem (3),
we now solve a different optimization problem:

min f̂(C) s.t. C ⊆ E is an (s, t)-cut. (5)

To solve Problem (5) exactly, we use its analogy to a
generalized maxflow problem. This analogy only holds
for cuts, but that suffices here. We first introduce the
flow problem.

2.1.1. Polymatroidal network flows

Polymatroidal network flows (Lawler & Martel, 1982)
generalize the capacity of traditional flow problems. A
function ϕ : E → R+ is a flow if the inflow at each
node v ∈ V \ {s, t} equals the outflow, and if the flow
on an edge does not exceed its capacity: ϕ(e) ≤ cap(e)
for all e ∈ E , given a capacity function cap : E →
R+. Polymatroidal flows replace the usual additive
capacities by submodular ones at each node v: capin

v

for incoming edges, and capout
v for outgoing edges. Let

δ−v be the incoming edges of v, and δ+v its outgoing
edges. Then the capacity constraints are, at each v ∈ V :

ϕ(A) ≤ capin
v (A) for all A ⊆ δ−v,

and equivalently for capout
v on δ+v. The maximum flow

with such constraints is solved exactly in polynomial
time by a layered augmenting paths algorithm (Tardos
et al., 1986). The algorithm involves submodular
function minimization (SFM) only on the sets δ+v, δ−v
that are much smaller than E . It takes time O(m4T),
where T is the time for SFM on any δ+v, δ−v.

2.1.2. Analogy

The next lemma relates Problem (5) to polymatroidal
flows. For ease of notation, we explicitly write restric-
tions here, but drop them later.

Lemma 2. Minimum (s, t)-cut with cost function f̂
is dual to a polymatroidal network flow with capacities
capin

v = f δ−v and capout
v = f δ+v at each node v ∈ V.

Proof. First, we restate the dual of a polymatroidal
flow. Let capin : 2E → R+ be the joint incoming
capacity, capin(C) =

∑
v∈V capin

v (C ∩ δ−v), and equiv-
alently capout the joint outgoing capacity. The dual of
the polymatroidal maxflow is a mincut problem whose
cost is a convolution of edge capacities: cap(C) =
(capin ∗ capout)(C) , minA⊆C capin(A) + capout(C \A)
(Lovász, 1983).

We relate this dual to our approximation f̂ . Given
a minimal1 (s, t)-cut C, let Π(C) be a partition of
C, and C in

v = CΠ
v ∩ δ−v , Cout

v = CΠ
v ∩ δ+

v . Since C is
a minimal directed cut, it contains only edges from
the s side to the t side of the graph. In consequence,
C in
v = ∅ if v is on the s side, and Cout

v = ∅ otherwise.
Hence, f(C in

v ∪ Cout
v) = f(C in

v) + f(Cout
v). Then

f̂(C) = min
Π(C)∈PC

∑
v∈V

f(CΠ
v) (6)

= min
Π(C)∈PC

∑
v∈V

f(C in
v ∪ Cout

v) (7)

= min
{(Cin

v ,C
out
v)}v

∑
v∈V

(f(C in
v) + f(Cout

v)) (8)

= min
{(Cin

v ,C
out
v)}v

∑
v∈V

(capin
v (C in

v) + capout
v (Cout

v))

= min
Cin,Cout

(capin(C in) + capout(Cout)) (9)

= min
Cin⊆C

(capin(C in) + capout(C \ C in)) (10)

= (capin ∗ capout)(C). (11)

Eq. 6 is the definition of f̂ . The minimum in Eq. 8
is taken over all feasible partitions Π(C) and their
intersections with the δ+v, δ−v. Then we use the
notation C in =

⋃
v∈V C

in
v for all edges assigned to

their head nodes, and Cout =
⋃
v∈V C

out
v . The minima

in Eqs. 9 and 10 are again over all partitions in PC .
The final equality follows from the above definition of
a convolution of submodular functions.

2.1.3. Approximation factor

Section 2.1.2 shows that Problem (5) can be solved
exactly. With Lemma 1, we bound the approximation
factor by a quantity that depends on the graph

1If a cut C is minimal, then no subset A ⊂ C is a cut.

Approximation Bounds for Inference using Cooperative Cuts

structure. Let C∗ be the optimal cut for cost f . We
define ∆s to be the tail nodes of the edges in C∗:
∆s = {v ∈ V | ∃(v, u) ∈ C∗}. These are still reachable
from s. Similarly, ∆t contains all nodes on the t side
that are the head of an edge in C∗.
Theorem 3. Let Ĉ be the minimum cut for cost f̂ ,
and C∗ the optimal cut for cost f . Then f(Ĉ) ≤
min{|∆s|, |∆t|}f(C∗) ≤ |V|f(C∗)/2.

Proof. To use Lemma 1, we need to show that f(C) ≤
f̂(C) for all C ⊆ E , and find an α such that f̂(C∗) ≤
αf(C∗). We already argued for the first condition using
subadditivity. It remains to bound α. We do so by
referring to the flow analogy with capacities set to f :

f̂(C∗) = (capin ∗ capout)(C∗) (12)

≤ min{capin(C∗), capout(C∗)} (13)

≤ min
{∑

v∈∆s

f(C∗ ∩ δ+v),
∑

v∈∆t

f(C∗ ∩ δ−v)
}

≤ min
{
|∆s|max

v∈∆s

f(C∗ ∩ δ+v), |∆t|max
v∈∆t

f(C∗ ∩ δ−v)
}

≤ min
{
|∆s|, |∆t|

}
f(C∗). (14)

Thus, Lemma 1 implies an approximation bound α ≤
min

{
|∆s|, |∆t|

}
≤ |V|/2.

2.2. Alternative approximations

Minimizing f̂ instead of f yields in general a good solu-
tion — on dense graphs, n/2 = O(

√
m). However, the

approximation bound depends on the graph structure.
Thus, we add three complementary algorithms.

2.2.1. Global approximation of f

Instead of f̂ from Section 2.1, any other approximation
of f can be used in Lemma 1, as long as it makes
the minimum cut problem tractable. Goemans et al.
(2009) approximate a submodular function by a square
root f̂ell(C) =

√∑
e∈C wf (e). This function stems

from the submodular polyhedron. The submodular
polyhedron is a subset of RE and defined as Pf = {x ∈
RE |

∑
e∈A x(e) ≤ f(A) ∀ A ⊆ E}. For the function f ,

it holds that

f(A) = maxy∈Pf
y · χA. (15)

Replacing Pf in (15) by a certain ellipsoid yields f̂ell.
Computing the ellipsoid, i.e., the weights wf , is the bot-
tleneck of this approximation, and takes O(m4 log2m)
time. For matroid rank functions, f̂ell guarantees
an approximation factor α =

√
m+ 1, and otherwise

α = O(
√
m logm). This leads to the following bound:

Lemma 4. Let Ĉ = argminC∈C f̂ell(C) be the min-
imum cut for cost f̂ell, and C∗ = argminC∈C f(C).
Then f(Ĉ) = O(

√
m logm)f(C∗).

Algorithm 1 Greedy randomized path cover
Input: G = (V, E), s, t ∈ V, f
C = ∅, x = 0
while

∑
e∈Pmin

x(e) < 1 for shortest path Pmin do
let β ∈ (0,mine∈Pmin ρe(C)]
for e in Pmin do

with probability β/ρe(C), set C = C ∪ {e},
x(e) = 1.

end for
end while
prune C to C ′ and return C ′

In comparison to f̂ , the approximation f̂ell is harder
to compute, but the optimization is easier: minimizing
f̂2

ell is equivalent to minimizing f̂ell, and corresponds
to a sum-of-weights minimum cut.

2.2.2. Cuts via greedy covers

Our final strategy relates cuts to covers. An (s, t)-cut
is also a hitting set: a cut “hits” (intersects) or “covers”
each (s, t)-path. Therefore, we write Problem (3) as

min f(x) (16)

s.t.
∑

e∈P
x(e) ≥ 1 ∀(s, t)-paths P ⊆ E

x ∈ {0, 1}E .

Here, with a little abuse of notation, we write f as a
function on binary indicator vectors, f(χA) = f(A).
The constraints imply that Problem (16) is a minimum-
cost cover problem. There can be exponentially many
constraints, one for each path. Luckily, it is not hard
to find a violated constraint. We merely compute the
shortest path Pmin, using x as the edge lengths. If Pmin

is longer than one, then x is feasible, otherwise not.

Owing to the form of the constraints, we can adapt
a randomized greedy cover-algorithm (Koufogian-
nakis & Young, 2009) to Problem (16) and obtain
Algorithm 1. In each step, we compute the shortest
path with weights x to find a possibly uncovered
path. Ties are resolved arbitrarily. To cover the
path, we randomly pick edges from Pmin, with
probabilities inversely proportional to the marginal
cost ρe(C) , f(C ∪ {e})− f(C). We must also specify
an appropriate β. With the maximum possible β we
select the cheapest edge deterministically, and others
randomly. To pick exactly one edge in each iteration,
we set β = (

∑
e∈Pmin

ρe(C)−1)−1, and then sample
one edge from Pmin, with probabilities p(e) = β/ρe(C).
Since C grows by at least one edge in each iteration,
the algorithm terminates after at most m iterations.

Finally, the algorithm may return a set C that is

Approximation Bounds for Inference using Cooperative Cuts

feasible but not a minimal cut. Then we prune C
to a minimal cut C ′ ⊆ C. Since f is nondecreasing,
f(C ′) ≤ f(C). We assign infinite weight to all edges in
E \C, and weight f(e) to each edge e ∈ C (or contract
nodes accordingly). The standard minimum (s, t)-cut
in the resulting graph is the desired C ′.

The last important question is the approximation
bound. Lemma 5 implies that Algorithm 1 returns at
least an O(n)-approximation, because the longest path
spans at most |V| − 1 edges.

Lemma 5. E[f(Ĉ ′)] ≤ |Pmax|f(C∗), where Pmax is
the longest simple path in G.

Proof. We already argued that the pruned C ′ can only
be better than C. By Theorem 7 in (Koufogiannakis
& Young, 2009), a greedy randomized procedure like
Algorithm 1 gives a ∆-approximation for a cover, where
∆ is the maximum number of variables in any constraint.
In (16), ∆ is the maximum number of edges in any
simple path, i.e., the length of the longest path. This
implies that f(C ′) ≤ f(C) ≤ |Pmax|f(C∗).

2.2.3. Relaxation

An alternative to the greedy randomized algorithm is to
solve a relaxation of Problem (16). For the relaxation,
we need to extend f from a set function to a function
on a continuous domain. We view f as a function
on binary indicator vectors, {0, 1}E , and extend it to
[0, 1]E via its Lovász extension f̃ : [0, 1]E → R+,

f̃(x) = maxy∈Pf
y · x.

The maximization over the submodular polyhe-
dron Pf takes O(m logm) time (Edmonds, 1970).
Furthermore, a submodular function satisfies
f(χA) = maxy∈Pf

y · χA = f̃(χA). The Lovász exten-
sion is convex and piecewise linear. We substitute f̃
for f in Program (16), and allow x ∈ [0, 1]E . The result
is a non-smooth convex program with exponentially
many constraints. The constraints can be summarized
by the m+ 1 constraints of a standard linear program
for minimum cut (Papadimitriou & Steiglitz, 1998):

min f̃(x) (17)
s.t. x(e) ≥ π(v)− π(u) ∀(u, v) ∈ E
π(t)− π(s) ≥ 1

π ∈ [0, 1]V , x ∈ [0, 1]E

The node variables π essentially indicate membership
of a node in the s side (π(v) = 0) or t side (π(v) = 1) of
the cut. The constraints demand that an edge e from a
label-zero node to a label-one node should be selected,
that is, x(e) = 1. These edges will eventually make up

the cut. At closer inspection, the label π(v) indicates
the length of the shortest path from s to v, measured
by additive distances x. Program (17) can be solved
using any solver for non-smooth convex problems, or by
adapting the approach in (Chudak & Nagano, 2007).

The nonlinear Program (17) usually does not have an
integral solution, and thus we must round appropriately.
The rounding procedure, shown in Algorithm 2, will
determine the approximation guarantee. Let x∗ be the
optimal solution of Program (17). We test the values
of x∗(e) as thresholds θi in decreasing order (or by
binary search). If the set Ci of edges e with x∗(e) ≥ θi
contains a cut, we stop and prune Ci to a minimal cut.

Algorithm 2 Rounding procedure given x∗

order E such that x∗(e1) ≥ x∗(e2) ≥ . . . ≥ x∗(em)
for i = 1, . . . ,m do

let Ci = {ej | x∗(ej) ≥ x∗(ei)}
if Ci is a cut then

prune Ci to Ĉ and return Ĉ
end if

end for

A faster, cruder rounding uses a threshold that is at
most as large as the inverse of the length of the longest
path in the graph (threshold (n− 1)−1 always works).
The reason for this quantity becomes clear in the proof
of the following lemma, the approximation bound.

Lemma 6. Let Ĉ be the rounded solution returned by
Algorithm 2, and C∗ the optimal cut. Then f(Ĉ) ≤
|Pmax|f(C) ≤ (n− 1)f(C), where Pmax is the longest
simple path in the graph.

Proof. Program (16) is a submodular covering program.
Thus, thresholded rounding is possible, similar to the
case of cover problems (Iwata & Nagano, 2009). Let θ
be the rounding threshold that implied the final Ci. In
the worst case, x∗ is uniformly distributed along the
longest path, and then θ must be |Pmax|−1 to include at
least one of the edges in Pmax. Since f̃ is nondecreasing
like f and also positively homogeneous, it holds that

f(Ĉ) ≤ f(Ci) = f̃(χCi
)

≤ f̃(θ−1x∗) ≤ θ−1f̃(x∗) ≤ θ−1f̃(χC∗) = θ−1f(C∗).

The first inequality follows from monotonicity of f
and the fact that Ĉ ⊆ Ci. Similarly, the relation
between f̃(χCi

) and f̃(θ−1x∗) holds because f̃ is
nondecreasing: by construction, x∗(e) ≥ θχCi

(e) for
all e ∈ E, and hence χCi(e) ≤ θ−1x∗(e). Finally, we
use the optimality of x∗ to relate the cost to f(C∗)
(χC∗ is also feasible, but x∗ optimal). The lemma
follows since θ−1 ≤ |Pmax|.

Approximation Bounds for Inference using Cooperative Cuts

2.3. Discussion

We presented four methods to solve Problem (3).
Beyond inference, a special case of Problem (3) arises
is the analysis of attack graphs in computer security.
Zhang et al. (2011) propose an algorithm for this special
case, but their method does not apply to general nonde-
creasing submodular functions. Other applications are
based on mean-risk minimization in discrete stochastic
optimization (Atamtürk & Narayanan, 2008).

Which of our algorithms performs best depends on
the problem at hand. At first sight, all guarantees
might appear as O(

√
m) or O(n) for n = |V|, and

almost equivalent. Still, the exact structural terms can
make a difference. For sparse graphs with m = O(n),
the approximation f̂ell is theoretically the best. On
dense graphs, the flow-based approximation dominates
theoretically. As an illustrative example, consider
a chain of

√
n cliques between s and t, each clique

consisting of roughly
√
n nodes. Two adjacent cliques

intersect at one node. Then the longest path has
length n− 1, whereas |∆s| ≤

√
n and

√
m ≈ n3/4. In

any case, it is important to note that the theoretical
factors are worst-case approximation bounds – on
many examples, the algorithms perform much better,
as we demonstrate in the next section.

From an implementation viewpoint, the greedy cover
is the simplest, and often fast. Since it is randomized,
its solution quality in single runs can vary. Often, a
heuristic to include the edge with the lowest marginal
cost works well, too.

2.4. Experiments

As a proof of concept, Figure 4(a) shows an example
graph with coupled edges. It is a complete graph,
and the minimum cut contains the maximum possible
number of edges. We compare the described algorithms
to a minimum cut with f̂add. The cost function is

f(A) = 1[|A ∩ Ek| ≥ 1] +
n/2−1∑
i=1

n

2
· 1[|A ∩ Ei| ≥ 1],

where Ek is the set of black edges, and the Ei are the
other sets of edges with identical color.

The proposed algorithms all find the optimal solution.
A standard minimum cut with f̂add yields a solution
with an approximation factor of Ω(n2/4) – its worst
case. The cost of its solution is larger than permissible
with the approximation factors of the other algorithms.
Thus, the example illustrates that approximation
bounds do indeed matter.

Most inputs, however, are more benign. Therefore, we

s t MC PMF EA GR1 GR2 GR3 CoR
0

5

10

15

20

25

(a) hard case

MC PMF EA GR1 CoR
0

2

4

(i) random cuts

MC PMF EA GR1 CoR
0

1

2

3

(ii) ranks

MC PMF EA GR1 CoR
0

1

2

(iii) discounts

(b) average cases

Figure 4. Empirical approximation factors for (a) the shown
structure graph (n = 10); (b) more common cases. MC:
mincut with f̂add, PMF: f̂ via polymatroidal flows, EA:
approximation with f̂ell, GR: greedy cover (1) picking an
edge with minimum marginal cost, (2) sampling one edge,
(3) maximum β, CoR: convex relaxation. White bars in (a)
indicate theoretical bounds where applicable, red crosses in
(b) worst empirical results. (Figure best viewed in color.)

show empirical approximation bounds on three other
classes of cost functions on clustered graphs (n = 30,
m = 90): (i) functions similar to the worst case,
where the optimal cut was picked randomly and the
function designed to make it optimal; (ii) matroid rank
functions and sums thereof; (iii) concave functions (log
and square root) of a sum of weights. Figure 4(b) shows
averages over 45, 100 and 50 instances for computing
the minimum cut by a sequence of (s, t)-cuts. The
approximation factors are in general between 1 and 2,
and much better than the theoretical bounds. For more
detailed experiments, see (Jegelka & Bilmes, 2010).

3. Hardness

The approximation factors that we derived in the previ-
ous section are put into context by the following lower
bound. It assumes oracle access to f .

Theorem 7. No polynomial-time algorithm can
solve Problem (3) to an approximation factor of
o(
√
m/ logm).

Theorem 7 implies that the best possible approxima-
tion factor in the general case is on the order of

√
|E|.

The proof is information-theoretic.

Proof. The key idea is to construct two submodular
cost functions f , h with different minima that are
almost indistinguishable. With high probability they
cannot be discriminated within a polynomial number
of function queries. If the optima of h and f differ by

Approximation Bounds for Inference using Cooperative Cuts

a factor larger than α, then any solution for f within
a factor α of the optimum would be enough evidence
to discriminate f and h. Hence, a polynomial-time
algorithm with an approximation factor α would lead
to a contradiction. The proof technique is similar to
(Goemans et al., 2009; Svitkina & Fleischer, 2008).

The function f depends on a hidden random set
R ⊆ E that will be its optimal cut. Construct a graph
G = (V, E) with ` parallel disjoint paths from s to t;
each path has k edges. Let the random set R ⊂ E be
a cut consisting of |R| = ` edges. The cut contains one
edge from each path uniformly at random. We define
β = 8`/k < ` (for k > 8), and, for any C ⊆ E ,

h(C) = min{|C|, `} (18)
f(C) = min{|C \R|+ min{|C ∩R|, β}, `}. (19)

The functions differ only for the relatively few sets
C with |C ∩ R| > β and |C \ R| < ` − β. Define ε
such that ε2 = ω(logm), and set k = 8

√
m/ε and

` = ε
√
m. By a Chernoff bound, one can show that

the probability (over all choices of R) that f and h
differ for a given C is very small:

P
(
f(C) 6= h(C)

)
≤ P

(
|C ∩R| ≥ 8`/k

)
≤ 2−8`/k = 2−ε

2
= 2−ω(logm) = m−ω(1).

By a union bound, the probability of distinguishing
f and h with a polynomial number of queries C still
vanishes as m grows.

As argued above, the bound will be the ratio of
optima of h and f . The minimum cooperative-cost
cut for f is R with f(R) = β, and h has uniform cost
h(C) = ` for all minimal cuts C. Hence, the ratio is
h(R)/f(R) = `/β =

√
m/ε = o(

√
m/ logm).

Acknowledgments. We thank Jens Vygen for the
example of a very hard subadditive function.

References

Abdelbar, A.M. and Hedetniemi, S.M. Approximating
MAPs on belief networks is NP-hard and other theorems.
Artificial Intelligence, 102, 1998.

Atamtürk, A. and Narayanan, V. Polymatroids and mean-
risk minimization in discrete optimization. Operations
Research Letters, 36(5):618–622, 2008.

Boykov, Y. and Jolly, M.-P. Interactive graph cuts for
optimal boundary and region segmentation of objects
in n-d images. In Proc. of the Int. Conf. on Computer
Vision (ICCV), 2001.

Chandrasekaran, V., Srebro, N., and Harsha, P. Complexity
of inference in graphical models. In Proc. of the Conf.
on Uncertainty in Artificial Intelligence (UAI), 2008.

Chudak, F. A. and Nagano, K. Efficient solutions to re-
laxations of combinatorial problems with submodular
penalties via the Lovász extension and non-smooth con-
vex optimization. In Proc. of the ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2007.

Edmonds, J. Combinatorial Structures and their Appli-
cations, chapter Submodular functions, matroids and
certain polyhedra, pp. 69–87. Gordon and Breach, 1970.

Fujishige, S. Submodular Functions and Optimization. Num-
ber 58 in Annals of Discrete Mathematics. Elsevier Sci-
ence, 2nd edition, 2005.

Goemans, M. X., Harvey, N. J. A., Iwata, A., and Mirrokni,
V. S. Approximating submodular functions everywhere.
In Proc. of the ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2009.

Iwata, S. and Nagano, K. Submodular function minimiza-
tion under covering constraints. In Proc. of the Ann.
Symp. on Foundations of Computer Science (FOCS),
2009.

Jegelka, S. and Bilmes, J. Cooperative cuts: graph cuts
with submodular edge weights. Technical Report TR-189,
Max Planck Institute for Biological Cybernetics, 2010.

Jegelka, S. and Bilmes, J. Submodularity beyond submodu-
lar energies: coupling edges in graph cuts. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2011.

Kolmogorov, V. and Zabih, R. What energy functions can
be minimized via graph cuts? IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26(2):147–159, 2004.

Koufogiannakis, C. and Young, N. E. Greedy ∆-
approximation algorithm for covering with arbitrary
constraints and submodular costs. In Proc. of the Int.
Colloquium on Automata, Languages and Programming
(ICALP), 2009.

Lawler, E. L. and Martel, C. U. Computing maximal “Poly-
matroidal” network flows. Mathematics of Operations
Research, 7(3):334–347, 1982.

Lovász, L. Mathematical programming – The State of the
Art, chapter Submodular Functions and Convexity, pp.
235–257. Springer, 1983.

Papadimitriou, C. and Steiglitz, K. Combinatorial Opti-
mization. Dover Publications, 1998.

Sheldon, D. et. al. Maximizing the Spread of Cascades Using
Network Design. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence (UAI), 2010.

Svitkina, Z. and Fleischer, L. Submodular approximation:
Sampling-based algorithms and lower bounds. In Proc.
of the Ann. Symp. on Foundations of Computer Science
(FOCS), 2008.

Tardos, E., Tovey, C. A., and Trick, M. A. Layered aug-
menting path algorithms. Mathematics of Operations
Research, 11(2), 1986.

Zhang, P., J.-Y, Cai, Tang, L.-Q., and Zhao, W.-B. Approx-
imation and hardness results for label cut and related
problems. Journal of Comb. Optim., 21(2):192–208, 2011.

