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Abstract
It is often necessary to evaluate classifier per-
formance over a range of operating conditions,
rather than as a point estimate. This is typically
assessed through the construction of ‘curves’
over a ‘space’, visualising how one or two per-
formance metrics vary with the operating con-
dition. For binary classifiers in particular, cost
space is a natural way of showing this range of
performance, visualising loss against operating
condition. However, the curves which have been
traditionally drawn in cost space, known as cost
curves, show the optimal loss, and hence assume
knowledge of the optimal decision threshold for
a given operating condition. Clearly, this leads
to an optimistic assessment of classifier perfor-
mance. In this paper we propose a more natu-
ral way of visualising classifier performance in
cost space, which is to plot probabilistic loss on
the y-axis, i.e., the loss arising from the probabil-
ity estimates. This new curve provides new ways
of understanding classifier performance and new
tools to compare classifiers. In addition, we show
that the area under this curve is exactly the Brier
score, one of the most popular performance met-
rics for probabilistic classifiers.

1. Introduction and Motivation
Many graphical representations and tools for classifier eval-
uation have been proposed in the literature, such as ROC
curves and isometrics (Swets et al., 2000; Flach, 2003;
Fawcett, 2006), DET curves (Martin et al., 1997), lift
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charts (Piatetsky-Shapiro & Masand, 1999), calibration
maps (Cohen & Goldszmidt, 2004), among many others.
Some of these visualise two performance metrics as a func-
tion of an implicit operating condition: e.g., ROC curves,
precision-recall curves and DET curves. Others have the
operating condition explicitly on the x-axis, and a single
performance metric (accuracy, error rate, loss) on the y-
axis. Cost curves (Drummond & Holte, 2000; 2006) are
in the latter category. The basic idea is to draw loss on
the y-axis against ‘probability cost’ (an operating condition
depending on both class and misclassification cost distribu-
tion, called skew in this paper) on the x-axis. For a fixed de-
cision threshold there is a linear relationship between skew
and loss; this is called a cost line. The lowest cost line for a
given skew then represents the optimal loss achievable with
the classifier for that skew, and the cost curve is the lower
envelope of the cost lines.

There are several correspondences between ROC space and
cost space, the most important of which is a point-line du-
ality: line segments in ROC space correspond to points in
cost space and points in ROC space correspond to line seg-
ments in cost space. Furthermore, the convex hull of a ROC
curve corresponds to the lower envelope of the cost lines
in cost space. There are also differences, arising from the
fact that ROC curves concentrate on ranking performance
while cost curves visualise classification performance. Fur-
thermore, (Drummond & Holte, 2006) did not propose a
cost curve equivalent of a non-convex ROC curve. In other
words, cost curves represent the performance of the ROC
convex hull of a classifier, which is a typically optimistic
(and frequently unrealistic) assessment of a classifier. An-
other correspondence between ROC curves and cost curves
is that they both ignore the magnitude of the scores. As a
result, neither the ROC curve nor the cost curve are affected
by a monotonic transformation of the scores assigned by a
classifier. This is natural for ROC curves, as they are de-
signed for evaluating ranking performance. It appears to be
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less natural for cost curves, as without knowing anything
about the scale of the classifier’s scores it is impossible to
set decision thresholds in a uniform, classifier-independent
way. We conclude, then, that it is this reluctance to take
score magnitudes into account that necessitates the overly
optimistic and unrealistic assumption of optimal threshold
selection.

The alternative proposed in this paper is to assume that
the classifier scores are posterior class probabilities, which
gives us a natural way of choosing the thresholds. Namely,
given an operating condition o, we will predict positive if
the score is greater than o and negative otherwise. With
this simple decision rule, we can visualise the loss for arbi-
trary operating conditions in cost space, which produces a
new curve, also spanned by cost lines, and hence never be-
low the cost curve. This new curve clearly depends on the
quality of the probability estimates, and it shows the per-
formance for the full range of operating conditions. This
implies that we can work in a way similar to ROC anal-
ysis: we can choose and discard classifiers depending on
the operating conditions but we can also combine classi-
fiers in order to obtain a lower overall loss. Furthermore,
the area under the new curve has a natural interpretation
as the Brier score or mean squared error of the probability
estimates, which justifies the name we have given.

The outline of the paper is as follows. Section 2 formally
introduces cost curves and the necessary notation for the
rest of the paper. Section 3 considers a more natural way
of calculating the expected loss, which produces the new
curves. The main result, that the area under the new curve
is the Brier score, is proved in Section 4. Section 5 shows
how Brier curves can be used to compare probabilistic clas-
sifiers and to derive combined classifiers in order to im-
prove the joint Brier curve. Finally, Section 6 concludes
with a short discussion and possible areas for further work.

2. Preliminaries
In this section we present our notational conventions and
discuss previous work on cost curves. (Much of this section
is shared with a related paper investigating the properties of
AUC as a measure of aggregated classification performance
(Flach et al., 2011).)

2.1. Notation

The instance space is denoted X and the output space Y .
Elements in X and Y will be referred to as x and y re-
spectively. For this paper we will assume binary classi-
fiers, i.e., Y = {0,1}. A crisp or categorical classifier is
a function that maps examples to classes. A probabilistic
classifier is a function m : X → [0,1] that maps examples
to estimates p̂(1|x) of the probability of example x to be of

class 1. A scoring classifier is a function m : X → ℜ that
maps examples to real numbers on an unspecified scale,
such that scores are monotonically related to p̂(1|x). In or-
der to make predictions in the Y domain, a probabilistic or
scoring classifier can be converted to a crisp classifier by
fixing a decision threshold t on the scores. Given a pre-
dicted score s = m(x), the instance x is classified in class 1
if s > t, and in class 0 otherwise.

For a given, unspecified classifier and population from
which data are drawn, we denote the score density for class
k by fk and the cumulative distribution function by Fk.
Thus, F0(t) =

∫ t
−∞

f0(s)ds = P(s ≤ t|0) is the proportion
of class 0 points correctly classified if the decision thresh-
old is t, which is the sensitivity or true positive rate at t.
Similarly, F1(t) =

∫ t
−∞

f1(s)ds = P(s ≤ t|1) is the propor-
tion of class 1 points incorrectly classified as 0 or the false
positive rate at threshold t; 1−F1(t) is the true positive rate
or sensitivity.1

Given a dataset D⊂ 〈X ,Y 〉 of size n= |D|, we denote by Dk
the subset of examples in class k ∈ {0,1}, and set nk = |Dk|
and πk = nk/n. We will use the term class proportion for
π0 (other terms such as ‘class ratio’ or ‘class prior’ have
been used in the literature). Given any given strict order
for a dataset of n examples we will use the index i on that
order to refer to the i-th example. Thus, si denotes the score
of the i-th example and yi its true class. Given a dataset
and a classifier, we can define empirical score distributions
for which we will use the same symbols as the population
functions. We then have fk(s) = 1

nk
|{〈x,y〉 ∈Dk|m(x) = s}|

and Fk(t) = ∑s≤t fk(s).

The Brier score is a well-known evaluation measure for
probabilistic classifiers. It is an alternative name for the
Mean Squared Error or MSE loss (Brier, 1950). BS(m,D)
is the Brier score of classifier m with data D; we will usu-
ally omit m and D when clear from the context. We de-
fine BSk(m,D) = BS(m,Dk). The Brier score is defined as
BS , 1

n ∑
n
i=1(si− yi)

2, where si is the score predicted for
example i and yi is the true class for example i. Clearly,
BS = π0BS0 +π1BS1. The corresponding population quan-
tities are BS0 =

∫ 1
0 s2 f0(s)ds and BS1 =

∫ 1
0 (1− s)2 f1(s)ds.

2.2. Loss, ROC Curves and Cost Curves

An operating condition or deployment context is usually
defined by a class distribution and a way to aggregate mis-
classification cost over examples. One general approach to
cost-sensitive learning assumes that the cost does not de-
pend on the example but only on its class. In this way, mis-

1We use 0 for the positive class and 1 for the negative
class, but scores increase with p̂(1|x). That is, a ranking from
strongest positive prediction to strongest negative prediction has
non-decreasing scores. This is the same convention as used by,
e.g., (Hand, 2009).



Brier Curves: A New Cost-Based Visualisation of Classifier Performance

classification costs are usually simplified by means of cost
matrices, where we can express that some misclassification
costs are higher than others (Elkan, 2001). Typically, the
costs of correct classifications are assumed to be 0. This
means that for binary classifiers we can describe the cost
matrix by two values ck ≥ 0, representing the misclassifi-
cation cost of an example of class k. Additionally, we can
normalise the costs by setting b = c0+c1 and c = c0/b; we
will refer to c as the cost proportion. Since b is a constant
which only affects the magnitude of the costs but is inde-
pendent of the classifier, we will set b = 2 which has the
advantage that loss is commensurate with error rate which
assumes c0 = c1 = 1.

The loss which is produced at a decision threshold t and a
cost proportion c is then given by the formula:

Qc(t;c), c0π0(1−F0(t))+ c1π1F1(t) (1)
= 2{cπ0(1−F0(t))+(1− c)π1F1(t)}

We often are interested in analysing the influence of class
proportion and cost proportion at the same time. Since the
relevance of c0 increases with π0, an appropriate way to
consider both at the same time is by the definition of skew,
which is a normalisation of their product:

z ,
c0π0

c0π0 + c1π1
=

cπ0

cπ0 +(1− c)(1−π0)
(2)

From Eq. (1) we obtain

Qc(t;c)
c0π0 + c1π1

= z(1−F0(t))+(1− z)F1(t), Qz(t;z) (3)

This gives an expression for loss at a threshold t and a skew
z. We will assume that the operating condition is either de-
fined by the cost proportion (using a fixed class distribu-
tion) or by the skew.

The ROC curve (Swets et al., 2000; Fawcett, 2006) is de-
fined as a plot of F1(t) (i.e., false positive rate at decision
threshold t) on the x-axis against F0(t) (true positive rate
at t) on the y-axis, with both quantities monotonically non-
decreasing with increasing t (remember that scores increase
with p̂(1|x) and 1 stands for the negative class). We then
have that the Area Under the ROC curve (AUC) can be de-
fined as

AUC =
∫ 1

0
F0(s)dF1(s) =

∫ +∞

−∞

F0(s) f1(s)ds (4)

When dealing with empirical distributions the integral is
replaced by a sum.

The convex hull of a ROC curve (ROCCH) is a construction
over the ROC curve in such a way that all the points on the
ROCCH have minimum loss for some choice of c or z. This

means that we restrict attention to the optimal threshold for
a given cost proportion c:

T o
c (c), argmin

t
{Qc(t;c)}

= argmin
t

2{cπ0(1−F0(t))+(1− c)π1F1(t)} (5)

which matches the optimal threshold for a given skew z:

T o
z (z), argmin

t
{Qz(t;z)}= T o

c (c) (6)

The convex hull is defined by linear interpolation between
the points {F1(t),F0(t)} where t = T o

c (c) for some c. The
Area Under the ROCCH (denoted by AUCH) can be com-
puted in a similar way as the AUC with modified versions
of fk and Fk. Obviously, AUCH ≥ AUC, with equality im-
plying the ROC curve is convex.

A cost plot as defined by (Drummond & Holte, 2006) has
Qz(t;z) on the y-axis against skew z on the x-axis (Drum-
mond and Holte use the term ‘probability cost’ rather than
skew). Since Qz(t;z) = z(1− F0(t)) + (1− z)F1(t), cost
lines for a given decision threshold t are straight lines
Qz = a + bz with intercept a = F1(t) and slope b = 1−
F0(t)−F1(t). A cost line visualises how cost at that thresh-
old changes between F1(t) for z = 0 and 1−F0(t) for z = 1.
The cost curve is then the lower envelope of all the cost
lines, obtained by only considering the optimal threshold
(the lowest cost line) for each skew. An explicit definition
of the cost curve as a function of z in our notation is

CC(z), Qz(T o
z (z);z) (7)

Example 1. Figure 1 (left) shows a ROC curve and a cost
curve (right) for a classifier with 4 examples of class 1 and
11 examples of class 0. Because of ties, there are 11 dis-
tinct scores. We observe 7 segments in the original ROC
curve on the left, and 5 segments in its convex hull. We
see that these 5 segments correspond to the 5 points in the
cost curve on the right. The cost curve is ‘constructed’
as the lower envelope of the 12 cost lines (one more than
the number of distinct scores). The middle plot is an al-
ternative cost plot with cost proportion rather than skew
on the x-axis. That is, here the cost lines are straight
lines Qc = a′+ b′c with intercept a′ = 2π1F1(t) and slope
b′ = 2π0(1−F0(t))−2π1F1(t). We can clearly observe the
class imbalance.

We see a clear correspondence between the ROC convex
hull in ROC space and the cost curve in cost space, but no
cost space equivalent of the non-convex ROC curve. We
propose such an equivalent in the next section.

3. Brier Curves
As shown above, cost curves assume that we set thresholds
optimally, choosing the same thresholds as the ROC con-
vex hull according to Eqs. (5-6). However, thresholds that
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Figure 1. Several graphical representations for a classifier with probability estimates (0.05 0.15 0.16 0.18 0.20 0.20 0.45 0.55 0.70 0.70
0.70 0.85 0.90 0.90 0.95) and classes (0 1 0 0 0 0 0 0 0 1 0 0 1 0 1). Left: ROC curve and convex hull. Middle: cost lines and cost curve
against cost proportions. Right: cost lines and cost curve against skews.

are optimal on a validation set may not carry over to a new
test set. In other words, assuming optimal thresholds leads
to an optimistic assessment of performance. A more natu-
ral way of setting the threshold for a probabilistic classifier
is to consider its probability estimates. We simply set the
threshold to the operating condition, either cost proportion
or skew. This takes the magnitudes of the scores into ac-
count, which is desirable as we argued in the introduction.

Definition 1 (Probabilistic threshold choice). For a given
probabilistic classifier and operating condition defined by
cost proportion, the probabilistic threshold choice method
sets the threshold as follows:

T p
c (c), c (8)

If the operating condition is defined by skew, the threshold
is set as follows:

T p
z (z), z = T p

c (c)
z
c

(9)

We can use this probabilistic threshold choice method to
define a new kind of curve in cost space.

Definition 2 (Brier curve). The Brier curve for a given
classifier is defined as a plot of loss against operating con-
dition using the probabilistic threshold choice method. In
particular, if the operating condition is determined by cost
proportion the Brier curve is defined by

BCc(c), Qc(T p
c (c);c) = Qc(c;c)

= 2cπ0(1−F0(c))+2(1− c)π1F1(c) (10)

A Brier curve for skew is defined by

BCz(z), Qz(T p
z (z);z) = Qz(z;z)

= z(1−F0(z))+(1− z)F1(z) (11)

We will drop the subscript indicating the type of operating
condition if it is clear from the context. We will sometimes

decompose the curve by class: e.g., for cost proportions
BC0(c) = 2cπ0(1−F0(c)) and BC1(c) = 2(1− c)π1F1(c).

We first concentrate on the Brier curve defined in terms of
cost proportions (we will justify the name in the next sec-
tion). Like the cost curve it is piecewise linear as it consists
of segments of cost lines (that is, if we work with empirical
distributions). However, unlike the cost curve it has discon-
tinuities at points where the cost proportion (and hence the
threshold) equals the score of one of the examples. These
discontinuities mirror the discontinuities in the (empirical)
cumulative distribution functions.2 In contrast, cost curves
are continuous because, as a result of choosing thresholds
optimally, they are the lower envelope of all the cost lines.
Both curves have discontinuities in their first derivative.

Example 2. Figure 2 shows the Brier curve of the clas-
sifier from Example 1. The curve is piecewise linear with
discontinuities at points where the cost proportion c equals
the score of one of the examples: at these points the Brier
curve ‘jumps’ to one of the other cost lines. For exam-
ple, the biggest jump occurs at c = 0.7, as this threshold
changes the classification of two positives and one nega-
tive and hence has a big influence on overall loss.

We can also see that the highest loss is obtained for a cost
proportion just below 0.45. The cost curve peaks at a much
lower value of c = 0.25. More generally, the cost curve is
everywhere below the Brier curve except for c < 0.15 and
c ≥ 0.90. The Brier curve therefore exactly quantifies the
extent to which the cost curve is optimistic, and over what
operating range.

The Brier curve also suggests changes that could be made
to the scores in order to improve the curve. For instance,
if the examples with score 0.70 are changed to 0.60, this
would clearly lower the Brier curve in that interval.

2Like empirical cumulative distribution functions, Brier
curves are right continuous with left limits.
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Figure 2. The top curve is the Brier curve of the classifier from
Example 1, depicting the loss if the decision threshold is set equal
to the cost proportion c. The two discontinuous curves below are
BC0 and BC1, respectively. The cost curve is shown as a thick
dashed line. We can see that the probabilistic threshold choice
method is suboptimal between c = 0.15 and c = 0.90.

As a more realistic example, Figure 3 shows the Brier
curves of a J48 model trained in Weka (Witten & Frank,
2005) on the credit rating dataset from the UCI repository
(Frank & Asuncion, 2010) with a 50%-50% train-test split.
The classifier on the top plots is J48 with default parameters
(pruning enabled, Laplace correction disabled), while the
bottom classifier is J48 without pruning but with Laplace
smoothing. We can clearly see the overfitting of the un-
pruned tree, as it shows considerable difference between
the (good) training set curve and the (bad) test set curve.
We can also see the effect of the Laplace correction, which
deliberately sacrifices training set performance on extreme
cost proportions in the hope of better generalisation perfor-
mance. On the test set, we see that estimated probabilities
are well-calibrated for high cost proportions but not for low
ones.

4. The Area under the Brier Curve is the
Brier Score

Since the Brier curve plots loss against operating condition,
the area under it is expected loss, averaged over the whole
operating range. Let us concentrate first on cost proportion
as operating condition. The expected loss is defined as

Lc ,
∫ 1

0
BCc(c)dc =

∫ 1

0
Qc(c;c)dc

=
∫ 1

0
2{cπ0(1−F0(c))+(1− c)π1F1(c)}dc (12)

We then have the following result.
Theorem 1. The area under the Brier curve for cost pro-
portions is equal to the Brier score.

Proof. We have BS = π0BS0+π1BS1. Using integration by
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Figure 3. Brier curves and cost curves for two different J48 clas-
sifiers evaluated on training and test sets both sampled from the
credit rating UCI dataset. Top left: Pruned tree on training set
(AUC: 0.937, AUCH: 0.937, BS: 0.068). Top right: Pruned tree
on test set (AUC: 0.887, AUCH: 0.894, BS: 0.126). Bottom left:
Unpruned tree on training set (AUC: 0.985, AUCH: 0.988, BS:
0.042). Bottom right: Unpruned tree on test set (AUC: 0.893,
AUCH: 0.904, BS: 0.126).

parts, we have

BS0 =
∫ 1

0
s2 f0(s)ds =

[
s2F0(s)

]1
s=0−

∫ 1

0
2sF0(s)ds

= 1−
∫ 1

0
2sF0(s)ds =

∫ 1

0
2sds−

∫ 1

0
2sF0(s)ds

Similarly for the negative class:

BS1 =
∫ 1

0
(1− s)2 f1(s)ds

=
[
(1− s)2F1(s)

]1
s=0 +

∫ 1

0
2(1− s)F1(s)ds

=
∫ 1

0
2(1− s)F1(s)ds

Taking their weighted average, we obtain

BS = π0BS0 +π1BS1

=
∫ 1

0
{π0(2s−2sF0(s))+π12(1− s)F1(s)}ds

which, after reordering of terms and change of variable, is
the same expression as Eq. (12).

The proof for the empirical case, where the cumulative dis-
tribution functions F0 and F1 are piecewise constant and
discontinuous, is similar but more involved notationally.
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We believe that this connection between Brier curves and
the Brier score leads to a better understanding of both con-
cepts. The fact that the area under the Brier curve has an in-
dependent meaning in terms of a well-known performance
index lends further credibility to Brier curves3 similar to
the way that the interpretation of AUC as the Wilcoxon-
Mann-Whitney sum of ranks statistic lends credibility to
ROC curves. Conversely, Brier curves offer a generalisa-
tion of the Brier score in the sense that we can investigate
‘partial Brier score’ as expected loss over a more restricted
range of operating conditions, and ultimately test the con-
tribution of the score differences between individual exam-
ples. In other words, the Brier curve can be seen as an
example-wise decomposition of the Brier score, quite dif-
ferent from the well-known decomposition in terms of cal-
ibration and refinement (Murphy, 1973).

For completeness we state the corresponding result for
skews. We define expected loss as

Lz ,
∫ 1

0
BCz(z)dz =

∫ 1

0
Qz(z;z)dz

=
∫ 1

0
{z(1−F0(z))+(1− z)F1(z)}dz (13)

Corollary 2. Lz = (BS0 +BS1)/2.

5. Comparing Classifiers and Building
Hybrid Classifiers using Brier Curves

One of the most useful features of ROC analysis is that
we can compare classifiers and identify regions where one
classifier dominates other classifiers. This makes it pos-
sible to choose operating ranges and to discard classifiers
safely. However, it should be noted that neither operating
condition nor decision thresholds are explicitly represented
in ROC plots. Cost curves have the operating condition on
the x-axis but no representation of corresponding optimal
thresholds. With Brier curves we assume that thresholds
are chosen using the probability estimates from the classi-
fier, which is exactly what they are for. So, given an op-
erating condition on the x-axis we can simply read off on
the y-axis which classifier will have lowest loss. Given two
classifiers A and B we say that A dominates B at a cost
proportion c iff QA

c (c;c)< QB
c (c;c). From here we can de-

fine dominance intervals and even discard classifiers com-
pletely if they do not dominate in any interval.

Example 3. Consider the following scores and ranks (be-
tween parentheses) assigned by three classifiers A, B and C
to a dataset consisting of 4 negatives and 6 positives:

3In (Murphy, 1966) we find a similar relation to expected util-
ity (in our notation, −(1/4)PS + (1/2)(1+ π0)), where the so-
called probability score is PS = 2BS. The differences arise be-
cause Murphy works with utilities rather than costs and uses a
different cost matrix.
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Figure 4. ROC curves and convex hulls (left) and Brier curves and
cost curves (right) for three of the classifiers in Example 3: green
lines with ‘+’ points: classifier A (AUC: 0.667, AUCH: 0.750,
BS: 0.244); orange lines with ‘x’ points: classifier B (AUC: 0.646,
AUCH: 0.750, BS: 0.240); magenta lines with ‘o’ points: classi-
fier C (AUC: 0.563, AUCH: 0.708, BS: 0.558).

Class A B C D
e1 1 0.70 (4..5) 0.60 (5) 0.00 (1) 0.65 (5)
e2 1 0.80 (7..10) 1.00 (10) 1.00 (9..10) 0.90 (10)
e3 1 0.80 (7..10) 0.95 (9) 0.93 (7) 0.88 (9)
e4 1 0.70 (4..5) 0.25 (1..2) 0.91 (6) 0.48 (4)
e5 0 0.80 (7..10) 0.68 (7) 0.78 (2..3) 0.74 (7)
e6 0 0.75 (6) 0.64 (6) 0.83 (4) 0.70 (6)
e7 0 0.10 (1) 0.37 (4) 0.78 (2..3) 0.24 (2)
e8 0 0.55 (3) 0.30 (3) 0.95 (8) 0.43 (3)
e9 0 0.80 (7..10) 0.72 (8) 1.00 (9..10) 0.76 (8)
e10 0 0.15 (2) 0.25 (1..2) 0.87 (5) 0.20 (1)

Figure 4 shows ROC curves, ROC convex hulls, Brier
curves and cost curves for classifiers A, B and C. In terms
of the Brier curve, classifier A dominates classifier B from
0.1 to 0.5 and from 0.55 to 0.64, while B dominates A from
0.5 to 0.55 and from 0.64 to 1, and neither dominates the
other from 0 to 0.1. However, C is dominated by both A and
B in the entire cost proportion range. So, classifier C can
be safely discarded if thresholds are chosen in a probabilis-
tic way. Notice that the poor performance of C is to a large
part caused by the large difference in predicted probability
of the first and second example in the ranking, which is very
clearly visualised by the Brier curve.

In terms of cost curves, these dominance regions are dif-
ferent: Classifier A dominates classifier B from 0 to 0.4
and B dominates A from 0.4 to 1. Furthermore, there is a
small operating range where C dominates A, and another
one where C dominates B. Only by using the convex hull
of A and B can we discard C completely. This can also be
seen in the ROC plots.

We conclude from this example that, not only are the dom-
inance regions different, but there are also cases where
a classifier can be discarded using one kind of threshold
choice method but not using the other. It is also possible to
construct examples where we can discard a classifier using
ROC analysis but not by means of Brier curves.

Related to the notion of dominance is the idea of combining
classifiers, or modifying a classifier in a given operating
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Figure 5. ROC curve and Brier curve of classifier D which pre-
dicts the average of the probabilities predicted by classifiers A and
B in Example 3 (AUC: 0.750, AUCH: 0.875, BS: 0.231).

range, in order to improve performance. This is a well-
known procedure in ROC space. For instance, concavities
in the ROC curve of a scoring classifier can be repaired by
randomising or inverting the ranking in the corresponding
operating range (Flach & Wu, 2005). The latter procedure
can also be carried out in cost space as it involves taking
the lower envelope of the cost lines involved in a particular
operating range of the Brier curve.

Brier curves open up new ways of combining classifiers on
the basis of their Brier curves. Three possibilities present
themselves. The first is to make a random choice between
two probabilistic classifiers for each prediction,. This has
the effect of averaging the two Brier curves and the cor-
responding Brier scores, and may help to obtain a more
robust classifier. The second possibility is to average the
predicted probabilities of the classifiers – which is not the
same thing. Figure 5 shows the Brier curve of classifier D
in Example 3, which predicts the average of classifiers A
and B. As we see, the resulting classifier is slightly better
than A and B alone in terms of AUC, AUCH and BS.

However, averaging the scores does not get the best of A
and B. From the Brier curves we can construct a hybrid
classifier AB, which uses A’s predictions if the cost pro-
portion is in either interval [0.1,0.5] or [0.55,0.65] and B’s
predictions otherwise. This hybrid classifier is a meta-
classifier that cannot be represented by a single set of
scores. Hybrid classifiers which are piecewise constructed
from sections are biased, as (Drummond & Holte, 2006)
recognise: “a hybrid classifier built piecewise from the cost
curves for the individual classifiers that make up the hybrid
is not an unbiased estimate of performance except when a
performance-independent selection criterion is used” (Sec-
tion 5.2). The way in which piecewise constructed classi-
fiers using Brier curves may be more or less biased depend
on the quality of the probability estimates, i.e., on the ex-
tent to which they are calibrated.

In Figure 6 we demonstrate the impact of calibration using
Brier curves. On the left we see the ROC curves and Brier
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Figure 6. ROC curves and Brier curves for a Naive Bayes classi-
fier on the vote UCI dataset before and after PAV calibration. Top
left: Non-calibrated ROC curve. Top right: PAV-calibrated ROC
curve. Bottom left: Non-calibrated Brier curve. Bottom right:
PAV-calibrated Brier curve.

curves obtained from the raw probabilities of Naive Bayes
using the vote UCI dataset (50% train, 50% test). The Brier
curve clearly locates the loss due to bad calibration between
scores 0 and 0.5, although this has little effect on the rank-
ing quality. On the right we see the result of calibrating
probabilities on the training data with the PAV algorithm
(Fawcett & Niculescu-Mizil, 2007). As expected, calibra-
tion improves both curves. With ROC curves, calibration
has the potential to fix the concavities of the curve, while
with Brier curves it moves the curve closer to the optimal
cost curve. We can see clearly that calibration has failed
between 0.2 and 0.4, which corresponds to the strong dis-
continuity of the slope of the ROC curve.

6. Concluding Remarks
In this paper we have introduced a new graphical tool to
understand the performance of classifiers. This tool is a
curve, drawn in cost space, which allows us to see the per-
formance of a probabilistic classifier for a range of operat-
ing conditions defined by cost proportion or skew. While
ROC curves are useful to represent and analyse rankers,
Brier curves are useful to represent probabilistic classifiers.
In fact, we can operate with Brier curves in a similar way
to ROC curves through the notion of dominance.

Like the ROC convex hull, cost curves take the overly op-
timistic view that thresholds are chosen optimally to min-
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imise cost. Analysing classifier performance using Brier
curves is more appropriate when the probability estimates
are used to set the thresholds, which is both more com-
mon and more realistic. Additionally, the difference in cost
space area between two classifiers is measured as a propor-
tion of their Brier scores, which means that we can detect
the areas where each classifier increases its Brier score over
others, or cases where two classifiers have similar Brier
score but different Brier curves (such as classifiers A and
B in Figure 4). Jointly, cost curves and Brier curves sum-
marise most of the information about the performance of
a classifier, and allow to consider different ways of choos-
ing the thresholds, and their resulting performance. Con-
sequently, we think that cost curves and Brier curves are
perfect companions.

Brier curves, and their connection to the Brier score, open
up many interesting lines to pursue. For instance, confi-
dence intervals for the Brier curve and confidence intervals
for the Brier score are expected to be related. Brier curves
can also play a role in the improvement of classifiers, es-
pecially in terms of calibration. For instance, the Brier
score decomposition and the notion of calibration is likely
to have an interpretation in cost space. Finally, the vari-
ous ways in which Brier curves can be combined to build
hybrid classifiers is interesting to explore.
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