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Abstract

We present a novel probabilistic rating sys-
tem for team competitions. Building upon
TrueSkillTM, we change the factor graph
structure to cope with the problems of
TrueSkillTM, e.g., multiway ties and variable
team size. We give detailed inference algo-
rithms for the new structure. Experimental
results show a significant improvement over
TrueSkillTM.

1. Introduction

In the most general setting, probabilistic rating models
are Bayesian models where the inference aims to find
a linear ordering on a certain set given noisy compar-
isons of relatively small subsets of this set. There are
applications of probabilistic rating models that do not
relate to gaming and matches between players and/or
teams: in general, a rating model is useful whenever
there is no way to compare a large number of entities
directly, but only comparisons with partially informa-
tive results are available (Zhang et al., 2010; Grae-
pel et al., 2010; Stein et al., 2005; Stern et al., 2006).
However, in what follows we will use the metaphor of
matches between teams because the terminology fits
this field very naturally, and our particular applica-
tion does relate to ranking the results of tournaments.

Historically, the first probabilistic rating model was
the Elo rating developed in the 1960s (Elo, 1978); it
could process matches of two players, including draws.
A different class of rating models is represented by
Bradley–Terry models that, in their simplest form, as-
sume that the win probability of a player or team
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is proportional to its “true” rating γi and then fit
parameters γi (Stein et al., 2005; Rao & Kupper,
1967; Bradley & Terry, 1952; Hunter, 2004). The
latest TrueSkillTM model recently developed in Mi-
crosoft Research (Graepel et al., 2007; Dangauthier
et al., 2008) is based on Bayesian inference on factor
graphs. It allows for matches between teams of sev-
eral players, with the team roster changing between
matches. In this paper, we present an updated version
of TrueSkillTM.

We have already identified several problems with the
TrueSkillTM model that we briefly touch upon in Sec-
tion 2 (Nikolenko & Sirotkin, 2010). In this paper, we
provide, in Section 3, the inference algorithms for an
enhanced version of the TrueSkillTM factor graph. We
present the algorithms in more detail than the original
paper (Graepel et al., 2007); we hope the algorithms
in this paper are detailed enough to be easy to imple-
ment in software. Section 4 gives experimental results
that show a significant improvement over TrueSkillTM.

2. The TrueSkillTM rating system

The TrueSkillTM rating system developed by Herbrich,
Minka, and Graepel (2007) performs Bayesian infer-
ence on a factor graph of special form. A sample fac-
tor graph is shown on Fig. 1; there, four teams have
finished a match. Team 1 of two players won, teams
2 and 3, each of one player, drew in second place, and
team 4, of two players, placed last.

In TrueSkillTM, the problem is to compute posterior
ratings given prior ratings and the results of a match
given as a list of places (possibly equal in case of ties).
We assume normal distributions on each layer of the
factor graph, and these layers are as follows:

• si,j represents the skill of player i from team j; it
is normally distributed around µi,j with variance
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σi,j , where (µi,j , σi,j) are prior ratings;

• pi,j represents the performance of player i from
team j in this match; it is conditionally normally
distributed around the skill si,j with variance β,
where β is a model parameter;

• tj represents the performance of team j; in
TrueSkillTM, team performance is the sum of
player performances;

• dj represents the difference in performance be-
tween teams who took neighboring places in the
tournament; a tie between two teams corresponds
to |dj | ≤ ε for some model parameter ε, and a win
corresponds to dj > ε.

In these variables, the general Bayesian inference prob-
lem looks like

p(s | π) =

∫ ∫ ∫
p(π,d, t,p, s)dddtdp =

=

∫ ∫ ∫
p(π | d)p(d | t)p(t | p)p(p | s)dddtdp,

where π denotes match results, and boldface letters
denote the corresponding vectors.

A probabilistic inference algorithm for the TrueSkillTM

model is given in (Graepel et al., 2007); it is based
on the ideas of Minka (2001a; 2001b) that extend
general message passing algorithms (MacKay, 2003).
Messages are passed top-down (from player perfor-
mances to differences between teams) and then back,
each node passing a message to its neighbor whenever
it has received messages from all its other neighbors.
After passing every edge in both direction, updated
distributions at the top nodes correspond to posterior
distributions of the players’ ratings. Message passing
through the top layers of the factor graph is straight-
forward: since all distributions are normal, it is easy to
compute the parameters of any weighted sum of them.
On the other hand, the bottom layer requires an it-
erative message passing algorithm to approximate the
posterior distributions of tj . The problem is that af-
ter processing a node with the I(dj > ε) or I(|dj | ≤ ε)
function, the message distribution ceases to be normal.
TrueSkillTM solves this problem by approximating the
result with a normal distribution and repeating the
message passing iterations until convergence.

However, there are a few issues that the TrueSkillTM

rating system fails to address properly. Our research
concentrates mainly on two problems.

1. Multiway ties. In TrueSkillTM, ties are treated by
the I(|di+1−di| ≤ ε) node, and multiway ties are repre-

sented as chains of such nodes. This may lead to incor-
rect behaviour: if |di+1−di| ≤ ε and |di+2−di+1| ≤ ε,
it means that |di+2 − di| ≤ 2ε, and the effect accumu-
lates. Since victories between neighboring teams are
represented as |di+1−di| > ε, it may even happen that
the maximum likelihood value of a higher-placed team
is smaller than for a lower-placed team. In the exam-
ple on Fig. 1, the maximum likelihood value of team 4
performance t4 may be arbitrarily close to that value
of t2, and if there was one more team tied with t2 and
t3, it might exceed t2. This situation is actually very
likely to occur if the winning team was an underdog,
and its prior distribution fell behind the prior distribu-
tion of team 4; we have seen this effect on our dataset.
We address this problem with new factor graph struc-
ture (see Section 3).

2. Variable team size. Another feature of TrueSkillTM

that we have not found to work well is the assump-
tion that a team’s performance is the sum of player
performances. In many competitions and many com-
parison problems, an undersized team stands a very
good chance against a full one, and measuring its per-
formance as a sum of player performances gives the
players of the smaller team (if they win, of course) a
relatively unfair rating boost.

We propose to alleviate the latter problem by select-
ing a different function for the team performance as
a function of player performances. It is very easy
to replace the sum with any affine function. More-
over, we propose a simple way to approximate non-
linear functions: one can replace player performances
with their estimates provided by the prior ratings
µi. For instance, to approximate a team performance
function t = p21 + p22 + . . . + p2n we replace it with
t = µ1p1 + µ2p2 + . . . + µnpn. The coefficients in this
affine approximation can be given to the rating system
immediately before processing a tournament, so they
are allowed to depend on current player ratings.

3. The new factor graph and inference
algorithm

To cope with the problem of large multiway ties, we
add another layer to the TrueSkillTM factor graph.
The extra layer unites tied teams into a single node
that will participate in the approximate inference it-
erations on its own. The new variables lk correspond
to “average” performances for those subsets of teams
that have shared a single place. If teams t1, . . . , ts have
tied, we introduce a variable l which is related to ti as
|l − ti| ≤ ε. Thus, on the bottom level all dk’s cor-
respond to different places. In order to separate the
places lk, we require that lk+1 − lk = dk > 2ε.
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Figure 1. A sample TrueSkillTM factor graph: four teams, teams 1 and 4 have two players each; teams 2 and 3, one player
each. Team 1 won, teams 2 and 3 drew behind it, and team 4 placed last.
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Figure 2. A new factor graph corresponding to the case shown on Figure 1.
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Figure 3. Messages in algorithms 1 and 3 for a team of two
players. Messages m correspond to Algorithm 1; m′, to
Algorithm 3.

A sample resulting factor graph is shown on Fig. 2.
For the team performance function, we use an abstract
affine function with coefficients αi,j .

Inference in our model is very similar to TrueSkillTM.
As in TrueSkillTM, we assume the players’ performance
distribution to be normal. We need the following op-
erations on normal distributions: addition, multipli-
cation by a constant, multiplication of two normal
distributions, division of two normal distributions (all
operations are assumed to include renormalization).
These operations suffice for all upper layers of the fac-
tor graph. We give formulas for approximate compu-
tations in two cases, a draw and a victory.

We characterize a normal distribution with its mean
µ and variance σ. Addition and multiplication by a
constant change the parameters as follows:

tj
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Figure 4. Messages in algorithm 2.

µsum = µ1 + µ2, σsum =
√
σ22 + σ12,

µ·α = αµ, σ·α = |α|σ.

In the algorithm, we often need to calculate products
of messages, i.e., products of probability densities com-
ing from different nodes. The messages in our case
contain a normal distribution; formulas for the prod-
uct and ratio of two normal densities, we get

µprod = µ1σ2
2+µ2σ1

2

σ2
2+σ1

2 , σprod = σ2σ1√
σ2
1+σ

2
2

,

µdiv =
µ1σ

2
2−µ2σ

2
1

σ2
2−σ2

1
, σdiv = σ2σ1√

|σ2
2−σ2

1 |
.

(1)

Finally, we give formulas for the approximate inference
algorithm (see Appendix for the derivation). There
are two cases; in one, we have to “bounce back” from
a node x with the I(x > ε) function attached to it;
in the other, from a node with the I(|x| ≤ ε) func-
tion attached. All other situations in the factor can
be computed exactly. Consider the original message
m = (µ, σ); approximating the result with a normal
distribution, we get

I>ε(m) =
p>
m
, I≤ε(m) =

p≤
m
, (2)
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where

µ> = µ+ σe
− (µ−ε)2

2σ2

α>
√
2π

,

σ2
> = µ2 + σ2 + σ(ε+µ)e

− (−ε+µ)2

2σ2

α>
√
2π

− µ2
>,

α> = 1
2 −

1
2erf

(
(ε−µ)√

2σ

)
,

µ≤ = µ+ σ(e
− (ε−µ)2

2σ2 +e
− (ε+µ)2

2σ2 )

α≤
√
2π

,

σ2
≤ = µ2 + σ2 − σ (ε+µ)e

− (−ε+µ)2

2σ2 +(ε−µ)e−
(ε+µ)2

2σ2√
2πα≤

− µ2
≤,

α≤ = 1
2erf

(
(ε+µ)√

2σ

)
− 1

2erf
(

(−ε+µ)√
2σ

)
,

(3)
and division is done according to (1).

The entire inference algorithm is shown in Algo-
rithms 1, 2, and 3 (we have broken it up into three
parts for readability). In all algorithms, m is the num-
ber of teams; nj , the number of players in team j; r,
the number of different places (i.e., the number of ver-
tices lk); T (k), the set of indices of teams who shared
the kth place (i.e., the set of tj ’s that are immedi-
ately connected to lk in the factor graph); k(j), the
place team j has occupied. Messages are denoted by
mx→y; each message is identified with a pair of normal
distribution parameters (µx→y, σx→y), and this nota-
tion is used interchangeably. In operations on distribu-
tions, we implicitly assume that the result may have
be renormalized; however, formulas (1)-(3) are nor-
malized already. We illustrate all messages occurring
in the algorithms on Figures 3 and 4.

Algorithm 1 computes the prior distributions on team
performances and the initial approximation to m�lk ;
it is illustrated on Fig. 3 by messages m. Algorithm 2
is the main cycle of approximate message passing; the
messages are shown on Fig. 4. Finally, Algorithm 3
propagates the results of approximate message pass-
ing and outputs updated ratings for every player; it is
shown on Fig. 3 with messages m′.

4. Experimental results

We have tested our approach and compared it with
TrueSkillTM on a database of tournaments from an in-
tellectual game in which teams of (usually) six players
compete in solving problems. In fact, this work has
resulted from trying to apply TrueSkillTM to this rat-
ing problem. The dataset consists of 680 tournaments
featuring about 50000 players. Most of the players par-
ticipated in very few tournaments, but there was a core
subset of players who played many tournaments across
a wide variety of teams. The teams in the dataset’s
tournaments are limited to six players, but smaller
teams are very common. An interesting challenge was

Algorithm 1 Initialization.

Input: (µi,j , σi,j), 1 ≤ j ≤ m, 1 ≤ i ≤ nj .
for j = 1 to m do

for i = 1 to nj do
m�si,j := (µi,j , σi,j)

m�pi,j := (µi,j ,
√
σ2
i,j + β2)

end for
m�tj := α0,j +

∑nj
i=1 αi,jm�pi,j

m�uj := (0, σ�tj )
muj� := I≤ε(m�uj )
mtj� := muj�m�tj

end for
for k = 1 to r do
m�lk :=

∏
j∈T (k)

(
mtj −muj�

)
end for
return {m�lk}rk=1, {m�pi,j(i) ,m�si,j(i)}ni=1.

provided by teams that listed more than six players in
the roster; this meant that a team had had substitu-
tions during the tournament. In these cases, we nor-
malize the team performance function so that the total
team performance approximately matches the perfor-
mance of a team consisting of top six players of the
roster, but keep each player with a nonzero coefficient
in the sum (otherwise, his or her rating will not change
after the tournament).

Some teams have had a very stable roster playing many
tournaments together; however, in general players of-
ten switch teams, and most teams are hard to define in
terms of a roster. A tournament usually has a fixed set
of possible different positions (possible results), about
30-60 positions in total (which means that the teams
had to solve 30-90 problems and were ranked by the
number of correctly solved problems, ties not broken).
However, the number of teams in a tournament could
be very large, exceeding 1000 in some cases. There-
fore, multiway ties, sometimes spanning across dozens
of places, were common.

We have compared the predictive power of two versions
of TrueSkillTM and three versions of our approach.

1. TSa is basic TrueSkillTM: the team performance
is computed as the sum of player performances.

2. TSb is TSa, but the team performance is com-
puted as the average of player performances.

3. In TS2a, team performance is the sum of player
performances and variance is variable; only the
factor graph is different from TrueSkillTM.

4. TS2b is TS2a with a specifically tuned function
of team performance.
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Algorithm 2 Approximate inference.

Input: {m�lk}rk=1.
for k = 1 to r − 1 do
mlk�dk := m�lk
mlk+1�dk := m�lk+1

end for
repeat
for k = 1 to r − 1 do
m�dk := m�lk −m�lk+1

mdk� := I>2ε(m�dk)
mdk�lk := mdk� +mlk+1�dk
mdk�lk+1

:= mlk�dk −mdk�
end for
for k = 1 to r do
for j ∈ T (k) do
mlk�uj := mdk−1�lkmdk�lk

∏
i∈T (k)\jmui�lk

m�uj := m�lk −mtj�
muj� := I≤ε(m�uj )
muj�lk := mtj� −muj�

end for
mlk� :=

∏
j∈T (k)muj�lk

end for
ml1�d1 := ml1�
for k = 2 to r − 1 do
mlk�dk−1

:= mlk�mdk�lk
mlk�dk := mlk�mdk−1�lk

end for
mlr�dr−1

:= mlr�
until convergence
for j = 1 to m do
m�tj := mlk(j)�uj −muj�.

end for
return {m�tj}mj=1.

5. TS2c is TS2b with fixed variance σ = 300.

In TS2b and TS2c, we compute team performance as
the average performance of its players with penalties
for missing players (2% per missing player). If the
roster exceeds 6 (max number of players in the team at
any moment, but substitutions are allowed, so rosters
can get up to 9), we normalize team performance to
the average of (a priori) best six players but leave all
players in the mix (thus, t is the sum of pi,j ’s with
identical weights of (avg of top 6 µi,j ’s)/(sum of all
µi,j ’s) ). Assuming mi,j ’s are sorted, the team skill is
given by

ti =



ni∑
j=1

pi,j

ni
· (0.88 + 0.02ni), if ni ≤ 6,

ni∑
j=1

pi,j ·

6∑
j=1

µi,j

6
ni∑
j=1

µi,j

, if ni > 6.

(4)

Algorithm 3 Propagating the results.

Input: {m′�tj}
m
j=1, {m�pi,j(i) ,m�si,j(i)}ni=1.

for j = 1 to m do
for i = 1 to nj do

m′�pi,j := 1
αi,j

[
m′�tj − α0,j −

∑
i′ 6=i

αi′,jm�pi′,j

]
m′�si,j := µ�pi,j ,

√
σ2

�pi,j + β2

mi,j := m′�si,jm�si,j
end for

end for
return {mi,j}i,j .

Table 1. Comparing predictive power: an entry aij shows
the number of tournaments on which model i has had bet-
ter predictions than model j. Numbers do not add up to
300 due to tournaments with exactly similar predictions.

TSa TSb TS2a TS2b TS2c
TSa 0 57 15 9 8
TSb 237 0 9 3 2

TS2a 281 289 0 57 56
TS2b 288 294 218 0 100
TS2c 289 297 229 178 0

where ni is number of players in team i.

Players start out with µ = 3000 and σ = 1000 each
(except in TS2c, where σ is fixed to be 300). We have
fixed player variability β = 400. We input tourna-
ment results to rating systems in chronological order
and attempt to predict team performances for the next
tournament based on all previous tournaments.

A natural metric for comparing rating systems is to
count the pairs of teams whose relative standings a
rating system has predicted correctly. Figure 5 shows
how the error rate of the four rating systems changed
over time. The graph depicts the average error rate
over a sliding window of 50 tournaments as a func-
tion of the total number of tournaments processed; it
is a measure of both prediction quality and learning
speed. Table 1 lists the pairwise comparisons of all
systems: an entry aij in this table shows in how many
of the last 300 tournaments (the first 380 are treated
as training data) the percentage of correctly predicted
pairs is higher for rating system i than for j. Table 2
shows average pair prediction percentages across all
tournaments and for the last 300, 150, and 50 tourna-
ments. In general, TS2c shows the best results among
competitors, but all three versions of TS2 far outper-
form TrueSkillTM.
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Table 2. The percentage of incorrectly predicted pairs of
teams.

All Last 300 Last 150 Last 50
TSa 40.7 39.5 39.8 39.2
TSb 44.2 32.6 29.5 29.2

TS2a 28.1 22.9 21.2 20.4
TS2b 25.2 21.2 20.1 19.3
TS2c 25.6 20.6 19.7 18.7

100 200 300 400 500 600 700

0.2

0.3

0.4

0.5

Tournaments

E
rr

or
ra

te

TSa TSb
TS2a TS2b
TS2c

Figure 5. Average error rate over the sliding window of 50
tournaments.

5. Conclusion

In this paper, we have described a modification of the
TrueSkillTM probabilistic rating system that addresses
a major problem with TrueSkillTM: incorrect handling
of large multiway ties. We have presented a modi-
fied construction of the factor graph that takes care of
this problem and inference algorithms for this modified
construction. We have also given experimental results
that show that our model outperforms TrueSkillTM

when multiway ties are common.

Another conclusion is that we strongly encourage the
users of TrueSkillTM to tune their team performance
functions because the sum of player performances may
be a very poor approximation to the team perfor-
mance. We do not give our final version of the team
performance function because it clearly is specific to
our particular application; however, we do advise to
make the extra effort of tuning it. Further work in
this direction may include automated procedures for
tuning the constants ε, β, and σ (for fixed variance
versions).
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Appendix

In the Appendix, we derive formulas (2).

Suppose that a node connected to either a I(> ε) or
I(≤ ε) function in the factor graph receives a message;
we assume that the message is a normal distribution
with parameters µ and σ. Let us try to approximate
the distribution corresponding to m>ε (the case when
this node corresponds to a victory). To do that, we
compute p> = mm>ε. The normalization constant is

α> =

+∞∫
−∞

mm>εdx =

+∞∫
ε

mdx =
1

2
− 1

2
erf

(
(ε− µ)√

2σ

)
.

Therefore, we can compute the mean

E(p) =

+∞∫
−∞

xmm>ε

α>
dx

=

+∞∫
ε

xm

α>
dx = µ+

σe−
(µ−ε)2

2σ2

α>
√

2π
.

and the second moment

D(p) =

+∞∫
−∞

x2mm>ε

α>
dx =

+∞∫
ε

x2m

α>
dx

= µ2 + σ2 +
σ(ε+ µ)e−

(−ε+µ)2

2σ2

α>
√

2π
.

Therefore,

µ> = E(p), σ> = D(p)− (E(p))2.

Having obtained p> = mm>ε, we can now find m>ε as
p>/m since we know how to compute the ratio of two
normal distributions. We denote the resulting normal
distribution as I>ε(m).

For m≤ε (the case of a tie), we find the parameters of
q = mm≤ε. Again, the normalization constant is

α≤ =

+∞∫
−∞

mm≤εdx =

ε∫
−ε

mdx

=
1

2
erf

(
(ε+ µ)√

2σ

)
− 1

2
erf

(
(−ε+ µ)√

2σ

)
,

and we get

E(q) =

+∞∫
−∞

xmm≤ε
α≤

dx =

+∞∫
ε

xm

α≤
dx

= µ+
σ(e−

(ε−µ)2

2σ2 + e−
(ε+µ)2

2σ2 )

α≤
√

2π
,

D(qd) =

+∞∫
−∞

d2mdmd>ε

α≤
dd =

+∞∫
ε

d2md

α≤
dd

= µ2 + σ2 − σ (ε+ µ)e−
(−ε+µ)2

2σ2 + (ε− µ)e−
(ε+µ)2

2σ2

√
2πα≤

.

Thus, we have computed the parameters of distribu-
tion q and are now able to find m≤ε as q/m. We denote
the resulting distribution as I≤ε(m).


