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Abstract

Semi-supervised learning (SSL) addresses the
problem of training a classifier using a small
number of labeled examples and many un-
labeled examples. Most previous work on
SSL focused on how availability of unlabeled
data can improve the accuracy of the learned
classifiers. In this work we study how un-
labeled data can be beneficial for construct-
ing faster classifiers. We propose an SSL al-
gorithmic framework which can utilize unla-
beled examples for learning classifiers from
a predefined set of fast classifiers. We for-
mally analyze conditions under which our al-
gorithmic paradigm obtains significant im-
provements by the use of unlabeled data. As
a side benefit of our analysis we propose a
novel quantitative measure of the so-called
cluster assumption. We demonstrate the po-
tential merits of our approach by conducting
experiments on the MNIST data set, showing
that, when a sufficiently large unlabeled sam-
ple is available, a fast classifier can be learned
from much fewer labeled examples than with-
out such a sample.

1. Introduction

In many learning applications unlabeled data is abun-
dantly available while labeled examples are much
harder (or more expensive) to obtain. When data is
generated by some fixed but unknown underlying dis-
tribution, unlabeled samples generated by that distri-
bution reveal information about the distribution and,
at least intuitively, such information could be utilized
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towards the construction of a label predictor. This
intuition drives the work on semi-supervised learning
(SSL) - the utilization of unlabeled samples in classi-
fication prediction tasks.

Semi-supervised learning has become a popular area
of research with hundreds of papers proposing a va-
riety of algorithmic methods (see e.g., (Zhu, 2006)).
Most of the work in this area is directed towards using
the unlabeled data for finding more accurate predic-
tors. In this work we consider a different goal — using
unlabeled data for speeding up the runtime of the pre-
dictors. In many applications, runtime of the learned
classifier is an important factor, and one would prefer
a faster classifier even at the expense of slightly poorer
predictions.

We formally tackle this problem by studying proper
SSL, namely, an SSL setting in which we constrain
the learner to output a predictor that belongs to some
predetermined restricted class of predictors, called the
target class. If the target class only contains fast com-
putable functions, then the properness of the SSL al-
gorithm guarantees that the algorithm will output a
fast predictor. Another scenario to which our formal
setup applies arises when a user is interested in the ex-
planatory aspects of the predictor, requiring the out-
put predictor to belong to a family of functions that
are readily interpretable. Linear classifiers are an ob-
vious example of such desirable predictors, under both
of these scenarios.

Given a target class H of predictors, the goal of an
H-proper learner is to find some h ∈ H whose ac-
curacy (with respect to the unknown data-generating
distribution) is as close as possible to the most ac-
curate predictor in H. In this paper, we show that
unlabeled examples can provably and empirically di-
rect the learner towards more accurate classifiers in
the class.
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The basic idea of our algorithmic paradigm is a simple
two phase procedure. First, we use the labeled sample
to learn a classifier that is not necessarily a member
of the target class H, but has small prediction error.
Note that this classifier might be slow and obscure. In
the second stage, we apply the learned classifier to la-
bel the unlabeled examples, and feed these now-labeled
examples to a fully supervised H-proper learner.

Different algorithms can be derived from our paradigm
by specifying how the classifier is being learned in the
first phase. One option is to apply the ERM rule us-
ing a different class, that we call the approximation
class. Another option is to apply a non-parametric
learning method, such as Nearest Neighbor (NN). In
both cases, our algorithm can yield a predictor h ∈ H
with a higher accuracy compared to learning H with-
out unlabeled examples. We formally prove the last
claim by deriving upper and lower bounds on the (la-
beled) sample complexity of the different approaches.

To analyze the NN-based SSL, we propose a novel
measure for the relationship between the marginal of
a data generating distribution and its conditional la-
bel distribution. Our measure, that we name ”Proba-
bilistic Lipschitzness”, captures the intuition behind
the so-called “cluster-assumption” or “smoothness-
assumption” that are commonly used to support and
motivate SSL paradigms. Our measure allows quantifi-
cation of the degree to which these assumptions hold
for a given learning task.

We demonstrate the potential merits of our approach
by applying it to the MNIST digit recognition data
set, using linear predictors as the target class. As
mentioned before, linear predictors are both fast and
interpretable. Our experiments show that an optimal
linear predictor can be learned from a modest number
of labeled examples, if a large number of unlabeled
examples is available.

1.1. Related work

Semi-Supervised learning is a very active research area.
Probably the most prolific direction is the introduction
of algorithmic approaches and describing their appli-
cation to real life learning tasks (Chapelle et al., 2006).
Most of the work along these lines emphasizes experi-
mental results and is not supported by proven perfor-
mance guarantees.

On the other end of the spectrum there is purely the-
oretical research that focuses on abstract models and
is not intended to be directly applied to real practical
data. One direction of such research are methods that
do not impose any prior assumptions about the data-

generating distributions, like the work of Kääriäinen
(2005), as well as the work of Balcan & Blum (2005).
They suggest to use a notion of a compatibility func-
tion that assigns a higher score to classifiers which
“fit nicely” with respect to the unlabeled distribution.
However, the work of Ben-David et al. (2008), provides
rigorous results indicating that, under worst-case sce-
narios, the utility of unlabeled data in that setup is
very limited.

We aim to combine rigorous theoretical analysis with
practical relevance. Consequently, most related to this
paper are previous works that try to bridge the gap
between theory and practice. In SSL research, such
papers often make strong assumptions about the re-
lationship between the marginal data distribution and
the conditional distribution of labels, or about the type
of probability distributions that generate the data, and
then provide rigorous analysis of the performance of
SSL algorithms under these assumptions.

A popular assumption in that context is the so-called
cluster assumption, postulating that the data contains
clusters that have homogeneous labels. Under such
an assumption, SSL works by using the unlabeled ob-
servations to identify these clusters, and then consid-
ering only classifiers that are constant on each clus-
ter. Closely related to the cluster assumption are the
smoothness assumption and the related low density as-
sumption (Chapelle & Zien, 2005) which suggests that
the classification decision boundaries should lie in low
density regions. For example, Rigollet (2007) provides
a mathematical formalization of (a version of) the clus-
ter assumption. He assumes that the data contains a
collection of countably many connected components of
high density (w.r.t. some threshold density level) and
that for two points in the same cluster, the probability
of them having the same label is greater than 0.5. The
downside of such paradigms is that, since the set of po-
tential classifiers is trimmed down by the assumptions
requirements, if the presumed label-structure relation-
ship fails to hold, the learner may be left with only
poorly performing classifiers.

Maybe most relevant to our setup of using unlabeled
data to improve the runtime of the learned classifier is
work of Liang et al. (2008). They consider learning for
NLP tasks, where expressive conditional random field
(CRF) predictors have low error but are slow to com-
pute. They propose to use unlabeled data to replace
them by fast computable Independent Logistic regres-
sion (ILR). Their algorithmic paradigm is similar to
ours and, in a sense, our work here can be viewed as
generalizing that work. Previous to that, Bucila et al.
(2006) showed experimentally how a similar idea can
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be applied to replace complex ensembles by compact
neural network predictors.

1.2. Outline of the paper

We start, in Section 2, by describing our learning
setup, as well as the SSL algorithmic paradigm we pro-
pose to employ for it. We then go on to describe two
instantiations of that algorithm for two potential sce-
narios, based on different types of prior knowledge. In
Section 3 we provide formal definitions of the learn-
ing model, present our formalization of the cluster as-
sumption, and compare the performance of our SSL
algorithms with the inherent limitations of fully su-
pervised algorithms. Due to space constraints, most
of the proofs are omitted and can be found in a sup-
plementary material (Sup). In Section 4 we describe
the experimental results.

2. The algorithmic paradigm

We consider learning algorithms that are confined by
a prior requirement concerning the nature of the label
predictor they are allowed to come up with. As dis-
cussed in the introduction, this could be a requirement
for fast computability, or interpretability of that pre-
dictor. We model this by specifying a collection of pre-
dictors, called the target class, consisting of the set of
the predictors that meet these prior requirements. Our
goal is to find a low error classifier that is a member
of that pre-specified class H. In many cases such a re-
striction renders the learning task harder. We propose
to first ignore this restriction and use the labeled sam-
ple to solve the unrestricted learning task. Then, use
the unlabeled data to transform the resulting learner
into a predictor from H. More concretely, our learning
algorithms follow a 2-step, rather simple, paradigm:

1. Use the labeled sample to learn a classifier that
is not necessarily a member of the target class H,
but has small prediction error.

2. Apply that learned classifier to label the points of
the unlabeled input sample, and feed that now-
labeled sample to a fully supervised H-learner.

Since labeled samples are needed only for the first step
of this paradigm, the labeled-sample complexity of our
algorithm equals that of the unrestricted learning task.
Consequently, whenever the search for an unrestricted,
low-error classifier has a relatively low sample com-
plexity, our SSL paradigm allows us to find a low-
error predictor in the target class H with less labeled-
examples than what is required by any fully supervised
algorithm.

We investigate two scenarios where such a saving of
labeled examples occurs. First, we analyze our algo-
rithmic paradigm when, on top of the target class H,
determined by the task, the leaner is aware of a differ-
ent (possibly larger) class, the approximation class H ′,
that contains a low error classifier. We then investi-
gate an alternative approach, that does not require the
knowledge of such an H ′ and, instead, uses the nearest
neighbor algorithm in the first step of our paradigm.

2.1. SSL of fast classifiers using a large
approximation class

One scenario in which we can make use of the un-
labeled data in order to learn a classifier from H is
when the learner is aware of a richer class of predic-
tors H ′ that has low approximation error w.r.t the
data-generating distribution - much lower than that of
the best predictor in the class H.

When H ′ is a class of finite VC dimension that
contains a classifier with close-to-zero error, known
learning bounds imply that it can be learned (in
the fully supervised setup) with a sample complex-
ity of O(VCdim(H′) ln(1/ε)

ε ) (see, e.g., Boucheron et al.
(2005)). On the other hand, we prove a lower bound
of Ω( 1

ε2 ) labeled samples, for the task of learning lin-
ear separators without unlabeled examples that holds
even for distributions that are realizable by some learn-
able classes H ′. It follows that in such scenarios, the
labeled-sample complexity of our SSL learning algo-
rithm is strictly lower than that of any fully supervised
learner for the target class H of linear classifiers. For
details, see Section 3.1.

2.2. SSL using nearest neighbors

We also investigate our paradigm when the first step
is carried out using a nearest neighbor algorithm. The
obvious advantage of such an algorithm over the SSL
algorithm discussed above is that it does not require
the prior knowledge of any low-approximation-error
class, H ′. The nearest neighbor algorithm (NN) takes
a labeled sample and, when required to label some do-
main point, assigns to it the label of its nearest neigh-
bor in the labeled sample (with respect to some un-
derlying metric).

The sample complexity of nearest neighbor prediction
algorithms cannot be bounded in a distribution-free
manner (independently of the data-generating distri-
bution). To get a handle on the performance of such al-
gorithms, we introduce a new quantitative formulation
of the cluster assumption. In contrast with common
such assumptions that either hold or fail, our proposed
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measure is quantitative. We consider the probability
that two points have different labels, as a function of
the distance between these points. This function, that
we call ”probabilistic Lipschitzness”, quantifies a rela-
tionship between the unlabeled marginal and the con-
ditional label distribution and the metric structure of
the underlying data space. It captures the intuition
behind assumptions like the ”cluster assumption” and
the ”smoothness assumption” in a formal way that
allows quantification of the degree by which these as-
sumptions hold for a given learning task.

We investigate the sample complexity of the NN-based
SSL paradigm as a function of the degree by which the
learning task conforms with the cluster assumption, as
quantified by our probabilistic Lipschitzness measure.
In Section 3.2 we show that when the data distribution
can be partitioned into homogeneously labeled clusters
with some margin separating any pair of differently
labeled clusters, then the labeled-sample complexity
of our algorithm is O(1/ε) (for any learnable target
class H, and, in particular, for the task of prediction
with linear half-spaces).

When no such nice partitioning exists, we show that
the NN-based SSL algorithm can still be beneficial un-
der milder conditions. In particular, if the underly-
ing data distribution satisfies some probabilistic Lips-
chitzness condition, then for any learnable target class
H (including the task of prediction with linear half-
spaces) the labeled-sample complexity of our SSL al-
gorithm is O

(
d(ln(1/ε))d

ε

)
, where d is the dimension of

the Euclidean space in which our data is embedded.
For that case as well, there are lower bounds showing
that without utilizing unlabeled data, the sample com-
plexity of learning linear separators in such scenarios
is Ω( 1

ε2 ).

3. Formal presentation of our results

In this section we present our results in a more formal
setting and provide the main proof ideas. We start by
introducing some notation and definitions.

We fix some domain set X and some label set Y ,
(which, for concreteness, will be the unit cube in Rd
and the binary set {0, 1}, respectively). A hypothe-
sis or label predictor, is a function h : X → Y , and
a hypothesis class is a set of hypotheses. We assume
that the data for a learning problem is generated by
some target distribution P over X×{0, 1}. We denote
the marginal distribution of P over X by D and let
l : X → [0, 1] denote the labeling rule of this distribu-
tion, i.e. the conditional probability of label 1 at some
point: l(x) = Pr(x′,y)∼P (y = 1|x′ = x). For some

function h : X → {0, 1} we define the error of h with
respect to P as ErrP (h) = Pr(x,y)∼P (y 6= h(x)).

For a class H of hypotheses on X, let the smallest error
of a hypothesis h ∈ H with respect to P be denoted by
optH(P ) := minh∈H ErrP (h). Given a hypothesis class
H, an H-proper SSL-learner takes a labeled sample,
S, and an unlabeled sample, T , and should output a
function h ∈ H. We assume that the labeled sample S
is sampled i.i.d. by P and that the unlabeled sample
T is sampled i.i.d. by D. For simplicity, we focus on
l being a deterministic labeling function, i.e. l : X →
{0, 1}, but our analysis can be readily generalized to
arbitrary labeling functions.

We use the common definition of agnostic PAC proper
learning: An algorithm A is an agnostic PAC proper
learner for some hypothesis class H over X if for all
ε > 0 and δ > 0 there exists a sample size m = m(ε, δ)
such that, for all distributions P over X×{0, 1}, when
given an i.i.d. sample of size m from P , then with
probability at least 1 − δ over the sample, A outputs
a classifier h ∈ H with error at most optH(P ) + ε. In
this case, we also say that the learner (ε, δ)-learns H.

Our algorithms make use of the fact that agnostic
learners are robust with respect to small changes in
the input distribution. We formalize this observation
in the following lemma:

Lemma 1. Let P be a distribution over X × {0, 1},
let f : X → {0, 1} be a function with ErrP (f) ≤ ε0,
let A be an agnostic learner for some hypothesis class
H over X and let m be the sample size required by
A to (ε, δ)-learn H. Then, with probability at least
(1−δ) over an i.i.d. sample of size m from P ’s marginal
labeled by f , A outputs a hypothesis h with ErrP (h) ≤
optH(P ) + 2ε0 + ε.

This lemma implies that, in order to prove the success
of our algorithms, it suffices to show that the classifier
that we learn in the first step of our SSL-algorithm
has error smaller than ε/3 with confidence at least 1−
δ/2. If we then use an agnostic learner for our target-
class H in the second step of our paradigm and feed
this agnostic learner with a sample of the size it needs
to (ε/3, δ/2)-learn H, our paradigm is guaranteed to
(ε, δ)-learn H.

3.1. SSL using an approximation class

Let H be the target class of our H-proper SSL learner
and let H ′ be an approximation class. We denote
by A(H,H′) our two stage SSL algorithm, which first
learns H ′ using the labeled examples and then learns
H using the predictions of the previous stage on un-
labeled examples. In the following we show that if
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optH′(P ) = 0 < optH(P ) then our paradigm can prov-
ably save labeled samples for properly learning the
class H. We first derive an upper bound on the la-
beled sample complexity of A(H,H′).

Theorem 2. For every pair of hypothesis classes H,
H ′, every ε, δ ∈ (0, 1) and every target distribution P ,
if optH′(P ) = 0 then, given access to a labeled sample
S of size 12

ε (VCdim(H ′) log(36/ε) + log(4/δ))
and an unlabeled sample T of size
576
ε2 (2VCdim(H) log(36/ε) + log(4/δ)) , with probabil-

ity at least (1 − δ), we have ErrP (A(H,H′)(S, T )) ≤
optH(P ) + ε.

Proof. To prove the bound, we make use of stan-
dard results of VC-theory. Namely, as H ′ is realiz-
able, Anthony & Bartlett (Theorem 4.8) tells us that
a sample size of 12

ε (VCdim(H ′) log(36/ε) + log(4/δ))
suffices for ERM(H ′) to output a classifier from H ′

that has error at most ε/3 with probability at least
1 − δ/2. Similarly, for ERM(H) a labeled sample of
size 576

ε2 (2VCdim(H) log(36/ε) + log(4/δ)) suffices to
output a classifier with error at most ε/3 with prob-
ability at least 1 − δ/2. Now Lemma 1 implies the
claim.

Note that, even in cases where VCdim(H) <
VCdim(H ′), for sufficiently small values of ε, this
upper bound on the sufficient size of the labeled
sample is smaller than the known lower bound of
Ω
(

VCdim(H)+log(1/δ)
ε2

)
on the required labeled sample

size for learning a hypothesis from H in the agnostic
setup when no additional unlabeled sample is avail-
able. In particular, there are specific distributions in
which we can prove a lower bound on the sample com-
plexity of learning from labeled examples only, which
is higher than the upper bound on the labeled-sample
complexity given in Theorem 2.

Remark 3. The bound on the size of the labeled sam-
ple in Theorem 2 corresponds to the sample complexity
of learning the class H ′. We apply it to learn a class
H that has lower error convergence rate due to having
higher approximation error. However, it is easy to see
that the same paradigm can be applied when the slow
convergence rate of H is due to other reasons, such
as having higher VC dimension. In fact, this situation
occurs in the scenario discussed by Liang et al. (2008).

In our lower bound, we let H be the class of half-spaces
in Rd and let H ′ be the class of all unions of members
of H. Further, we let P be the family of all data
probability distributions that are realizable by H ′.

Theorem 4. The sample complexity of (ε, δ)-
agnostically learning half-spaces in Rd over the set of

distributions P, is bounded below by

1− (1.5ε)2

2(1.5ε)2
ln
(

1
8δ(1− 2δ)

)
.

Proof sketch. To prove this lower bound, we consider
distributions whose support is a discrete set of three
labeled points (x1, 1), (x2, 0) and (x3, 1). If these
three points are collinear with x2 being in between x1

and x3, then clearly no halfspace can correctly clas-
sify these three points, thus it becomes crucial for
the learning algorithm to estimate which of x1 and
x3 has more weight and then to accept misclassifica-
tion of whichever of the two has less weight. In case the
weights of x1 and x3 are roughly the same, say the dif-
ference is 2ε, then we can adapt the lower bound from
Lemma 5.1 in (Anthony & Bartlett, 1999) to show that
we need at least 1−(1.5ε)2

2(1.5ε)2 ln
(

1
8δ(1−2δ)

)
sample points

to decide which point has more weight.

Note that in the situation we described in the proof,
the sample that is needed to estimate the weights can
be replaced with an unlabeled sample. The full proof
of this results can be found in the supplementary ma-
terial. Combining this result with Theorem 2, this
lower bound implies that for learning halfspaces in Rd
the use of unlabeled data is provably beneficial, as our
algorithmic paradigm requires less labeled data as any
fully supervised proper learner for that class.

Corollary 5. Consider the task of proper learning
the class H of half-spaces in Rd w.r.t target distri-
butions that have their labels realizable by some class
H ′ over Rd that has a finite VC-dimension. For this
task, the labeled-sample complexity of our SSL algo-
rithm A(H,H′) is strictly below the sample complexity
of any learning algorithm that outputs linear predic-
tors and does not utilize unlabeled samples.

3.2. SSL using nearest neighbors

In this section we analyze our paradigm with the usage
of a nearest neighbor algorithm in the first stage. In or-
der for the nearest neighbor approach to output a low
error-predictor, we need to make assumptions about
the relationship between the underlying marginal dis-
tribution and the labels. Intuitively, we need to as-
sume, that with high probability close points share
the same label. We now present our proposed for-
malization of this assumption and then proceed with
analyzing our paradigm under this assumption.

Our probabilistic Lipschitzness notion: The
common λ-Lipschitz condition is stated for real-valued
functions, namely, for all x, y, |f(x)−f(y)| ≤ λ||x−y||,
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for some constant λ. This condition can be readily
applied to probabilistic labeling rules ` : X → [0, 1].
However, if the labeling function is deterministic, this
requirement forces any two points with different la-
bels to be at distance of at least 1/λ from each other.
In particular, every binary-valued function satisfying
such a condition over a connected domain, must be
constant. We propose a relaxation of this strict re-
quirement by the following notion, that we call proba-
bilistic Lipschitzness:
Definition 6. For a monotonically increasing φ :
R+ → [0, 1], we say that a function f : X → {0, 1}
is φ-Lipschitz w.r.t. a probability distribution P over
X, if for all λ > 0,
Pr
x∼D

[
∃y
∣∣ f(x) 6= f(y) ∧ ||x− y|| ≤ λ

]
≤ φ(λ).

The probabilistic Lipschitzness generalizes the com-
mon Lipschitzness definition, since if a function is λ-
Lipschitz then it is φ-Lipschitz w.r.t. any distribution
with the function φ(x) = 0 for x ≤ λ and 1 for x > λ.
Applied to the labeling rule of a distribution P , our
notion of probabilistic Lipschitzness encapsulates the
ideas of a “low-density-assumption” or the “cluster as-
sumption” in that it penalizes having high probability
density in areas that are label heterogeneous.

Note that if the data lies in separated homogeneous
clusters and the distance between clusters of oppos-
ing labels is at least 1/λ, then the labeling rule of
this distribution is λ-Lipschitz and is therefore also φ-
Lipschitz for φ(x) = 1[x≤λ]. One can model weaker
clusterability requirements by various monotone func-
tions φ. In particular, we consider the case that a
distribution has a φ-Lipschitz labeling rule for φ(x) =
exp(−1/x).

As an example, consider the following “smoothly clus-
tered” distribution: We let the domain be the unit
interval [0, 1] and let the labeling rule be 0 for x ≤ 1/2
and 1 for x > 1/2. Now we let the density d of the
distribution form clusters by setting d(x) = ce−1/x for
0 ≤ x ≤ 1/4, d(x) = ce−1/|1/2−x| for 1/4 ≤ x ≤
3/4 and d(x) = ce−1/|1−x| for 3/4 ≤ x ≤ 1 with
c = (2e−1/4)−1. This distribution is not λ-Lipschitz
for any constant λ, since there exist arbitrarily close
points with opposing labels. But, we have

Pr
x∼D

[
∃y
∣∣ f(x) 6= f(y) ∧ ||x− y|| ≤ λ

]
≤
∫ 1/2−λ

1/2−λ
ce−1/|1/2−x|dx ≤ e−1/λ

Our results: Next, we explore our paradigm for
proper learning under the probabilistic Lipschitz as-

sumption and show that it is beneficial use a nearest
neighbor function w.r.t. the input labeled sample, in
the first stage of the SSL algorithm. We denote this
SSL-based algorithm by ANN (S, T ).

Let us begin by considering the scenario where
the data is scattered in small but separated
homogeneously-labeled lumps (or clusters). It is easy
to see that under this assumption, the nearest neigh-
bor algorithm will have close-to-zero error if the input
sample is large enough to hit (almost) each of these
clusters. As mentioned above, in such a scenario the
labeling function is λ-Lipschitz (where λ is a lower
bound on the separation between any two differently
labeled clusters).
Theorem 7. Let X be the unit cube of Rd and let H be
any hypothesis class over X with a sample complexity
of m(ε, δ). Given ε, δ ∈ (0, 1) and λ > 0, for every tar-
get distribution P over X × {0, 1}, whose correspond-
ing labeling function is λ-Lipschitz, with probability at

least 1 − δ over the choice of 4
(√

d/λ
)d

6
εδe i.i.d. la-

beled samples and m(ε/3, δ/2) i.i.d. unlabeled samples
we have that ErrP (ANN (S, T )) ≤ optH(P ) + ε.

Thus, if the data lies in well separated clusters, the
required labeled sample size grows linearly with 1/ε.
Next, relaxing this condition, we assume that the
probability of two differently labeled points decays
smoothly as they get closer.
Theorem 8. Let X be the unit cube of Rd and let H be
any hypothesis class over X with a sample complexity
of m(ε, δ). Given ε, δ ∈ (0, 1) and λ > 0, for every tar-
get distribution P over X × {0, 1}, whose correspond-

ing labeling function is φ-Lipschitz, where φ(a) = e−
1
a ,

with probability at least 1− δ over the choice of
√
d
5d

εδ

(
3 ln(3d3/2(εδ)−1/d

)d
i.i.d. labeled samples and m(ε/3, δ/2) i.i.d. unlabeled
samples we have that ErrP (ANN (S, T )) ≤ optH(P )+ε.

For proofs we refer the reader to the supplementary
material. In contrast to the labeled sample complex-
ity of ANN (S, T ) given above, for many concept classes
H of finite VC dimension, there exist probability dis-
tributions that meet the above probabilistic Lipschitz-
ness requirement and yet, any fully supervised algo-
rithm for properly learning H w.r.t these distributions
requires a training data set of size Ω(1/ε2).

4. Experiments

As mentioned in the introduction, linear classifiers are
a prime example of predictors that are desirable, both
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in terms of the speed of evaluating them on an ex-
ample that needs to be labeled, and due to allowing
a clear and intuitive interpretation of the predictor.
In this section we demonstrate how unlabeled exam-
ples can reduce the label-complexity of learning the
class of linear classifiers (when the learned predictors
are required to belong to that class). We have con-
ducted experiments with the well-known MNIST digit
recognition dataset (Cun et al., 1998), which contains
70,000 images (28× 28 pixels each) of the digits 0− 9.
While this dataset is designed for multiclass classifi-
cation (e.g. recognizing the digit in the image), we
constructed a binary classification task by assigning
the label 0 to digits 0 − 4 and the label 1 to digits
5− 9.

4.1. SSL with a complex approximation class

We considered two hypotheses classes over the space
of 28 × 28 images. The first class, denoted H, treats
each image as a vector, x ∈ R784, of gray scale val-
ues at each pixel (note that 784 = 282). Then, each
h ∈ H is a linear classifier parameterized by a vector
w ∈ R784 and a scalar b ∈ R, where the prediction is
h(x) = sign(〈w, x〉). This is our target class of fast
linear predictors.

The second hypothesis class, denoted H ′, is a kernel-
based linear predictor with the kernel function being a
Chamfer distance between images (Barrow et al., 1977;
Felzenszwalb & Huttenlocher, 2004; Gavrila, 2007). In
particular, we first constructed a binary image, de-
noted B ∈ {0, 1}28,28, from each image (by performing
a simple thresholding). We then calculated the dis-
tance transform of each image, denoted D ∈ R28,28,
where Di,j contains the Euclidean distance from pixel
(i, j) to the closest turned pixel of B. The Chamfer
distance between two images represented by B1, B1,
whose distance transforms are D1, D2, is defined to
be: 〈B2,D1〉

‖B2‖1 + 〈B1,D2〉
‖B1‖1 , where the inner product be-

tween matrices A,B is
∑
i,j Ai,jBi,j . Finally, the ker-

nel function, denoted K(x, x′), is set to be e−d(x,x
′)/σ,

where d(x, x′) is the Chamfer distance as described
previously and σ is a parameter (which we tuned using
cross validation). The kernel-based classifier is there-
fore parameterized by a set of images x1, . . . , xr, a vec-
tor of coefficients α1, . . . , αr, and a scalar b ∈ R, where
h(x) = sign (

∑r
i=1 αiK(xi, x) + b).

We compared three algorithms. The first algorithm
only relies on a labeled sample, S, and does not use
unlabeled examples at all. The algorithm trains a lin-
ear classifier from the class H using the regularized
least squares method. That is, the algorithm returns
a minimizer of minw,b

∑
(x,y)∈S(〈w, x〉+b−y)2+λ‖w‖22,

where λ is a regularization parameter we tuned using
cross validation. We refer to this algorithm as ”Lin-
ear”. The second algorithm also only relies on a la-
beled sample, S, without using unlabeled examples.
The algorithm learns a kernel-based classifier from H ′,
using the Chamfer kernel described previously, where
now we used the kernel-based regularized least squares
method. We refer to this algorithm as ”Chamfer”. Fi-
nally, the third method is our semi-supervised learn-
ing approach described in Section 3.1 applied on H
and H ′. That is, we first train a kernel-based classi-
fier from H ′ using a labeled sample S. Let h ∈ H ′

be the output classifier. Next, we predict the labels of
an unlabeled sample, T , using h. Last, we train a lin-
ear classifier from H using the labeled examples in S
plus the examples in T with labels produced by h. We
again used regularized least squares for each training
task. We refer to this algorithm as ”Linear with SSL”.

The MNIST dataset is divided into a training set of
size 60000 examples and a test set of size 10000. We
ran the three algorithms with different sizes of labeled
sample, ranging from 500 to 5000. For the ”Linear
with SSL” method we used the rest of the training
set, without the labels, as a set of unlabeled examples,
T , of size 55000. The test error of the three algo-
rithms is depicted on the left hand frame of Figure 1.
As can be seen from the figure, the class H ′ performs
much better than H. It is also clear that using the
unlabeled set greatly improves the performance of the
learned linear classifier. To further emphasize this, we
ran the ”Linear” method with larger sets of labeled
examples, ranging from 500 to 60000. It is evident
that the performance does not improve significantly
when increasing the training size beyond 20000 exam-
ples, which may indicate that the algorithm achieves
the approximation error of H. Furthermore, running
”Linear with SSL” with 3500 labeled examples yields
the same performance as running ”Linear” with 20000,
that is, the unlabeled examples helped us to be very
close to the best classifier in H using much less labels.

We mention that in this example, the runtime of evalu-
ating the Chamfer classifier on a new example is unre-
alistically large, while the runtime of evaluating a lin-
ear classifier is negligible. In many applications faster
classifier is important even if it leads to poorer predic-
tions, and in that case, our SSL approach leads to the
same performance as the vanilla ”Linear” approach,
while requiring significantly less labels.

4.2. SSL with a Nearest Neighbor algorithm

We have also run the NN-based version of our SSL al-
gorithm on the same MNIST data set (with respect
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Figure 1. Test error of different algorithms (see description in the text) as a function of the number of labeled examples.

to the basic L2 metric over the set of images). The
graphs on the right hand frame of Figure 1 show the
results of these runs. Once again, they show large la-
bel complexity savings of the SSL algorithm compared
to fully supervised linear classifiers learning. It should
be noticed that in this case, the 1-NN predictor that
is used for the first stage of the SSL algorithm has
somewhat higher error rate than that of the Chamfer
based algorithm that is used at the first stage of the
algorithm displayed on the left hand part of the figure.
It is therefore not surprising that the resulting ”Lin-
ear with SSL” algorithm also has a somewhat higher
prediction errors in that version of the algorithm.
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labeled data provably help? worst-case analysis of the
sample complexity of semi-supervised learning. In Pro-
ceedings of the Conference on Learning Theory (COLT),
pp. 33–44, 2008.
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