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Abstract

We propose to construct a weighted major-
ity vote on a set of basis functions by min-
imizing a risk bound (called the C-bound)
that depends on the first two moments of the
margin of the Q-convex combination realized
on the data. This bound minimization algo-
rithm turns out to be a quadratic program
that can be efficiently solved. A first version
of the algorithm is designed for the super-
vised inductive setting and turns out to be
very competitive with AdaBoost, MDBoost
and the SVM. The second version is designed
for the transductive setting. It competes well
against TSVM. We also propose a new PAC-
Bayes theorem that bounds the difference be-
tween the “true” value of the C-bound and its
empirical estimate and that, unexpectedly,
contains no KL-divergence.

1. Introduction

In this paper, we propose a new algorithm, that we
call MinCq, for constructing a weighted majority vote
of basis functions. One version of this algorithm is
designed for the supervised inductive framework and
minimizes a risk bound for majority votes, known as
the C-bound (Lacasse et al., 2007). A second version
of MinCq minimizes the C-bound in the transductive
setting. Both versions can be expressed as quadratic
programs on positive semi-definite matrices.

As it is the case for boosting algorithms, (Schapire
& Singer, 1999), MinCq is designed to output a Q-
weighted majority vote of functions (that we call vot-
ers) which perform rather poorly individually and,
consequently, are often called weak learners. Hence,
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the decision of each vote is based on a small majority.
Moreover, minimizing the C-bound favors votes whose
voters are maximally uncorrelated.

Unfortunately, minimizing the empirical value of the
C-bound tends to overfit the data. To overcome this
problem, MinCq uses a distribution Q of voters which
is constrained to be quasi-uniform (i.e., close to the
uniform distribution in a very specific way) and for
which the first moment of the margin of the Q-convex
combination realized on the training data is fixed to
some precise value µ > 0. This new learning strategy
is justified by a new PAC-Bayes bound (Theorem 2)
dedicated to quasi-uniform posteriors that, unexpect-
edly, contains no KL-divergence between the uniform
prior and the quasi-uniform posterior. MinCq is also
justified by two important properties of majority votes.
First (Proposition 3), there is no generality loss for re-
stricting ourselves to quasi-uniform distributions. Sec-
ond (Proposition 4), for any margin threshold µ > 0,
and for any quasi-uniform distribution Q whose mar-
gin is at least µ, there is another quasi-uniform distri-
bution Q′ whose margin is exactly µ and that achieves
the same majority vote and C-bound value.

We will see that to minimize the C-bound, the learner
must reduce substantially the variance of the mar-
gin distribution. Many learning algorithms actu-
ally exploit this strategy in different ways. Indeed,
the variance of the margin distribution is controlled
by Breiman (2001) for producing random forests,
by Dredze et al. (2010) in the transfer learning setting,
and by Shen & Li (2010) in the boosting setting. Thus,
the idea of minimizing the variance of the margin is
well-known. In this paper, we propose a new theoret-
ical justification for all these types of algorithms and
propose two novel learning algorithms, called MinCq
and TMinCq, that directly minimize the C-bound.

Finally, our experiments show that MinCq is very com-
petitive with Adaboost, MDBoost and the SVM in
the supervised inductive setting, and competes with
TSVM in the transductive setting.
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2. Basic Definitions and notations

We consider binary classification problems where the
input space X consists of an arbitrary subset of Rn

and the output space Y={−1,+1}. An example z
def
=

(x, y) is an input-output pair where x ∈ X and y ∈ Y.

Throughout this paper, we adopt the PAC setting
where each example z is drawn iid according to a
fixed, but unknown, probability distribution D on
X × Y. We denote by DX the X -marginal distri-
bution of D. The training set is denoted by S =
{(x1, y1), . . . , (xm, ym)}.

We only consider learning algorithms that construct
majority votes based on a (finite) hypothesis space
H = {h1, . . . , h2n} of real value functions. These func-
tions can be classifiers such as decision stumps or can
be given by a kernel k evaluated on the examples of
S such as hi(·) = k(xi, ·). Given any x ∈ X , the out-
put BQ(x) of a Q-weighted majority vote classifier BQ
(also called Bayes classifier) is given by

BQ(x) = sgn

[
E
h∼Q

h(x)

]
, (1)

where sgn(a) = 1 if a > 0 and −1 otherwise. Hence,
even if the voters of H are not classifiers, BQ is always
a classifier. The risk RD′(BQ) of any Bayes classi-
fier is defined as the probability that it misclassifies an
example drawn according to a X×Y-distribution D′ :

RD′(BQ)
def
= Pr

(x,y)∼D′

(
BQ(x) 6= y

)
Hence, we retrieve the usual notion of risk if D′=D,
and the usual notion of empirical risk when D′= US ,
the uniform distribution on the set S. Throughout
the paper, D′ will generically represent either the true
(and unknown) distribution D, or its empirical coun-
terpart US . Moreover, for notational simplicity, we
will often replace US by S. In this paper, we also as-
sume that H is auto-complemented, meaning that for
any x ∈ X and any i ∈ {1, . . . , n},

hi+n(x) = −hi(x) .

Moreover, on any auto-complemented H, we only con-
sider quasi-uniform (q-u) distributions, i.e., distribu-
tions Q such that for any i ∈ {1, . . . , n},

Q(hi) +Q(hi+n) = 1/n .

We will see that quasi-uniform distributions constitute
a rich and interesting family in our context. Another
important notion, related to a majority votes, is the

Q-margin1 realized on an example (x, y):

MQ(x, y)
def
= y ·Eh∼Q h(x) .

We also consider the first moment MD′
Q and the second

moment MD′

Q2 of the Q-margin as a random variable

defined on the probability space generated by D′:

MD′
Q

def
= E

(x,y)∼D′
MQ(x, y)

= E
h∼Q

E
(x,y)∼D′

y h(x)

MD′

Q2

def
= E

(x,y)∼D′
(MQ(x, y))

2

= E
(h,h′)∼Q2

E
(x,y)∼D′

h(x)h′(x) .

Note that, since y2 = 1, there is no label y present in
the last equation. Moreover, for any i ∈ {1, . . . , 2n},
we also make use of the following notation

MD′

h
def
= E

(x,y)∼D′
y h(x) ;

MD′

(h,h′)
def
= E

(x,y)∼D′
h(x)h′(x) . (2)

We then have

MD′
Q = E

h∼Q
MD′

h ; MD′

Q2 = E
(h,h′)∼Q2

MD′

(h,h′) .

3. The C-bound, an upper bound of the
risk of Majority vote classifier

It is well known that minimizing RS(BQ) is NP-
hard. To recover tractability we often replace RS(BQ)
by some convex function of Q that upper bounds
RS(BQ). As examples, in boosting, RS(BQ) is re-
placed by the so called empirical exponential loss
E(x,y)∼S

1
2 exp[−β yEh∼Q h(x)] for some β ≥ 1. In

the PAC-Bayes approach (McAllester, 2003) , it is re-
placed by the empirical Gibbs’s risk RS(GQ) that can

be defined in terms of the Q-margin as RS(GQ)
def
=

1
2 −

1
2E(x,y)∼S Eh∼Q yh(x) (Lacasse et al., 2007). It is

well known that both functions are upper bounds of
RS(BQ)/2.

In both cases, however, the bound can be very loose.
Indeed, let us consider the case where the majority
vote is obtained by boosting very weak learners or
even the case of the Support Vector Machine2. In
both cases, each voter is very likely to err on about

1In (Schapire & Singer, 1999), it is called the margin of
the Q-convex combination realized on (x, y).

2Note that the output of an SVM is of the form:

fSVM(x) = sgn
(∑m

i=1 yiαik(xi,x) + b
)

where αi ≥ 0 and

b ∈ R. Thus, it can be viewed as a majority vote whose
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half of the examples, implying that for each exam-
ple (x, y), the Q-margin MQ(x, y) will be close to 0.
Thus, both the empirical exponential loss and the em-
pirical Gibbs’s risk will tend to be close to 1/2. In
these circumstances, we therefore obtain a non infor-
mative bound on R(BQ) saying that it is basically less
than 1, even if for AdaBoost and the SVM we observe
that R(BQ) is in general much closer to 0. This is due
to the fact that voting can dramatically improve per-
formance when the community of voters tends to com-
pensate the individual errors. The following bound,
that we refer to as the C-bound, is in this sense more
interesting than the two others we have just discussed,
and can also be stated in terms of the Q-margin.

Theorem 1. (The C-bound) For any distribution Q
over a class H of functions and any distribution D′

over X×Y, if MD′
Q > 0 then RD′(BQ) ≤ CD′

Q where,

CD′
Q

def
=

Var(x,y)∼D′ (MQ(x, y))

E(x,y)∼D′ (MQ(x, y))
2 = 1−

(
MD′

Q

)2
MD′

Q2

.

Proof. It follows from Equations (1) that BQ classifies

correctly an example if itsQ-margin is strictly positive.

Hence, we have RD′(BQ) ≤ Pr
(x,y)∼D′

(MQ(x, y) ≤ 0).

The result follows from the Cantelli-Chebychev’s

inequality (Devroye et al., 1996):

Pr (X ≤ EX − a) ≤
Var X

Var X + a2
for any a ≥ 0 ,

replacing X by the random variable MQ(x, y) and a
by MD′

Q . Recall that, according to our definitions, we
have Var(x,y)∼D′ (MQ(x, y)) =MD′

Q2 − (MD′
Q )2 .

The C-bound has first been proposed by Lacasse et al.
(2007) for the restricted case where the voters are all
classifiers (i.e., having outputs in {−1,+1}). In their
paper, they showed that the bound can be arbitrary
close to 0 even whenMD′

Q is close to 0, as long as there
is a sufficiently large population of classifiers for which
their errors are “sufficiently uncorrelated”. Hence, the
C-bound seems to take into consideration situations
when the “community of voters tend to compensate
the individual errors”. Moreover, empirical experi-
ments in Lacasse et al. (2007) indicate that CD

Q is a
good predictor of RD(BQ). This, therefore, provides
a motivation for an algorithm whose objective is to
minimize the C-bound.

voters are the functions h+(x) = 1, h−(x) = −1 and the
functions hi(x) = yik(xi,x), i= 1, ..,m. Indeed, if b≥ 0,
the Q-weights are respectively b

Z
, 0 and αi

Z
with i = 1, ..m,

and where Z = b +
∑m
i=1 αi. Similarly, if b < 0, the Q-

weights are 0, −b
Z

and αi
Z
.

4. From the C-bound to the MinCq
learning algorithm

Our first attempts to minimize the C-bound has con-
fronted us to two problems.

Problem 1: an empirical C-bound minimization with-
out any regularization tends to overfit the data.

Problem 2: most of the time, the distributions Q
minimizing the C-bound CS

Q are such that both MS
Q

and MS
Q2 are very close to 0. Since CS

Q = 1 −
(MS

Q)2/MS
Q2 , this gives a 0/0 numerical instability.

Since (MD
Q )2/MD

Q2 can only be empirically estimated

by (MS
Q)2/MS

Q2 , Problem 2 amplifies Problem 1.

PAC-Bayes theorems that bound the difference be-
tween CS

Q and CD

Q are proposed in Lacasse et al.
(2007). This opens the way to structural C-bound
minimization algorithms. As for all PAC-Bayes re-
sults, the bound on CD

Q depends on an empirical es-
timate of it and on the Kullback-Leibler divergence
KL(Q‖P ) between the output distribution Q and an
a priori defined distribution P . Our attempts to con-
struct an algorithm regularized by such a divergence
was unsuccessful. Surprisingly, the KL-divergence is a
poor regularizer in this case. However, restricting our-
selves to quasi-uniform distributions Q had a much
better regularization effect in practice. This is also
supported by the following PAC-Bayes bound on CD

Q

that contains no KL term. From the following the-
orem, an upper (resp. lower) bound on CD

Q can be
obtained by taking the lower (resp. upper) bound on
MD

Q together with the upper (resp. lower) bound on
MD

Q2 . Theorem 2 is restricted to B-bounded voters

(i.e., voters h such that |h(x)| ≤ B ∀x ∈ X ).

Theorem 2. For any distribution D, for any m ≥ 8,
for any auto-complemented family H of B-bounded real
value functions, and for any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all q-u distribution Q on H :

|MD
Q −MS

Q| ≤
2B

√
ln 2

√
m
δ√

2m

 ≥ 1−δ ,

and

Pr
S∼Dm

 For all q-u distribution Q on H :

|MD
Q2 −MS

Q2 | ≤
2B2

√
ln 2

√
m
δ√

2m

 ≥ 1−δ .

Proof. Because of a lack of space, the proof of the sec-
ond bound has been omitted. See Laviolette et al.
(2011), for the complete proof.

Let H be a (possibly infinite) auto-complemented set
of B-bounded functions. In the general setting, we say
that H is auto-complemented if there exists a bijection
c : H → H such that c(h) = −h for any h ∈ H.



From PAC-Bayes Bounds to Quadratic Programs for Majority Votes

Moreover, a distribution on H will be said quasi-
uniform if for any h ∈ H, we have Q(h) + Q(c(h)) =
P (h) + P (c(h)) , where P is the uniform distribution
on H. Note that this implies MD′

c(h) = −MD′

h .

Let us now consider the following Laplace transform

XP
def
= E

h∼P
e
m

2B2 (MS
h−M

D
h )2 .

Note that the function D(q, p)
def
= 1

2B2 (q − p)2 used
in the Laplace transform is convex, because its Hes-
sian matrix ∇2D is positive semi-definite. Moreover,
(MS

c(h)−M
D
c(h))

2 = (−MS
h−(−MD

h ))2 = (MS
h−MD

h )2.
Hence, for any quasi-uniform distribution Q, we have

2· E
h∼P

e
m

2B2 (MS
h−M

D
h )2

=

∫
h∈H
dh P (h) e

m
2B2 (MS

h−M
D
h )2

+

∫
h∈H
dh P (c(h)) e

m
2B2 (MS

c(h)−M
D
c(h))

2

=

∫
h∈H
dh (P (h) + P (c(h))) e

m
2B2 (MS

h−M
D
h )2

=

∫
h∈H
dh (Q(h) +Q(c(h))) e

m
2B2 (MS

h−M
D
h )2

...

= 2 · E
h∼Q

e
m

2B2 (MS
h−M

D
h )2

This, in turn implies3,

XP = E
h∼Q

e
m

2B2 (MS
h−M

D
h )2 .

Now, by Markov’s inequality we have

Pr
S∼Dm

(
XP ≤

1

δ
E

S∼Dm
XP

)
≥ 1− δ .

By taking the logarithm on each side of the innermost
inequality, we have

Pr
S∼Dm

∀ quasi-uniform distribution Q on H :

ln

[
E
h∼Q

e
m

2B2 (MS
h−M

D
h )2
]
≤ ln

[
1
δ

E
S∼Dm

XP
] ≥ 1−δ .

Jensen’s inequality applied to the concave ln(x) gives

ln

[
E
h∼Q

e
m

2B2 (MS
h−M

D
h )2
]
≥ E
h∼Q

m

2B2
(MS

h −MD
h )2 .

Again from the Jensen’s inequality, applied to the con-
vex function m·D(q, p) = m

2B2 (q−p)2, we then obtain:

E
h∼Q

m

2B2
(MS

h −MD
h )2 ≥ m

2B2
(MS

Q −MD
Q )2 .

3Note that it is because of this equality that there is no
KL(Q ‖ P ) term in those PAC-Bayes bounds.

Thus, from what precedes, we have

Pr
S∼Dm

∀ q-u distribution Q on H:

m

2B2

(
MS

Q−MD
Q

)2≤ ln

[
1

δ
E

S∼Dm
XP

]≥ 1− δ. (3)

Now, let us bound the value of E
S∼Dm

XP :

E
S∼Dm

XP = E
h∼P

E
S∼Dm

e
m

2B2 (MS
h−M

D
h )2 (4)

= E
h∼P

E
S∼Dm

e
m 2

(
( 1
2−

MS
h

2B )−( 1
2−

MD
h

2B )

)2

≤ E
h∼P

E
S∼Dm

e
m kl

(
1
2−

MS
h

2B

∥∥∥ 1
2−

MD
h

2B

)
(5)

≤ E
S∼P

2
√
m = 2

√
m (6)

Line (4) follows from the fact that P has been chosen
before seeing the data S. Thus, one can exchange the
order of the two expectations.

Line (5) follows from the inequality 2(q − p)2 ≤ kl(q ‖
p) that is valid for any p, q ∈ [0, 1] provided that if
p=0 then so is q and if p=1 then so is q. Indeed, we

have 0 ≤ 1
2−

MS
h

2B ≤ 1 and 0 ≤ 1
2−

MD
h

2B ≤ 1. Moreover,
since the elements of H are B-bounded and S is drawn
iid from D, it follows from the definition of the margin
that MD

h = −B ⇒ MS
h = −B and MD

h = B ⇒
MS

h =B. We therefore have 1
2−
MD

h

2B =0 ⇒ 1
2−
MS

h

2B =0

and 1
2 −

MD
h

2B =1 ⇒ 1
2 −

MS
h

2B =1, as wanted.

For Line (6), first observe that 1
2−
MS

h

2B is an arithmetic
mean of m iid random variables. Thus Line (6) is
obtained applying Maurer’s Lemma (Maurer, 2004),

with M(X) replaced by 1
2 −

MS
h

2B , n replaced by m,

and ν replaced by 1
2 −

MD
h

2B .

The first bound of the theorem then follows from Equa-
tions (3) and (6).

Note that Theorem 2 is not valid in the sample com-
pression case, that is when H consists of functions
whose definition depend on the training data such as
H = {±k(|xi, ·) | (xi, yi) ∈ S} for some kernel k. How-
ever, it can be extended to this framework using the
techniques proposed in Laviolette & Marchand (2007).
Note also that, even if in this setting H is assumed to
be finite, the theorem is also true if H is infinite.

There has already been some attempts to develop
PAC-Bayes bounds that do not rely on the KL-
divergence (see the localized Priors of Catoni (2007)
for example). The usual idea is to bound the KL-
divergence via some concentration inequality. In the
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bound of Theorem 2, the KL-term simply vanishes
from the bound, provided that we restrict ourselves
to quasi-uniform posteriors. To our knowledge, this
is new in PAC-Bayes theory. The fact that Theo-
rem 2 contains no KL divergence between the prior
P and the posterior Q indicates that the restriction to
quasi-uniform distributions has some “built in” reg-
ularization action. Indeed, for such a Q, we have
0 ≤ Q(h) ≤ 1/n for all h ∈ H—which is a ∞̀ norm
regularization. However, the next proposition shows
that this restriction on Q does not reduce the set of
possible majority votes, and hence, the possible out-
comes of an algorithm that minimizes CS

Q.

Proposition 3. For all distributions Q on H, there
exists a quasi-uniform distribution Q′ on H that gives
the same majority vote as Q, and that has the same
empirical and true C-bound values, i.e.,

BQ′ = BQ , CS

Q′ = CS

Q and CD

Q′ = CD

Q .

Proof. Let Q be a distribution on H, let M
def
=

maxi∈{1,..,n} |Q(hi+n) − Q(hi)|, and let Q′ be defined

as Q′(hi)
def
= 1

2n + Q(hi)−Q(hi+n)
2nM where the indices of h

are defined modulo 2n (i.e., h(i+n)+n = hi). Then it is
easy to show that Q′ is a quasi-uniform distribution.
Moreover, for any example x ∈ X , we have

E
h∼Q′

h(x)
def
=

2n∑
i=1

Q′(hi)hi(x)

=

n∑
i=1

(Q′(hi)−Q′(hi+n))hi(x)

=

n∑
i=1

2Q(hi)− 2Q(hi+n)

2nM
hi(x)

=
1

nM

2n∑
i=1

Q(hi)hi(x) =
1

nM
E

h∼Q′
h(x) .

This implies that BQ′(x) = BQ(x) for all x ∈ X .
It also shows that MQ′(x, y) = 1

nMMQ(x, y), which

implies that
(
MD′

Q′

)2
=
(

1
nMM

D′
Q

)2
and MD′

(Q′)2 =(
1
nM

)2MD′

Q2 for both D′ = D and D′ = S. The result

then follows from the definition of the C-bound.

Proposition 3 points out a nice property of the C-
bound: different distributions Q that give rise to a
same majority vote have the same (real and empiri-
cal) C-bound values. Since the C-bound is a bound on
majority votes, this is a suitable property. Moreover,
Theorem 2 and Proposition 3 indicate that restrict-
ing ourselves to quasi-uniform distributions is a nat-
ural solution to the problem of overfitting (see Prob-
lem 1). Unfortunately, Problem 2 remains present in a

strong way since a consequence of the next proposition
is that, among all the distributions that minimize (or
ε-minimize) the C-bound, there is always one whose
empirical margin MS

Q is as close to 0 as we want.

Proposition 4. For all µ ∈]0, 1] and for all quasi-
uniform distribution Q on H having an empirical mar-
gin MS

Q ≥ µ, there exists a quasi-uniform distribution
Q′ on H, having an empirical margin equal to µ, such
that Q and Q′ induce same majority vote and have the
same empirical and true C-bound values, i.e.,

MS
Q′ = µ , BQ′ = BQ , CS

Q′ = CS

Q and CD

Q′ = CD

Q .

Proof. Let Q be a quasi-uniform distribution on H
such that MS

Q ≥ µ and define Q′ as

Q′(hi)
def
=

µ

MS
Q

·Q(hi) + (1− µ

MS
Q

)·1/2n , i ∈ {1, .., 2n} .

Clearly, Q′ is a quasi-uniform distribution since it is
a convex combination of a quasi-uniform distribution
and the uniform one. Then, similarly as in the proof of
Proposition 3, one can easily show that Eh∼Q′ h(x) =
µ

MS
Q

Eh∼Q h(x), which implies the result.

One way to overcome the instability identified in Prob-
lem 2 is to restrict ourselves to quasi-uniform distri-
butions whose empirical margins are greater or equal
than some threshold µ. By Proposition 4, this is equiv-
alent at restricting ourselves to distributions having
empirical margin exactly equal to µ. From Theorem 1
and Proposition 4, it then follows that minimizing the
C-bound, under the constraint MS

Q ≥ µ, is equivalent
at minimizing MS

Q2 , under the constraint MS
Q = µ ,

which is the simple quadratic program described by
Program 1, below.

Training set bounds (as VC-bounds for example) are
known to degrade when the capacity of classification
increases. As shown by Proposition 4 for the majority
vote setting, this capacity increases as µ decreases to 0.
Thus, we expect that any training set bound degrades
for small µ. This is clearly not the case for the C-
bound itself, but the C-bound is not a training set
bound. To obtain a training set bound, we have to
relate the empirical value CSQ to the true one CDQ . This
is done via the PAC-Bayes bounds of Theorem 2. In
the resulting bound, there is indeed a degradation as
µ decreases because the true C-bound is of the form
1 − (MD

Q)2/MD
Q2 . Since µ = MS

Q, and because a

smallMS
Q tends to produce smallMS

Q2 , the bound on

CDQ given CSQ that we obtain from Theorem 2 is much
looser for small µ because of the 0/0 instability.
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In what follows, µ represents such a restriction on
the margin. Moreover, we say that a value µ is D′-
realizable if there exists some quasi-uniform distribu-
tion Q such that MD′

Q = µ. The proposed algorithm,
called MinCq, is then defined as follows.

Definition 5. – the MinCq algorithm. Given
a set H of voters, a training set S, and a S-realizable
µ > 0, among all quasi-uniform distributions Q of em-
pirical margin MS

Q exactly equal to µ, the MinCq al-
gorithm consists in finding one that minimizes MS

Q2 .

Because of the quasi-uniformity assumption, we only
need to consider the first n values of Q, and only
MS

hi
and MS

(hi,hj)
for i and j in {1, . . . , n} (de-

fined in Equation (2) for D′ = S). Consequently, let

Q
def
= (Q(h1), . . . , Q(hn))T , let MS be the n×n matrix

formed by MS
(hi,hj)

for i and j ∈ {1, . . . , n}. Also let

mS
def
=

(
MS

h1
, . . . ,MS

hn

)T
, and

AS
def
=

(
1

n

n∑
j=1

MS
(h1,hj)

, . . . ,
1

n

hn∑
j=1

MS
(hn,hj)

)T
.

From these definitions, it follows from tedious straight-
forward calculations (see Laviolette et al. (2011), for
the details) that

MS
Q

2
= mT

SQ− 1

2n

n∑
i=1

MS
hi , and

MS
Q2 = 4

[
QTMSQ−AT

SQ
]
+

1

n2

n∑
i,j=1

MS
(hi,hj)

.

Hence, given any S-realizable µ, up to the mul-
tiplicative constant 4 and the additive constant
1
n2

∑n
i,j=1MS

(hi,hj)
, the MinCq algorithm solves the

optimization problem described by Program 1.

Program 1 : MinCq
a quadratic program for classification

1: Solve argminQ QT MS Q − AT
S Q

2: under constraints: mT
S Q = µ

2 + 1
2n

∑n
i=1MS

hi

3: and: 0 ≤ Qi ≤ 1
n ∀i ∈ {1, . . . , n}

To prove that Program 1 is a quadratic program, it
suffices to show that MS is a positive semi-definite
matrix. This is a direct consequence of the fact that
each MS

(hi,hj)
can be viewed as a scalar product since

MS
(hi,hj)

=

〈(√
1
|S| hi(x)

)
x∈SX

,
(√

1
|S| hj(x)

)
x∈SX

〉
,

where SX
def
= {x : (x, y) ∈ S}.

5. TMinCq, a transductive extension

An interesting property of MinCq is that the labels
only appear in the constraints—they are not involved
in the function to be optimized. This opens the way
to many natural extensions to the transductive setting.
In this section, we explore one such extension.

Given access to a set S = {(x1, y1) . . . (x|S|, y|S|)} of
labeled examples and a set U = {x|S|+1 . . .x|S|+|U |}
of unlabeled examples, the task of the transductive
learner is to label as accurately as possible the data
from U . To give us insight on what we should opti-
mize on S and U , we developped a PAC-Bayes bound
that relates the C-bound on the training set S to the

C-bound on V l
def
= {(x1, y1), . . . (x|S|+|U |, y|S|+|U |)} ,

where y|S|+1,.., y|S|+|U | are the correct labels associ-
ated to x|S|+1,.., x|S|+|U |.

More formally, in the transductive setting, we assume
that a set SX is obtained by selecting uniformly at
random (without replacement) the examples in some
given set V of unlabeled examples. The training set
S is then obtained by adding the correct labels to the

examples in SX and U
def
= V \SX . Thus, in this setting,

for any voter h, the random variable m ·RS(h) follows
an hypergeometric law of parameters |V l|, |S|, and
RV l(h). Recall that, in the inductive setting, it follows
a binomial law of parameters |S| and R(h).

Moreover, as pointed out in Section 2, MV l

Q2 can be

computed in this setting because no labels are needed
to obtain its value. However, we do need labels to
obtain MV l

Q . Thus, in the transductive version of the
algorithm that minimizes the C-bound, we consider
MV l

Q2 , but we replaceMV l
Q by its empirical counterpart

MS
Q. The PAC-Bayes bound theoratically corroborat-

ing this idea can be found in Laviolette et al. (2011).

Definition 6. – the TMinCq algorithm. Given
a set H of voters, a set S of labeled examples, a set U
of unlabeled data, and a S-realizable µ > 0, among all
q-u distributions Q of margin MS

Q = µ, the TMinCq

algorithm consists in finding one that minimizes MV l

Q2 .

Following the definitions of the matrices for Program 1,
replacing S by V l, TMinCq solves the quadratic pro-
gram described by Program 2.

Program 2 : TMinCq
a transductive quadratic program for classification

1: Solve argminQ QT MV l Q − AT
V l Q

2: under constraints: mT
S Q = µ

2 + 1
2n

∑n
i=1MS

hi

3: and: 0 ≤ Qi ≤ 1
n ∀i ∈ {1, . . . , n}
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6. Experiments

For all experiments, the QPs MinCq and TMinCq were
solved using CVXOPT (Dahl & Vandenberghe, 2007),
an off-the-shelf convex optimization solver. The first
two experiments were performed in the inductive su-
pervised framework. Except for MNIST, all datasets
were taken from the UCI repository. Each dataset was
randomly split into a training set S of |S| examples and
a testing set T of |T | examples. We also specify the
number of features of each dataset. For all algorithms,
RT (BQ) refers to the frequency of errors, measured on
the testing set, of the resulting majority vote.

We first compared MinCq using decision stumps as
voters (refered in Table 1 as MinCq-stumps), to Ad-
aBoost (Schapire & Singer, 1999) and MDBoost (Shen
& Li, 2010). For all algorithms, we used 10 decision
stumps per feature. The fixed margin parameter µ
of MinCq was selected using 10-fold cross-validation
(CV) among 9 values between 0.0001 and 0.05. The
number of iterations of AdaBoost was fixed to 200.
The paremeter D of MDBoost was selected using 10-
fold CV among the 14 values proposed in Shen & Li
(2010). The results are summarized in Table 1.

In the second experiment, we compared MinCq using
RBF kernel functions4 as voters (refered in Table 1 as
MinCq-RBF) to the SVM. For both algorithms, the
kernel parameter γ was chosen by 10-fold CV among
the set of 15 values proposed in Ambroladze et al.
(2007). For the SVM, the soft-margin parameter C
was chosen by 10-fold CV among a set of 15 values
proposed in Ambroladze et al. (2007). For MinCq,
parameter µ was selected as in the first experiment.

These results show that MinCq has an edge over Ad-
aBoost (11 wins and 6 losses), MDBoost (12 wins and 6
losses) and the SVM (11 wins and 6 losses). Using the
sign test methodology (Mendenhall, 1983), we obtain
a p-value (for the null hypothesis: “there is no dif-
ference”) of 0.17 against AdaBoost, 0.12 against MD-
Boost and 0.03 against SVM, implying that MinCq is
better than SVM, with a confidence of 97%. Also note
that the performance of MinCq can vary significantly
by changing the nature of the voters (see Ionosphere
and Tic-tac-toe).

The last experiment was performed in the transductive
setting by using the benchmark framework of Chapelle
et al. (2006). It provides natural and artificial datasets
that can be used to compare transductive and semi-
supervised learning algorithms. For all datasets, 12
random splits between labeled and unlabeled examples
are provided for |S| ∈ {10, 100}. The small number of

4For a RBF kernel k, k(x,x′) = exp(− 1
2
||x−x′||2/γ2).

labeled examples makes it difficult to perform model
selection. Indeed, many authors that published results
in Chapelle et al. (2006) had to fix the values of their
algorithms’ hyperparameters to some value that was
“experimentally known to perform well”.

Within this framework, we compared TMinCq with
TSVM on 6 datasets provided in the benchmark. Both
algorithms were using the RBF kernel. The TSVM
experiment follows the method proposed in Chapelle
et al. (2006), i.e. the hyperparameter γ of the RBF
kernel had its value set to the median of the pairwise
distances between the training examples; and the pa-
rameter C was fixed to 100. For TMinCq, RBF kernel
functions over the labeled examples were chosen. The
parameters µ and γ were selected by 5-fold CV among
the same values used in the second experiment. Note
that for each CV-fold (and the final training), all avail-
able unlabeled examples are used. Table 2 shows the
mean test error frequency of the 12 splits.

Even if this experiment shows that TSVM has gener-
ally an edge over TMinCq, it also shows that TMinCq
has the potential to perform very well in this setting.

7. Conclusion

We have proposed two new bound-minimization learn-
ing algorithms which reduce to a quadratic program.
This was made possible, firstly, by using quasi-uniform
posteriors which do not limit the expressiveness of
weighted majority votes and, secondly, by providing
new PAC-Bayes bounds free of any KL-divergence
(which also explains why the proposed learning algo-
rithms avoid overfitting).

The proposed algorithms are always quadratic pro-
grams regardless of the choice for the set H of voters—
which can be classifiers or similarity measures k evalu-
ated on the examples. In contrast to the SVM, MinCq
remains a quadratic program even if indefinite similar-
ity measures are used.

Empirically, MinCq performs very well when com-
pared with AdaBoost, MDBoost and the SVM. In the
transductive setting, TMinCq competes with TSVM
even if TSVM seems to perform better overall.
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