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Abstract

The area under the ROC curve (AUC), a well-
known measure of ranking performance, is also
often used as a measure of classification perfor-
mance, aggregating over decision thresholds as
well as class and cost skews. However, David
Hand has recently argued that AUC is funda-
mentally incoherent as a measure of aggregated
classifier performance and proposed an alterna-
tive measure (Hand, 2009). Specifically, Hand
derives a linear relationship between AUC and
expected minimum loss, where the expectation
is taken over a distribution of the misclassifica-
tion cost parameter that depends on the model
under consideration. Replacing this distribution
with a Beta(2,2) distribution, Hand derives his
alternative measure H. In this paper we offer
an alternative, coherent interpretation of AUC as
linearly related to expected loss. We use a dis-
tribution over cost parameter and a distribution
over data points, both uniform and hence model-
independent. Should one wish to consider only
optimal thresholds, we demonstrate that a simple
and more intuitive alternative to Hand’s H mea-
sure is already available in the form of the area
under the cost curve.

1. Introduction and Motivation
The area under the ROC curve (AUC) is a well-known mea-
sure of ranking performance, estimating the probability that
a random positive is ranked before a random negative, with-
out committing to a particular decision threshold. It is also
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often used as a measure of aggregated classification perfor-
mance, on the grounds that AUC in some sense averages
over all possible decision thresholds. David Hand criti-
cises this practice in a recent paper (Hand, 2009). One
version of his argument runs as follows (the details will
be given in Section 2.3). AUC can be interpreted as the
expected true positive rate, averaged over all false positive
rates. For any given classifier we don’t have direct access
to the false positive rate, and so we average over possible
decision thresholds. While there is a relationship between
decision thresholds and cost parameters under which this
threshold is optimal, this relationship is model-specific, and
so the way AUC aggregates performance over possible cost
parameters is model-specific. Expectations over the cost
parameter should be task-specific and not dependent on the
model, and so AUC may make a model’s classification per-
formance look better or worse than it actually is.

The conclusions Hand draws from his analysis appear dev-
astating for AUC: it is “fundamentally incoherent in terms
of misclassification costs”, he writes, as it “evaluates differ-
ent classifiers using different metrics. It is as if one mea-
sured person A’s height using a ruler calibrated in inches
and person B’s using one calibrated in centimetres”. It
is worth emphasising that Hand’s criticism is specifically
directed towards interpreting AUC as a measure of aggre-
gated classification performance. The standard interpreta-
tion of AUC as an estimator of the probability that a random
positive is ranked before a random negative is undoubtedly
model-independent and therefore coherent. It may appear,
then, that the perceived incoherence of AUC as aggregated
classification performance results from the misguided in-
terpretation of a ranking performance measure as a classi-
fication performance measure.

However, we demonstrate in this paper that Hand’s model-
dependent interpretation of AUC arises from restricting at-
tention to thresholds that are optimal under given cost pa-
rameters. We argue that this is not a natural interpretation
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of AUC, and offer an alternative interpretation of AUC as
expected classification performance averaged over cost pa-
rameters as well as data points. This interpretation is coher-
ent because both the distribution over cost parameter and
over examples are uniform and hence model-independent.
Should one wish to consider only optimal thresholds, we
demonstrate that a simple and more intuitive alternative to
Hand’s H measure is already available in the form of the
area under the cost curve. The main contributions of the
paper can thus be summarised as follows. First, we of-
fer a novel, model-independent interpretation of AUC as an
aggregation of macro-accuracy over all possible decision
thresholds and cost parameters. Second, in doing so we
provide a unifying framework for classifier performance
evaluation. Thirdly, we offer a natural interpretation of the
H measure as the area under the cost curve.

The outline of the paper is as follows. The following sec-
tion introduces some notation, and gives a detailed sum-
mary of Hand’s argument. Section 3 presents our new and
classifier-independent interpretation of AUC. In Section 4
we show that Hand’s alternative H measure is a variation of
the area under the cost curve (Drummond & Holte, 2006).
Finally, Section 5 concludes the paper.

2. Preliminaries
We follow notation from (Hand, 2009) to a large extent.
(Much of this section is shared with a related paper propos-
ing a new visualisation of classifier performance in cost
space (Hernández-Orallo et al., 2011).)

The instance space is denoted X and the output space Y .
Elements in X and Y will be referred to as x and y respec-
tively. For this paper we will assume binary classifiers, i.e.,
Y = {0,1}. A crisp or categorical classifier is a function
that maps examples to classes. A soft or scoring classi-
fier is a function m : X → ℜ that maps examples to real
numbers, where the outputs can be interpreted as estimates
p̂(1|x) of the probability of example x to be of class 1 or,
more generally, as scores that are monotonically related to
p̂(1|x). (Hand’s notation is slightly non-standard in that he
uses 0 for the positive class and 1 for the negative class,
but scores increase with p̂(1|x). That is, a ranking on de-
creasing score proceeds from strongest negative prediction
to strongest positive prediction.) In order to make predic-
tions in the Y domain, a soft classifier can be converted
to a crisp classifier by fixing a decision threshold t on the
scores. Given a predicted score s = m(x), the instance x is
classified in class 1 if s > t, and in class 0 otherwise.

For a given, unspecified classifier and population from
which data are drawn, we denote the score density for class
k by fk and the cumulative distribution function by Fk.
Thus, F0(t) =

∫ t
−∞

f0(s)ds = P(s ≤ t|0) is the proportion

of class 0 points correctly classified if the decision thresh-
old is t, which is the sensitivity or true positive rate at t.
Similarly, F1(t) =

∫ t
−∞

f1(s)ds = P(s ≤ t|1) is the propor-
tion of class 1 points incorrectly classified as 0 or the false
positive rate at threshold t; 1− F1(t) is the true positive
rate or sensitivity. We then have that the proportion of
correctly classified examples is (micro-average) accuracy
Acc(t) = π0F0(t)+π1(1−F1(t)); macro-average accuracy
is defined as the unweighted mean of true positive rate and
true negative rate, MAcc(t) = 1

2 (F0(t)+1−F1(t)).

Given a dataset D⊂ 〈X ,Y 〉 of size n= |D|, we denote by Dk
the subset of examples in class k ∈ {0,1}, and set nk = |Dk|
and πk = nk/n. We will use the term class proportion for
π0 (other terms such as ‘class ratio’ or ‘class prior’ have
been used in the literature). Given any given strict order
for a dataset of n examples we will use the index i on that
order to refer to the i-th example. Thus, si denotes the score
of the i-th example and yi its true class. Given a dataset
and a classifier, we can define empirical score distributions
for which we will use the same symbols as the population
functions. We then have fk(s) = 1

nk
|{〈x,y〉 ∈ Dk|m(x) =

s}|, which is non-zero only in n′k points, where n′k ≤ nk is
the number of unique scores assigned to instances in Dk
(when there are no ties, we have n′k = nk). Furthermore,
the cumulative distribution functions Fk(t) = ∑s≤t fk(s) are
piecewise constant with n′k +1 segments.

2.1. Expected Loss

An operating condition or deployment context is usually
defined by a class distribution and a way to aggregate mis-
classification cost over examples. One general approach to
cost-sensitive learning assumes that the cost does not de-
pend on the example but only on its class. In this way, mis-
classification costs are usually simplified by means of cost
matrices, where we can express that some misclassification
costs are higher than others (Elkan, 2001). Typically, the
costs of correct classifications are assumed to be 0. This
means that for binary classifiers we can describe the cost
matrix by two values ck ≥ 0, representing the misclassifi-
cation cost of an example of class k. Additionally, we can
normalise the costs by setting b = c0+c1 and c = c0/b; we
will refer to c as the cost proportion.

The loss which is produced at a decision threshold t and a
cost proportion c is then given by the formula:

Qc(t;c), c0π0(1−F0(t))+ c1π1F1(t) (1)
= b{cπ0(1−F0(t))+(1− c)π1F1(t)}

We are often interested in analysing the influence of class
proportion and cost proportion at the same time. Since the
relevance of c0 increases with π0, an appropriate way to
consider both at the same time is by the definition of skew,
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which is a normalisation of their product:

z ,
c0π0

c0π0 + c1π1
=

cπ0

cπ0 +(1− c)(1−π0)
(2)

From Eq. (1) we obtain

Qc(t;c)
c0π0 + c1π1

= z(1−F0(t))+(1− z)F1(t), Qz(t;z) (3)

This gives an expression for loss at a threshold t and a skew
z. We then have the following simple but useful result.

Lemma 1. If π0 = π1 then z = c and Qz(t;z) = 2
b Qc(t;c).

Proof. If classes are balanced we have c0π0 + c1π1 = b/2,
and the result follows from Eq. (2) and Eq. (3).

This justifies taking b = 2, which means that Qz and Qc are
expressed on the same 0-1 scale, and are also commensu-
rate with error rate which assumes c0 = c1 = 1. The upshot
of Lemma 1 is that we can transfer any expression for loss
in terms of cost proportion to an equivalent expression in
terms of skew by just setting π0 = π1 = 1/2 and z = c.

In many real problems, when we evaluate or compare clas-
sifiers, we do not know the cost proportion or skew that
will apply at application time. One general approach is to
evaluate the classifier on a range of possible operating con-
ditions and report expected loss over that range. In order
to do this, we have to set a weight or distribution on cost
proportions or skews. Following (Adams & Hand, 1999)
we can define the expected loss over a range of situations
as follows:

Lc ,
∫ 1

0
Qc(Tc(c);c)wc(c)dc (4)

where Tc is a threshold choice method which maps cost
proportions to decision thresholds, and wc(c) is a distribu-
tion for cost proportions over [0,1]. By using Qz instead of
Qc we can define expected loss over a range of skews:

Lz ,
∫ 1

0
Qz(Tz(z);z)wz(z)dz (5)

Here we use Tz as a function which converts skews into
decision thresholds and wz as a distribution over skews.

2.2. ROC Curves and Cost Curves

The ROC curve (Swets et al., 2000; Fawcett, 2006) is de-
fined as a plot of F1(t) (i.e., false positive rate at decision
threshold t) on the x-axis against F0(t) (true positive rate
at t) on the y-axis, with both quantities monotonically non-
decreasing with increasing t. We then have that the Area
Under the ROC curve (AUC) can be defined as

AUC =
∫ 1

0
F0(s)dF1(s) =

∫ +∞

−∞

F0(s) f1(s)ds (6)
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Figure 1. ROC curve and convex hull (left), and cost
lines and cost curve (right) for a classifier with scores
(0.95,0.9,0.8,0.7,0.65,0.6,0.5,0.4,0.3,0.2,0.1,0.05) and corre-
sponding true classes (1,1,0,1,1,1,1,0,1,1,0,0) where 1 stands for
the negative class. (AUC: 0.7500, AUCH: 0.8438).

When dealing with empirical distributions the integral is
replaced by a sum.

The convex hull of a ROC curve (ROCCH) is a construction
over the ROC curve in such a way that all the points on the
ROCCH have minimum loss for some choice of c or z. It
is defined in terms of the optimal threshold choice method
for a given cost proportion c:

T o
c (c), argmin

t
{Qc(t;c)}

= argmin
t

2{cπ0(1−F0(t))+(1− c)π1F1(t)} (7)

which matches the optimal threshold choice method for a
given skew z:

T o
z (z), argmin

t
{Qz(t;z)}= T o

c (c)

The convex hull is obtained by linear interpolation between
the points {F1(t),F0(t)} where t = T o

c (c) for some c. The
Area Under the ROCCH (denoted by AUCH) can be com-
puted in a similar way as the AUC with modified versions
of fk and Fk. Obviously, AUCH ≥ AUC, with equality im-
plying the ROC curve is convex. Figure 1 (left) shows an
example ROC curve and its convex hull.

Cost curves (Drummond & Holte, 2006) are a graphical
technique to analyse the behaviour and performance of
classifiers. A cost plot has Qz(t;z) on the y-axis against
skew z on the x-axis (Drummond and Holte use the term
‘probability cost’ rather than skew). Since Qz(t;z) = z(1−
F0(t))+(1− z)F1(t), cost lines for a given decision thresh-
old t are straight lines Qz = a+bz with intercept a = F1(t)
and slope b = 1−F0(t)−F1(t). A cost line, denoted by
CLt , visualises how cost at that threshold changes between
F1(t) for z = 0 and 1−F0(t) for z = 1. The cost curve is
then the lower envelope of all the cost lines, obtained by
only considering the optimal threshold for each skew; an
explicit definition of the cost curve as a function of z in our
notation is

CC(z), Qz(T o
z (z);z) (8)
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The cost lines and cost curve of the classifier whose ROC
curve is depicted in Figure 1 (left) is shown on the right-
hand side of the same figure.

There is a clear duality between ROC plots and cost plots.
Points in a ROC plot are obtained by fixing the decision
threshold, and hence correspond to cost lines. Conversely,
points in a cost plot arise from intersecting two cost lines,
and hence correspond to a line segment in ROC space con-
necting two points. Furthermore, the convex hull of a clas-
sifier in ROC space corresponds to the lower envelope of
the cost lines in the cost curve space. The cost curve
has as many points as there are segments in the ROCCH,
and as many segments as there are non-trivial points in
the ROCCH. The main difference with ROC curves is that
cost curves focus on classification performance rather than
ranking performance. Furthermore, cost curves portray an
optimistic view of the expected loss of a classifier, since
they only consider optimal thresholds. For a new type of
curve in cost space corresponding to a non-convex ROC
curve the reader is referred to (Hernández-Orallo et al.,
2011).

2.3. A Summary of Hand’s Argument

In this section we summarise the main steps in Hand’s ar-
gument that AUC is incoherent as a measure of aggregated
classification performance. Combining Lc as defined in
Eq. (4) and Qc as defined in Eq. (1) we obtain an expression
for expected loss:

Lc =
∫ 1

0
b{cπ0(1−F0(Tc(c)))+(1−c)π1F1(Tc(c))}wc(c)dc

(9)
As in Section 2.1 we choose b = 2 and multiply Hand’s
formulae for expected loss with a factor 2 below.

Hand now uses a specific choice for Tc(c), namely the op-
timal one as defined in Eq. (7); this means that we switch
to expected minimum loss, which we indicate as Lo

c . Under
the assumption of a convex and continuously differentiable
ROC curve, the mapping from c to T o

c (c) is one-to-one and
invertible. (Later on in his paper Hand shows how to re-
lax this assumption, but it is sufficient to consider this spe-
cial case for the moment.) By differentiating Qc(t;c) we
find that the minimising T for cost proportion c satisfies
cπ0 f0(T ) = (1−c)π1 f1(T ), and hence the inverse of T o

c (c)
is

c(T ) = π1 f1(T )/{π0 f0(T )+π1 f1(T )} (10)

We now change the variable of integration in Eq. (9) from c
to T , which gives (c goes to c(T ), dc goes to c′(T )dT , and
T o

c (c) goes to T )

Lo
c =

∫
∞

−∞

2{c(T )π0(1−F0(T ))+(1−c(T ))π1F1(T )}W (T )dT

(11)

Here, W (T ) = wc(c(T ))c′(T ) is a distribution over opti-
mal thresholds, translating prior beliefs over c expressed
by wc(c) into prior beliefs over T expressed by W (T ).

Hand then considers a particular choice for W (T ) which is
the mixture distribution of the two score densities defining
the model, and hence model-dependent:

WG(T ), π0 f0(T )+π1 f1(T ) (12)

We can recover the individual score densities as
WG(T )c(T ) = π1 f1(T ) and WG(T )(1− c(T )) = π0 f0(T );
this simplifies the expression for expected loss to

Lo
c,G =

∫
∞

−∞

2{π0π1{ f1(T )(1−F0(T ))+ f0(T )F1(T )}}dT

Since AUC =
∫ +∞

−∞
F0(s) f1(s)ds and 1 − AUC =∫ +∞

−∞
F1(s) f0(s)ds, we finally arrive at

Lo
c,G = 4π0π1(1−AUC) (13)

In other words, optimising AUC means minimising ex-
pected minimum loss under threshold distribution WG. As
there is a one-to-one mapping from optimal thresholds to
scores, this can be traced back to a score distribution

wG(c) = {π0 f0(T o
c (c))+π1 f1(T o

c (c))}
∣∣∣∣dT o

c (c)
dc

∣∣∣∣ (14)

which depends on the score densities and hence on the clas-
sifier. (Here, Hand writes P−1

1 (c) instead of T o
c (c).)

To summarise, Hand derives a linear relationship be-
tween expected minimum loss and AUC under a classifier-
dependent distribution over cost proportions (wG(c) in
Eq. (14)).1 So, two classifiers may have the same AUC,
but that doesn’t imply that they have equal expected min-
imum loss if a different distribution over cost proportions
was used that was the same for both classifiers. This ap-
pears to be a fatal blow to the credibility of AUC as a mea-
sure of aggregated classification performance. However, in
the next section we derive an alternative interpretation of
AUC as linearly related to expected loss (rather than ex-
pected minimum loss), where the expectation is taken uni-
formly over all cost proportions. The key to our analysis is
that we do not assume that thresholds are chosen optimally
– a very strong assumption, as we will argue.

1To deal with non-continuously differentiable ROC curves,
such as the empirical ROC curves obtained from test samples,
Hand shows in his paper how to deal with a many-to-one relation-
ship between cost proportions and optimal thresholds. To deal
with non-convex ROC curves, Hand proposes to use AUCH in-
stead of AUC. So, strictly speaking, what Hand has derived is
a linear relationship between AUCH and expected minimum loss
under a classifier-dependent distribution over cost proportions.



AUC as a Measure of Aggregated Classification Performance

3. AUC is Coherent When Including
Non-Optimal Thresholds

So far, we have followed Hand, and Drummond and Holte,
in restricting attention to optimal thresholds T o

c as defined
by Eq. (7). But one cannot always expect the user of a
classifier to be aware of ROC curves and/or convex hulls.
Even if s/he knows, it is possible that the optimal thresh-
old for the validation dataset is sub-optimal for the test
dataset. Drummond and Holte (Drummond & Holte, 2006)
are conscious of this problem and are willing to rely on a
threshold choice method which is based on the ROC convex
hull “only if this selection criterion happens to make cost-
minimizing selections, which in general it will not do”.

In our view, basing performance metrics on optimal thresh-
olds is overly optimistic. Other threshold choice meth-
ods are possible. One is to choose the threshold such that
p̂(1|x) = z where z is the operating condition. If scores are
calibrated estimates of the class posterior, this means set-
ting T (z) = z, i.e., making the score threshold equal to the
skew. Drummond and Holte criticise this approach because
many classifiers are not well-calibrated. In what follows we
take a third approach by considering as many thresholds as
there are examples. This leads to an alternative, and co-
herent, interpretation of AUC as a measure of aggregate
classification performance.

In order to derive our alternative interpretation of AUC, we
return to Eq. (1) which gives an expression for the loss pro-
duced at threshold t and cost proportion c:

Qc(t;c) = b{cπ0(1−F0(t))+(1− c)π1F1(t)}

We again assume b = 2 to ensure that loss is commensu-
rate with error rate. We want to obtain an expression for
expected loss without assuming a one-to-one mapping be-
tween cost proportion and threshold, which means that we
need to integrate over these separately:

Lt
c ,

∫ 1

0

∫
∞

−∞

Qc(t;c)W (t)dt wc(c)dc (15)

If we assume a uniform distribution over cost proportions
(i.e., wc(c) = 1) this reduces to

Lt
U(c) ,

∫ 1

0

∫
∞

−∞

2{cπ0(1−F0(t))+(1− c)π1F1(t)}W (t)dt dc

= 2
[∫

∞

−∞

{c2

2
π0(1−F0(t))+(c− c2

2
)π1F1(t)}W (t)dt

]1

0

=
∫

∞

−∞

{π0(1−F0(t))+π1F1(t)}W (t)dt (16)

Now, it may seem natural to choose a uniform distribution
also for W (t). It can be shown that this gives us an ex-
pression for expected loss in terms of the per-class mean

scores. However, this does not give us a connection be-
tween expected loss and AUC. In order to obtain such a
link, we need to choose thresholds indirectly: we uniformly
select an instance x, and set the threshold to the score of
that instance: t = m(x). If x is a positive example then the
resulting threshold distribution is f0(t), and if it’s a nega-
tive it is f1(t); since positives are chosen with probability
π0 and negatives with probability π1 the overall distribu-
tion over thresholds is exactly Hand’s mixture distribution
WG(t) = π0 f0(t) + π1 f1(t). We denote the resulting loss
function as LU(i)

U(c) for uniform cost proportion and uniform
instance selection. We then have the following result.

Theorem 2. Expected loss for uniform cost proportion and
uniform instance selection decreases linearly with AUC as
follows:

LU(i)
U(c) =

Lo
c,G

2
+

π2
0 +π2

1
2

= 2π0π1(1−AUC)+
π2

0 +π2
1

2

Proof.

LU(i)
U(c) ,

∫
∞

−∞

{π0(1−F0(t))+π1F1(t)}{π0 f0(t)+π1 f1(t)}dt

= π0π1

∫
∞

−∞

{(1−F0(t)) f1(t)+F1(t) f0(t)}dt

+π
2
0

∫
∞

−∞

(1−F0(t)) f0(t) dt +π
2
1

∫
∞

−∞

F1(t) f1(t) dt

The first term is equal to half the expected minimum
loss obtained by Hand selecting only optimal thresholds
(Eq. (13)). For the other two terms,

∫
∞

−∞
F1(t) f1(t) dt =∫

∞

−∞
F1(t) dF1(t) = 1/2 and the result follows.

Corollary 3. Expected loss for uniform skew and uniform
instance selection decreases linearly with AUC as follows:

LU(i)
U(z) =

Lo
z,G

2
+

1
4
=

1−AUC
2

+
1
4

These results demonstrate the effect of including non-
optimal thresholds very clearly: it weakens the influence of
AUC by a factor 2, and introduces a constant term depend-
ing only on the class distribution. As a result, expected loss
for uniform skew ranges from 1/4 for a perfect ranker that
is harmed by sub-optimal threshold choices, to 3/4 for the
worst possible ranker that puts positives and negatives the
wrong way round, yet gains some performance by putting
the threshold at or close to one of the extremes.

3.1. The Case of Empirical ROC Curves

So far we have concentrated on the case where we have ac-
cess to population densities fk(s) and distribution functions
Fk(t). In practice this is unrealistic, and we have to work
with empirical estimates (in fact, the example in Figure 1
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Figure 2. The cost line plots for the classifier in Example 1 (Left)
and in Example 2 (Right). The red line shows the average of all
the cost lines, the area under which is LU (i)

U(z) .

used empirical estimates). In this section we provide an al-
ternative formulation of our main result, relating empirical
loss to the AUC of the empirical ROC curve. We introduce
the main ideas by means of examples.

Example 1. Consider a dataset with 4 examples with
classes (1,1,0,0,0) and scores (0.9,0.8,0.7,0.2,0.1). Us-
ing the example scores as thresholds t1, . . . , t5, we can cal-
culate the loss for each threshold as follows:

t1 t2 t3 t4 t5 Avg
F0(ti) 1 1 1 2/3 1/3 4/5
F1(ti) 1 1/2 0 0 0 3/10

Qz(ti;z) 1− z 1−z
2 0 z/3 2z/3 3−z

10∫ 1
0 Qz(ti;z)dz 1/2 1/4 0 1/6 1/3 1/4

Notice that each of the Qz(ti;z) represents one of the cost
lines associated with the classifier. Averaging the Qz terms
gives 3−z

10 ; averaging over all z (i.e., taking z = 1/2) gives
an expected loss of 1/4.

However, the problem with this loss calculation is that
it does not take account of one of the default classifiers,
namely the one with F0(t6) = F1(t6) = 0 and Qz(t6;z) = z.
Including this one in the average gives 3+z

12 and a slightly

higher expected loss of 7/24 (denoted by LU (i)
U(z) since now

we use a discrete uniform distribution).

The second issue we have to deal with concerns tied scores.

Example 2. We now change the scores in the previous
example to (0.9,0.7,0.7,0.2,0.1); i.e., the lowest scor-
ing negative and the highest scoring positive get the same
score. This reduces the AUC to 11/12. We obtain the fol-
lowing losses for each threshold:

t1 t2 t3 t4 t5 t6 Avg
F0 1 1 1 2/3 1/3 0 2/3
F1 1 1/2 1/2 0 0 0 1/3
Qz 1− z 1−z

2
1−z

2 z/3 2z/3 z 1/3∫ 1
0 Qz 1/2 1/4 1/4 1/6 1/3 1/2 1/3

Averaging the Qz terms gives 1/3, i.e., a horizontal cost
line, which is therefore also the expected loss.

However, this turns out to be a biased estimate, as we see
when we swap the classes and take the complement of the
scores. We now have a ranking (1,1,1,0,0) and scores
(0.9,0.8,0.3,0.3,0.1), which produces:

t ′1 t ′2 t ′3 t ′4 t ′5 t ′6 Avg
F0 1 1 1 1 1/2 0 3/4
F1 1 2/3 1/3 1/3 0 0 7/18
Qz 1− z 2(1−z)

3
1−z

3
1−z

3 z/2 z 14−5z
36∫ 1

0 Qz 1/2 1/3 1/6 1/6 1/4 1/2 23/72

The Qz terms average to 14−5z
36 with an expected loss of 23

72 .

The reason for this discrepancy – which only manifests it-
self when we have tied scores between positives and neg-
atives – is that setting thresholds on examples, combined
with a decision rule that classifies examples as class 1 if
they exceed the threshold, biases tied examples in favour
of class 0. It follows that swapping the classes exhibits a
bias in favour of the original class 1, and the right thing to
do is to average these two cases. That is, the expected loss
in Example 2 is actually 47/144. The previous calculations
can be generalised according to the following result (proofs
of this theorem and the next can be found in (Flach et al.,
2011)):
Theorem 4. Let AUC be an empirical estimate obtained
from a dataset with n examples, then the expected loss for
uniform skew and (discrete) uniform instance selection is

LU (i)
U(z) =

(
n

n+1

)
1−AUC

2
+

(
n+2
n+1

)
1
4

Clearly, LU (i)
U(z) converges to LU(i)

U(z) when n→ ∞.

Interestingly, considering the n examples plus an extra de-
fault classifier in both directions is equivalent to consider-
ing the threshold placed between examples. And each of
these n+ 1 cases corresponds to one cost line CLti , as ar-
gued before. Since each cost line CLti goes from F1(ti) to
1−F0(ti), its area is 1/2(F1(ti) + 1−F0(ti)). But this is
exactly 1−MAcc(ti). This leads to the following result:
Theorem 5.

LU (i)
U(z) =

1
(n+1)

n+1

∑
i=1

∫ 1

0
CLti(s)ds

=
1

(n+1)

n+1

∑
i=1

(1−MAcc(ti))

The average of all the cost lines can itself be drawn as a
cost line, as shown in Figure 2 for Examples 1 and 2. For
Example 1 the red line stretches from 1/4 to 1/3 and the
area beneath it is 7/24. This line, which we call loss line
and denote by LL, is defined as follows

LL(s),
1

(n+1)

n+1

∑
i=1

CLti(s)
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Figure 3. Cost lines for the classifier in Figures 1 and 4 for cost
proportions (left) and for skews (right). The red line shows the
average of all the lines, the area under which is the expected loss.

We then have that

LU (i)
U(z) =

∫ 1

0
LL(s)ds

Since LU (i)
U(z) is linearly related to AUC, this allows us to say

that the loss line is a graphical representation of AUC in
cost space.

We thus reach a natural and straightforward interpretation
of AUC for classification. Classification performance for
a single crisp classifier is measured by macro-accuracy
(when working with skews). By placing the thresholds
between the examples, we obtain an instance-based aver-
age of the macro-accuracies. As our results show, and as
demonstrated in Figure 2 and Figure 3 (right), this is ex-
actly what LU (i)

U(z) is. And AUC is just a linear scaling of it.
When working with cost proportions, we obtain a similar
interpretation with accuracy instead of macro-accuracy, as
shown in Figure 3 (left). The red line in this case represents
a variant of AUC which is sensitive to the class proportion.

4. Expected Minimum Loss is Measured by
the Area under the Cost Curve

In this section we show that Hand’s new measure H –
which is to use expected minimum loss under a Beta distri-
bution for w(c) – is a variation of a well-known measure,
namely the area under cost curve as introduced by (Drum-
mond & Holte, 2006).

Hand’s alternative to AUC is an explicit expected minimum
loss measure with the cost distribution wc(c) equal to the
beta distribution B(c,α,β ):

Lα,β ,
∫ 1

0
Qc(T o

c (c);c)B(c,α,β )dc (17)

Hand defines his new measure H as a linear transformation
of Lα,β :

H , 1−
Lα,β

LMax
(18)

where LMax is the expected loss of the worst case (a classi-
fier whose ROCCH is diagonal). This makes H compara-

ble to AUC: both are expressed on a 0-1 scale, with higher
numbers meaning better performance. Hand suggests to
use α = β = 2.

The argument that Hand’s proposal is closely related to the
area under the cost curve is straightforward. From Eq. (5)
we obtain the following definition of expected minimum
loss in terms of skews:

Lo
z ,

∫ 1

0
Qz(T o

z (z);z)wz(z)dz =
∫ 1

0
CC(z)wz(z)dz (19)

The equation on the right uses the functional form of the
cost curve as defined in Eq. (8). Clearly, this calculates
the area under the cost curve if wz(z) is the uniform dis-
tribution. Drummond and Holte give essentially the same
formula on p.106, writing x for z and prob(x) for wz(z) and
calling the resulting loss ‘total expected cost’ or TEC. They
note that “[t]he area under a cost curve is the expected cost
of the classifier assuming all possible probability-cost val-
ues [i.e., skews] are equally likely, i.e. that prob(x) is the
uniform distribution.”

It follows that the evaluation measure H as introduced by
Hand is a linear transformation of the area under the cost
curve, with two small variations: using cost proportions
instead of skews (so being sensitive to class priors); and re-
placing the uniform distribution with a Beta(2,2) distribu-
tion. Figure 4 visualises these variations for the classifier in
Figure 1. Each plot has loss (Qc(T o

c (c);c) or Qz(T o
z (z);z))

on the y-axis and weighted cost proportion or skew (wc(c)
or wz(z)) on the x-axis. The bottom left plot shows the cost
curve as introduced by Drummond and Holte; this is the
same curve as in Figure 1 (right). The other curves show
the effect of using the cost proportion instead of the skew
(top row) and using the Beta(2,2) distribution instead of
the uniform distribution (right column). Hand’s proposal
L2,2 is at the top right. We denote these four loss mea-
sures Lo

U(c), Lo
U(z), Lo

B2,2(c)
and Lo

B2,2(z)
. From Lemma 1

it follows that Lo
U(c) = Lo

U(z) and Lo
B2,2(c)

= Lo
B2,2(z)

when
the classes are balanced. For the uniform distribution cost
lines are straight, while for Beta(2,2) they are curved. It
is worth mentioning that using AUC, AUCH, Lo

U(z), Lo
B2,2(z)

,
Lo

U(c) and Lo
B2,2(c)

for model selection may produce different
choices, since none of these six measures is a monotonic
function of another.

The fact that Hand’s new measure is dependent on the class
priors is openly recognised by him when he writes: “[i]t is
worth noting that, whereas the AUC, the Gini coefficient,
and the AUCH measure are independent of the class pri-
ors, π0 and π1, the H measure depends on the priors. This
is clearly necessary since H is a measure of the (comple-
ment of) misclassification loss, and this depends on the rel-
ative proportion of objects belonging to each class” ((Hand,
2009), page 116). We disagree with Hand as this being
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Figure 4. A visualisation of the classifier in Figure 1 using several
plots which change the distribution on cost proportions or skews.
Top Left: Qc using a uniform distribution (Lo

U(c) = 0.0611). Top
right: Qc using a Beta(2,2) distribution (Lo

B2,2(c)
= 0.0727, corre-

sponding to H = 0.4653). Bottom left: Qz using a uniform distri-
bution (Area under the cost curve, Lo

U(z) = 0.0708). Bottom right:
Qz using a Beta(2,2) distribution, Lo

B2,2(z)
= 0.0900.

“necessary”, since we have seen that a similar derivation
can be obtained with skews. In our opinion, the notion of
skew is a more general and more useful formalisation of
operating condition, as has been vindicated in ROC analy-
sis and also in cost curves. On the other hand, the use of
a Beta(2,2) distribution instead of a uniform distribution is
an “arbitrary” choice ((Hand, 2009), page 115). In fact, this
choice makes cost plots more difficult to draw and interpret
since cost lines become curved.

5. Concluding Remarks
In this paper we have shown that AUC can be a coherent
measure of aggregated classification performance when, in
lieu of Hand’s interpretation which restricts attention to op-
timal thresholds, we consider all scores that have been as-
signed to data points as thresholds. In this way, we have
been able to derive an expression of AUC which integrates
loss over a skew distribution that is independent of the clas-
sifier. This makes Hand’s objections regarding the incoher-
ence of AUC vanish.

We have also derived a visualisation of (a linear transfor-
mation of) AUC in cost space by means of averaging cost
lines, which we call loss line. This loss line leads to a view
of AUC in terms of the average of the macro-accuracies be-
tween examples. As a result, the interpretation of AUC as

an aggregated classification performance measure becomes
crystal clear.

Regarding the H measure, we show that it is a linear trans-
formation of the area under the cost curve, with two small
variations: using cost proportions instead of skews and re-
placing the uniform distribution with a Beta(2,2) distribu-
tion. Neither of these variations appears more strongly jus-
tified than the area under the cost curve): the first makes
H sensitive to class priors, and the second is, ultimately,
not less arbitrary than a uniform distribution which has the
advantage that cost lines are straight.
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