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Abstract

We show how the SVM can be viewed as a
maximum likelihood estimate of a class of
probabilistic models. This model class can be
viewed as a reparametrization of the SVM in
a similar vein to the ν-SVM reparametrizing
the classical (C-)SVM. It is not discrimina-
tive, but has a non-uniform marginal. We
illustrate the benefits of this new view by re-
deriving and re-investigating two established
SVM-related algorithms.

1. Introduction

The SVM is one of the most used and best studied
machine learning models. As such, many aspects of
it have been assayed, including its links to learning
theory and regularization, its geometry, the influence
of kernels on its regularization, its consistency, and
its efficient optimization (Vapnik, 1998; Schölkopf &
Smola, 2002; Steinwart & Christmann, 2008). This
understanding has laid the ground for significant de-
velopments including recent methods for efficient and
effective structured output learning.

However, one major gap in our understanding of SVMs
still persists: the attempts to place it in a probabilistic
framework have remained unsatisfactory. For instance,
(Sollich, 2002) interprets the hinge loss as − log p(y|x),
which necessitates to artificially introduce a “don’t-
know” class. Counter-intuitively its probability, a no-
tion of predictive uncertainty, is minimal at the bor-
der of the margin (i.e., for f(x) = ±1) and increases
when moving further away from the decision surface.
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In (Grandvalet et al., 2005) the SVM objective is taken
as an approximation to the negative log-likelihood such
that the SVM outputs are translated into probability
intervals. In a practical but also heuristic approach,
(Platt, 2000) suggested to retrospectively fit a logit
function to map (non-probabilistic) SVM outputs to
probabilities. This works well and has become the
standard, but fails to provide insight.

In fact, there are theoretical arguments indicating that
the hinge loss used by the SVM does not lend itself
well to the estimation of posterior class probabilities:
as the number of datapoints goes to infinity, under
certain conditions on the kernel and on the rate at
which the regularization strength tends to zero, the
real-valued discriminant function f returned by the
SVM essentially converges to the optimal ±1-valued
classifier, sign

(
Pr(y = 1|x)− 1

2

)
(Steinwart & Christ-

mann, 2008). This indicates that the SVM tries to ap-
proximate a function that does not retain information
beyond the (optimal) class membership.1 However,
this does not mean that the estimation of conditional
probabilities is necessarily impossible in the finite sam-
ple setting. In that case, f will typically have a much
larger range (e.g., a non-empty interval of R). More-
over, for the widely used linear kernel, the RKHS is
not rich enough to approximate the Bayes classifier,
so the above result does not apply in the first place.

Why has the SVM evaded being cast as an ML or
MAP estimate of a probabilistic model—especially
given that the rather similar (penalized) kernel logis-
tic regression (LR) is clear and simple? Two men-
tal barriers had to be overcome. First, typically the
SVM (analoguous to LR) is taken to be a discrimina-
tive model, i.e., one that only specifies the conditional

1In a sense, this is the flipside of the SVM’s sparsity, as
argued by (Bartlett & Tewari, 2007).
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p(y|x). In contrast, we argue that the SVM implies
a (non-uniform) marginal p(x), giving it a generative
touch. Second, it is alluring to expect a model whose
ML/MAP solution exactly agrees with the standard
SVM. While we do not know whether this is possi-
ble at all, we did succeed in recovering an alternative
parameterization of the SVM as an ML estimate of
a suitable model. This is analoguous to the ν-SVM
reformulation of the standard SVM (Schölkopf et al.,
2000), in which the rather unintuitive regularization
parameter is replaced by a parameter controlling the
number of SVs. In our model, the hyperparameter will
be the length ||w|| of the hyperplane normal.

After a brief review of the SVM (Section 2), we present
our model (Section 3.1), which is generative and semi-
parametric. For technical reasons we restrict our anal-
ysis to the SVM classifier without the bias term.2 The
core result, the equivalence of ML in our model with
the SVM, is presented and proved in Section 4. In
Section 5 we demonstrate how max-margin clustering
drops out of our model; after this, we conclude.

2. Support Vector Machine
classification

We are given a set of training examples
{(x1, y1), . . . , (xm, ym)} ∈ (Rn × {+1,−1})m as-
sumed to be i.i.d. from an unknown probability
distribution function (p.d.f.) p∗(x, y). The goal
is to learn a Bayes classifier q : Rn → {+1,−1}
which minimizes the expected classification er-
ror

∫
x∈Rn

∑
y∈{+1,−1}[[y 6= q(x)]]p∗(x, y)dx where

[[X]] = 1 if X is satisfied and 0 otherwise.

The SVM model without bias assumes that the Bayes
classifier can be well approximated by a linear classifier
qSVM : Rn → {+1,−1} parametrized by a vector w ∈
Rn such that

qSVM(x;w) =
{

+1 if 〈x,w〉 ≥ 0 ,
−1 if 〈x,w〉 < 0 . (1)

The parameter vectorw is evaluated by a cost function

F (w;λ, ω) =
λ

2
‖w‖2 +R(w;ω)

where R(w;ω) =
∑m
i=1 ω

yi`(yi〈w,xi〉) is a convex
approximation of the training (empirical) classifica-
tion error, `(t) = max{0, 1 − t} is the hinge-loss,
λ ∈ (0,∞) =: R++ is a strictly positive regularization
constant, and ω ∈ (0, 1) is a scalar defining cost-factors

2Which can, by augmenting the feature space, be used
to arbitrarily well approximate the solution of an SVM
with bias.

ω+ = ω and ω− = 1−ω for positive and negative class,
respectively. For any fixed λ > 0, ω ≥ 0, the func-
tion R(w;ω) is convex and the function F (w;λ, ω) is
strictly convex.

For given λ and ω, the SVM learning algorithm returns
the parameter vector wSVM(λ, ω) which is a unique
minimum of F (w;λ, ω), i.e.,

wSVM(λ, ω) = argmin
w∈Rn

F (w;λ, ω) . (2)

The problem (2) is well understood and there exists
a plethora of efficient optimization algorithms for its
solution.

The SVM algorithm specifies how to learn the param-
eter vector w while the hyper-parameters λ and ω
must be determined differently. The standard SVMs
sets ω = 1

2 . However, tuning of ω is a routinely used
heuristic in the case of unbalanced class distribution.
A common practice is to selected the best combination
of λ and ω based on solving

(λbest, ωbest) = argmin
λ∈Λ,ω∈Ω

G[qSVM(·;wSVM(λ, ω))] (3)

where the sets Λ = {λ1, . . . , λp} and Ω = {ω1, . . . , ωp}
are prescribed manually based on user’s experience.
The functional G[qSVM(·;w)] is an estimator of the ex-
pected classification error of the rule qSVM(·;w). The
classification error computed on an independent set of
examples, the cross-validation or the leave-one-out are
among the most typically used error estimators. The
resulting classifier is then qSVM(x;wSVM(λbest, ωbest)).

3. Semi-parametric probabilistic model

3.1. The model

We consider the following semi-parametric p.d.f.

p(x, y; τ, ω,u) = Z(τ, ω) · exp(−ωy`(y〈τu,x〉)) · h(x)
(4)

defined over Rn × {+1,−1}. The distribution (4) is
parametrized by a unit vector u ∈ U = {u′ ∈ Rn |
‖u′‖ = 1}, a strictly positive scalar τ ∈ R++ and a
scalar ω ∈ (0, 1) defining ω+ = ω and ω− = 1 − ω.
The distribution (4) is composed of three terms. The
first term, Z(τ, ω), is a normalization constant invari-
ant to u. The second term, exp(−ωy`(y〈τu,x〉)), is
a function of all three parameters (τ, ω,u) and the
input variables (x, y). Finally, the third term, h(x),
is a function which ensures that p(x, y; τ, ω,u) is in-
tegrable and that the normalization constant Z(τ, ω)
does not depend on u. The properties of h are defined
in Theorem 1.
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Theorem 1 Let h : Rn → R be a piece-wise continu-
ous function which satisfy the following assumptions:

1. 0 ≤ h(x), ∀x ∈ Rn (positive)

2. 0 <
∫
x∈Rn h(x) <∞ (integrable)

3. h(x) = h(x′), ∀x,x′ ∈ Rn such that ‖x‖ = ‖x′‖
(radial basis function)

Then for any τ ∈ R++, ω ∈ (0, 1) and u ∈ U the
integrals I+(τ, ω,u) and I−(τ, ω,u) defined by

Iy(τ, ω,u) =
∫
x∈Rn

exp(−ωy`(y〈τu,x〉)) · h(x) · dx

(5)
satisfy the following properties

1. 0 < Iy(τ, ω,u) (strictly positive)

2. Iy(τ, ω,u) <∞ (finite)

3. Iy(τ, ω,u) = Iy(τ, ω) (invariant to u)

proof: For fixed τ , ω, u, we introduce a short-
hand g(x) = exp(−ωy`(y〈τu,x〉)) which simplifies (5)
to Iy(τ, ω,u) =

∫
x∈Rn h(x)g(x)dx. It is seen that

g : Rn → (0, 1].

Because h is a piece-wise continuous and its integral is
strictly positive then there must exist µ ∈ Rn, r > 0,
and ε1 > 0 such that for all x within the ball B(µ, r) =
{x′ ∈ Rn | ‖x′ − µ‖ ≤ r} the value of h(x) is not less
then ε1. The volume V of B(µ, r) is greater than 0. As
g is strictly positive everywhere there must exist ε2 > 0
such that g(x) ≥ ε2, ∀x ∈ B(µ, r). This implies that
Iy(τ, ω,u) ≥ ε1ε2V > 0 which proves the property 1.

The property 2 follows from integrability of h and
boundedness of g.

Finally, we prove the property 3. Let u and u′ be
arbitrary unit vectors. Then, there exists a orthogonal
matrix R ∈ Rn×n with determinant +1 (i.e, rotation
matrix) such that u′ = Ru. Let ϕ : Rn → Rn be a
vector-valued function defined by ϕ(v) = Rv. It is
seen that the determinant of the Jacobian matrix of ϕ
is Dϕ(v) = +1. We can write

Iy(τ, ω,u)
(1)
=
∫
x∈Rn

h(x) exp(−ωy`(y〈τu,x〉)dx
(2)
=
∫
v∈Rn

h(ϕ(v)) exp(−ωy`(y〈τu, ϕ(v)〉)|Dϕ(v)|dv
(3)
=
∫
v∈Rn

h(v) exp(−ωy`(y〈τu′,v〉)dv (4)
= Iy(τ, ω,u′) .

(6)
The second equality follows from the substitution the-
orem for multivariate integrals. The third equality

uses h(x) = h(‖x‖) ensured by the assumption 3, the
fact that |Dϕ(v)| = 1, and the equality 〈τu, ϕ(v)〉 =
〈τRu,v〉 = 〈τu′,v〉. The equalities 1 and 4 are due to
definition (5) which completes the proof.

Two examples of functions satisfying assumptions of
Theorem 1 are h1(x) = exp(−〈x, c1Ex〉) and h2(x) =
c2[[‖x‖ ≤ c3]] where c1, c2 and c3 are arbitrary strictly
positive scalars and E is the identity matrix.

Corrolary 1 Let h be a function satisfying the as-
sumptions of Theorem 1 and let us define

Z(τ, ω) =
1

I+(τ, ω) + I−(τ, ω)
. (7)

Then for any fixed τ ∈ R++, ω ∈ (0, 1) and u ∈ U , the
function p(x, y; τ, ω,u) given by (4) is a proper p.d.f.
defined over Rn × {+1,−1}, that is,

p(x, y; τ, ω,u) ≥ 0 , ∀x ∈ Rn, y ∈ {+1,−1} ,∫
x∈Rn

∑
y∈{+1,−1}

p(x, y; τ, ω,u) = 1 .

3.2. Prior probability

It follows from (7) that the priory probability of the
class label y under the model (4) is given by

p(y; τ, ω) =
Iy(τ, ω)

I+(τ, ω) + I−(τ, ω)
. (8)

The prior probability does not depend on the param-
eter u. Moreover, we have the following theorem.

Theorem 2 For any τ ∈ R++ it holds that

p(y = +1; τ, ω) = 0.5 for ω = 0.5 ,
p(y = +1; τ, ω) < 0.5 for ω > 0.5 ,
p(y = +1; τ, ω) > 0.5 for ω < 0.5 .

proof: It follows from the equality (6) that

Iy(τ, ω) =
∫
x∈Rn

fy(x) · h(x) · dx , (9)

where fy(x) = exp(−ωy`(〈τu,x〉)) is a function which
is for ω = 0.5 (i.e., ω+ = ω− = 0.5) invariant to y ∈
{+1,−1}. In turn, ω = 0.5 implies that I+(τ, 0.5) =
I−(τ, 0.5) which after substituting to (8) yields p(y =
1; τ, 0.5) = 0.5. For ω > 0.5 we have that f+(x) <
f−(x) on the whole subspace {x ∈ Rn | 〈τu,x〉 < 1}
which implies that I+(τ, ω) < I−(τ, ω) and thus also
p(y = +1; τ, ω) < 0.5. The same reasoning can be used
to prove that ω < 0.5 implies p(y = +1; τ, ω) > 0.5.
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Theorem 2 establishes correspondence between the
hyper-parameter ω and the prior probability p(y; τ, ω).
Provided the prior is uniform we know the value of
hyper-parameter ω exactly, namely, ω = 0.5. In the
case of an unbalanced priors, we only know whether
ω is greater or less than 0.5. Note that to make the
correspondence exact we would need to compute the
integral (9), which involves the function h.

3.3. Posterior and marginal probabilities and
relation to LR

The class posterior probability derived from the
model (4) reads

p(y | x; τ, ω,u) =
exp(−ωy`(y〈τu,x〉))∑

y∈{+1,−1} exp(−ωy`(y〈τu,x〉))
.

(10)
It is seen that the posterior probability does not de-
pend on the function h. The marginal p.d.f. reads

p(x; τ, ω,u) = Z(τ, ω) · h(x) · f(x; τ, ω,u)

where f(x; τ, ω,u) =
∑
y∈{1,−1} exp(−ωy`(y〈τu,x〉))

denotes its parametric part.

Figure 1 shows the posterior and the parametric part
of the marginal p.d.f. in 1-d (i.e. x ∈ R1) for different
values of the hyper-parameter τ and the other param-
eters set to ω = 0.5, u = 1. For comparison, we also
plot the posterior probability of the LR model

pLR(y | x;w) =
1

1 + exp(−y〈w,x〉)
with w = τu .

It is seen that the posterior probability of our model
is very close to that of LR model. In fact, both are
exactly the same in the margin band.

The crucial difference between the LR model and our
SVM model is the marginal p.d.f. The LR imposes no
assumption about the shape of the marginal at all. By
contrast, our model defines its shape up to the non-
parametric part h. It is obvious that the marginal of
our model is non-uniform. Its shape is consistent with
its well-known property to be margin maximizing. The
width of the margin band is inversely proportional to
the hyper-parameter τ .

3.4. Bayes classifier

The (optimal) Bayes classifier minimizing the expected
classification error is based on the log-likelihood ratio
q(x) = p(y=+1|x)

p(y=−1|x) ; the input x is assigned the label
y = +1 if q(x) ≥ 0 and the label y = −1 otherwise.

Using (10) we can show after a little algebra that the
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Figure 1. The figures show the posterior probability p(y |
x; τ, ω,u) (blue) and the parametric part f(x; τ, ω,u) of
the marginal p.d.f. (red) for three different values of the
hyper-parameter τ which is reciprocal to the margin width.
The input variable corresponding to the x-axis is univari-
ate, x ∈ R1, and the other parameters are set to ω = 0.5
and u = 1. For comparison, the figures also show the
posterior probability pLR(y | x; w) (dashed green) of the
Logistic Regression model with w = τu.

log-likelihood ratio is a piece-wise linear function

q(x; τ, ω,u) = log
p(y = +1 | x; τ, ω,u)
p(y = −1 | x; τ, ω,u)

=

 (〈τu,x〉 − 1)ω+ if 〈τu,x〉 ∈ (−∞,−1] ,
〈τu,x〉+ 1− 2ω if 〈τu,x〉 ∈ [−1, 1] ,
(〈τu,x〉+ 1)ω− if 〈τu,x〉 ∈ [1,∞) .

(11)
Using the log-likelihood ratio (11), we can derive that
the Bayes classifier is the linear classification rule

qBayes(x; τ, ω,u) =
{

+1 if 〈τu,x〉 ≥ b ,
−1 if 〈τu,x〉 < b ,

(12)

where b = 2ω−1. Note that the classifier (12) becomes
for ω = 0.5 unbiased just like the SVM classifier (1).
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3.5. The Maximum-Likelihood estimator

Given training examples {(x1, y1), . . . , (xm, ym)} ∈
(Rn × {+1,−1})m assumed to be i.i.d. from the dis-
tribution (4), the negative log-likelihood (NLL) of the
parameters (τ, ω,u) reads

L(τ, ω,u) = −
m∑
i=1

log p(xi, yi; τ, ω,u)

=
m∑
i=1

ωyi`(yi〈τu,xi〉)−m logZ(τ, ω)−
m∑
i=1

log h(xi) .

(13)
The key observation is as follows. To compute the
ML estimate of all the three parameters (τ, ω,u) we
need to know the function h. However, under the as-
sumption that τ and ω are given, the ML estimator
of the parameter vector u does not depend on h. Let
uML(τ, ω) denote the ML estimator of u provided the
hyper-parameters τ and ω are known, then we have

uML(τ, ω) ∈ argmin
u∈U

L(τ, ω,u) = argmin
u∈U

R(τu;ω) ,

(14)
where R(τu;ω) is the SVM risk term (see Section 2).

Having the ML estimator, one can implement the ML
learning of the plug-in Bayes classifier (12), i.e., we
plug-in the ML estimate of the parameters for the
real ones. Following a common practice, the hyper-
parameters (τ, ω) can be found by solving

(τbest, ωbest) = argmin
τ∈T ,ω∈Ω

G[qBayes(·; τ, ω,uML(τ, ω))]

(15)
where the sets T = {τ1, . . . , τp} and Ω = {ω1, . . . , ωp}
are prescribed manually based on user’s experience.
The functional G[qBayes(·; τ, ω,uML(τ, ω))] is an es-
timator of the expected classification error of the
rule qBayes(·; τ, ω,u). The resulting classifier is then
qBayes(x; τbest, ωbest,uML(τbest, ωbest)).

4. Equivalence between SVM and ML
learning

We first prove a theorem which establishes equivalence
between the optimization problems appearing in the
SVM and ML learning.

Theorem 3 Let us consider the following optimiza-
tion problems

w(λ) = argmin
w∈Rn

[
λ

2
‖w‖2 +R(w)

]
(16)

u(τ) = argmin
u∈U

R(τu) (17)

where R : Rn → R is a convex function and assume
that the minimum of (16) exists. Then, there exists

a monotonically decreasing mapping θ : R++ → R+

which for any λ ∈ R++ returns τ = θ(λ) = ‖w(λ)‖
such that the following equality holds:

τu(τ) = w(λ) . (18)

At first sight it may be puzzling that an ML estimate
(hence lacking an explicit prior) can be equivalent to
the SVM objective, for its regularizer is commonly in-
terpreted as a log prior (in analogy to penalized LR).
The resolving insight is simple: the regularizer (prior)
acts only on ||w||, which is kept fixed in our model,
serving as a hyperparameter substitute for SVM-λ.

Before proving Theorem 3 we introduce the following
auxiliary lemma.

Lemma 1 For any λ1 ∈ R++ and λ2 ∈ R++ such
that λ1 > λ2 the inequality ‖w1‖ ≤ ‖w2‖ holds where
w1 ∈ w(λ1) and w2 ∈ w(λ2) are solutions of the prob-
lem (16) for λ1 and λ2, respectively.

proof: Since w1 and w2 are minimizers of (16), we
have that the following inequalities

λ1

2
‖w1‖2 +R(w1) ≤ λ1

2
‖w‖2 +R(w) , (19)

λ2

2
‖w2‖2 +R(w2) ≤ λ2

2
‖w‖2 +R(w) . (20)

hold ∀w ∈ Rn. Substituting w = w2 to (19) and
w = w1 to (20) yields

λ1

2
‖w1‖2 +R(w1) ≤ λ1

2
‖w2‖2 +R(w2) , (21)

λ2

2
‖w2‖2 +R(w2) ≤ λ2

2
‖w1‖2 +R(w1) . (22)

By summing up the inequalities (21) and (22) we get

λ1

2
‖w1‖2 +

λ2

2
‖w2‖2 +R(w1) +R(w2) ≤

λ1

2
‖w2‖2 +

λ2

2
‖w1‖2 +R(w1) +R(w2)

which after a little algebra yields

(λ1 − λ2)(‖w2‖2 − ‖w1‖2) ≥ 0 .

and so λ1 > λ2 implies ‖w1‖ ≤ ‖w2‖.

Now, we prove Theorem 3.

proof: Let w(λ) be the minimizer of (16) for some
λ ∈ R++. Note that w(λ) is unique as the objective
of (16) is strictly convex. Let us denote τ = ‖w(λ)‖
and Wτ = {w ∈ Rn | ‖w‖ = τ}. Then, we can write

w(λ)
(1)
= argmin

w∈Wτ

[
λ

2
‖w‖2 +R(w)

]
(2)
= argmin

w∈Wτ

R(w)

(3)
= τu(τ) where u(τ) = argmin

u∈U
R(τu) .
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The first equality follows from the fact that Wτ is a
subset of Rn containing the minimizer w(λ). Since all
vectors inWτ have the same norm the second equality
holds true. The third equality results from the variable
substitution w = τu. This proves that for any λ ∈
R++ and τ = θ(λ) = ‖w(λ)‖ the equality (18) holds.

It remains to prove monotonicity of θ, i.e., λ1 > λ2

implies θ(λ1) ≤ θ(λ2). However, this is a direct conse-
quence of Lemma 1 and the fact that θ(λ) = ‖w(λ)‖.

4.1. Standard SVM classifier

The formulation of the standard SVMs assumes that
the cost-factors for both classes are equal, i.e., ω = 0.5.
Recall that by Theorem 2 the value ω = 0.5 implies
that the posterior probability of our model is uniform,
i.e. p(y; τ, ω,u) = 0.5.

Theorem 4 Let ω = 0.5. Then, for any linear SVM
classifier there exists an equivalent plug-in Bayes clas-
sifier derived from the model (4) whose parameters are
estimated by the ML principle, i.e., the equality

qSVM(x;wSVM(λ, ω)) = qBayes(x; τ, ω,uML(τ, ω))

holds for any x ∈ Rn, λ ∈ R++ and τ = θ(λ) =
‖wSVM(λ, ω)‖. Morover, the mapping θ : R++ → R+

is monotonically decreasing.

proof: The proof follows trivially from Theorem 3
and the formulas for the linear SVM classifier (1) and
the Bayes classifier (12).

Note that the standard SVM is theoretically linked to
our model in much the same way the ν-SVM is linked
to the standard SVM. In our case, training an SVM
using λ would tell us which τ to use to get the same
result; in the other case, training a ν-SVM using an
a priori chosen ν would tell us which λ to use in the
standard SVM to get the same result (see Proposition
6 in (Schölkopf et al., 2000)).

Now let us compare the SVM and the ML learning
from a more practical point of view. We still assume
the standard setting ω = 0.5. The SVM learning re-
quires a user to supply a tuning set Λ = {λ1, . . . , λp}
for the hyper-parameter λ. The resulting SVM clas-
sifier is obtained by the procedure (3) which selects
the best parameter vector from wSVM(λ, 0.5), λ ∈
Λ, based on a validation criterion. The ML learn-
ing requires the user to supply a tuning set T =
{τ1, . . . , τp} for the hyper-parameter τ . The result-

ing plug-in Bayes classifier is obtained by the proce-
dure (15) which selects the best parameter vector from
uML(τ, 0.5), τ ∈ T , based on a validation criterion.
Theorem (4) guarantees that both procedures will re-
turn exactly the same linear classifier provided we use
T = {‖wSVM(λ1, 0.5)‖, . . . , ‖wSVM(λp, 0.5)‖} and the
same validation criterion in (3) and (15). Hence an
empirical comparison is unnecessary.

Note that the tuning sets are heuristic in both cases.
While this is outside the scope of this paper, we imag-
ine that the direct geometric interpretation of τ as the
reciprocal of the margin width will facilitate heuristics
for finding reasonable settings, which could provide a
practical advantage.

4.2. SVM classifier with different cost factors

It is common knowledge that SVMs often do not work
well if the class distribution of the training examples
is highly unbalanced. In view of the previous section
this is not surprising, as the standard SVM classifier is
equivalent to a Bayes classifier which assumes uniform
prior probabilities. To cope with unbalanced classes,
SVM practitioneers routinely use two heuristics:

1. Set a higher cost-factor for the class which is less
represented in the training data. For example, if
the first class is the smaller class, then set ω > 0.5,
i.e., ω+ > ω−. This option is supported by all
major SVM solvers like the SVMlight (Joachims,
1999). A proper setting of the cost-factor ω is
then tuned as an additional hyper-parameter.

2. After the linear SVM classifier is trained, tune
only the bias of the classifier to achieve desired
error rate. Recall that the standard SVMs classi-
fier (1) is unbiased.

Let us confront these heuristics with the plug-in Bayes
classifier (12) whose parameters are obtained by the
ML estimator (14). Theorem 2 shows that the hyper-
parameter ω is proportional to the prior probability
p(y; τ, ω). This is perfectly consistent with the first
heuristic. For example, if the first class is less frequent
in the training data then, according to Theorem 2, we
should set ω > 0.5 to guarantee that p(y = +1; τ, ω) <
p(y = −1; τ, ω) holds and vice-versa.

Regarding the second heuristic, we showed that plug-in
Bayes classifier under the model (4) is a linear classi-
fication rule (12) with a bias term b = 2ω − 1. That
is, for uniform priors the bias is set to 0, while for un-
balanced classes the bias is negative if the first class
is more probable (and positive otherwise). Note that
the probabilistic model exactly specifies the value of
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the bias term given the hyper-parameter ω. By con-
trast, in classical SVM training the bias must be tuned
as an additional hyper-parameter.

5. Equivalence between Maximum
Margin Clustering and Classification
Maximum Likelihood approach

The Maximum Margin Clustering (MMC) (Xu et al.,
2004) is a popular heuristic that transfers the max-
imum margin principle from supervised SVM learn-
ing to the unsupervised setting. In this section we
show how our model (4) theoretically justifies MMC.
In particular, we demonstrate how MMC emerges from
our model by applying the Classification Maximum
Likelihood (CML) approach (Scott & Symons, 1971),
which is a statistically motivated and theoretically
well-understood clustering method.

We consider the clustering problem defined as follows.
Let {(x1, y1), . . . , (xm, ym)} ∈ (Rn × {+1,−1})m be
i.i.d. from an underlying distribution p∗(x, y). Let
us assume that we are given only the observations
{x1, . . . ,xm} and our goal is to estimate the corre-
sponding hidden labels {y1, . . . , ym}.

The MMC finds labels by solving

yMMC(λ) = argmin
y∈{+1,−1}m

min
w∈Rn

[
λ

2
‖w‖2 +RMMC(y,w)

]
(23)

where RMMC(y,w) =
∑m
i=1 `(yi〈w,xi〉). Thus the

MMC searches for the labels which allow best sepa-
ration of the data by the SVM classifier. The prob-
lem (23) may not have a unique minimizer and hence
yMMC(λ) denotes a set. The problem (23) is dif-
ficult for optimization due to the integer variables
y = (y1, . . . , ym). A plethora of algorithms have been
proposed to solve (23) approximately.

As before, we assume an unbiased linear classifier (i.e.
the hyperplane passes through the origin). With this,
(23) is a well-posed problem—unlike the variant with a
biased classifier, which has a trivial solution assigning
all observations to just one class. This complication is
can also be solved by introducing an additional balance
constraint enforcing solutions with prescribed number
of labels in each class. Note that all derivations below
can easily be repeated with the balance constraint to
recover the biased variant of the MMC.

5.1. Classification Maximum Likelihood
approach to clustering

Assume a conditional density p(x | y;θ) parametrized
by θ ∈ Θ. Given the observations {x1, . . . ,xm}, the

NLL of labels y ∈ {+1,−1}m and a parameter θ is

L(y,θ) = −
m∑
i=1

log p(xi|yi;θ) .

The CML approach finds labels by solving

yCML ∈ argmin
y∈{+1,−1}m

min
θ∈Θ

L(y,θ) .

The CML assumes that both the vector θ and the
labels y are the parameters to be estimated.

Let us instantiate the CML approach for our model.
We assume that the hyper-parameter ω = 0.5 and τ is
fixed otherwise (e.g. tuned on validation set). Recall
that ω = 0.5 implies the uniform prior p(y; τ, 0.5) =
0.5. Then, the NLL under the model (4) reads

L(y,u; τ) =
m∑
i=1

[
log h(xi)− ωyi〈τu,xi〉 − Iyi(τ, ω)

]
.

and the labels are found by solving

yCML(τ) = argmin
y∈{+1,−1}m

min
u∈U

L(y,u; τ)

= argmin
y∈{+1,−1}m

min
u∈U

RMMC(y, τu) . (24)

5.2. Equivalence between MMC and CML
approach

Now, we show that any clustering returned by the
MMC can be found by the CML approach.

Theorem 5 Let yMMC(λ) be a set of minimizers of
the Maximum Margin Clustering problem (23) for
some λ ∈ R++. Then, for any labeling y∗ ∈ yMMC(λ)
there exists τ ∈ R+ such that y∗ is a minimizer of the
Classification Maximum Likelihood problem (24), i.e.,
y∗ ∈ yCML(τ) holds.

proof: Because y∗ ∈ yMMC(λ) is a minimizer of the
problem (23) the inequality

min
w∈Rn

[λ
2
‖w‖2 +RMMC(y∗,w)

]
≤ min
w∈Rn

[λ
2
‖w‖2 +RMMC(y,w)

]
,

(25)

holds ∀y ∈ {+1,−1}m. Let us denote the min-
imizer of the left hand side of (25) as w∗ =
argminw∈Rn

[
λ
2 ‖w‖

2 +RMMC(y∗,w)
]

which is unique
as the objective is strictly convex for fixed y∗. Let us
denote τ = ‖w∗‖ and Wτ = {w ∈ Rn | ‖w‖ = τ}.
Then, we can derive from (25) that the inequality

min
w∈Wτ

RMMC(y∗,w) ≤ min
w∈Wτ

RMMC(y,w) (26)



SVM by ML

holds ∀y ∈ {+1,−1}m. To get from (25) to (26), we
used the fact that all vectors in Wτ have the same
norm and one of them is the minimizer w∗. The in-
equality (26) implies that y∗ is a minimizer of

y∗ ∈ argmin
y∈{+1,−1}m

min
w∈Wτ

RMMC(y,w)

= argmin
y∈{+1,−1}m

min
u∈U

RMMC(y, τu)

where the letter equality, obtained by the variable sub-
stitution w = τu, is just the definition of the CML
problem (24) which was to be proved.

The established correspondence between the MMC
and the CML not only provide a theoretical justifica-
tion of the MMC but it also opens ways for its exten-
sion. First, to cope with the unbalanced data one can
tune the hyper-parameter ω which would corresponds
to changing the prior probability p(y; τ, ω). Second,
the hard problem (23) required by the MMC can be at-
tacked by algorithms routinely used for minimization
of the CML criterion. Namely, the Classification Ex-
pectation Algorithm (CME) (Celeux & Covaert, 1992)
is a simple iterative procedure which transforms the
hard unsupervised problem to a series of much sim-
pler supervised problems. In turn, the existing SVMs
solvers can be readily recycled for solving the MMC.

6. Conclusion

The received wisdom in machine learning has so far
been that maximum margin SVM learning and prob-
abilistic models constitute two separate sub-domains
of machine learning. Our work has been motivated
by the unsettling fact that SVM-like methods, albeit
being rooting in learning theory and being powerful
and efficient in practice, do not enjoy the principled
view on modeling offered by probabilistic methods. In
this contribution, we heal this rupture by setting up
a probabilistic model that is equivalent to the SVM.
So far, however, this work is limited to linear SVMs
without bias; whether and how kernelization can be
incorporated remains to be investigated.

Apart from the theoretical satisfaction of unification,
the probabilistic understanding of the SVM can also
lead to further insight. As an example, we demonstrate
how a common and empirically successful heuristic for
dealing with unbalanced class sizes can be understood
in terms of biased priors, and how maximum mar-
gin clustering is naturally linked to the generic CML
(Classification Maximum Likelihood) principle. Fur-
ther work on semi-supervised SVMs is in progress, and
we anticipate that many more such relationships will
be discovered.
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