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Abstract

Many real-world problems exhibit dual-
heterogeneity. A single learning task might
have features in multiple views (i.e., feature
heterogeneity); multiple learning tasks might
be related with each other through one or
more shared views (i.e., task heterogeneity).
Existing multi-task learning or multi-view
learning algorithms only capture one type of
heterogeneity.

In this paper, we introduce Multi-Task Multi-
View (M2TV ) learning for such complicated
learning problems with both feature hetero-
geneity and task heterogeneity. We propose a
graph-based framework (GraM2) to take full
advantage of the dual-heterogeneous nature.
Our framework has a natural connection to
Reproducing Kernel Hilbert Space (RKHS).
Furthermore, we propose an iterative algo-
rithm (IteM2) for GraM2 framework, and
analyze its optimality, convergence and time
complexity. Experimental results on various
real data sets demonstrate its effectiveness.

1. Introduction
Many real-world problems exhibit dual-heterogeneity.
To be specific, a single learning task might have fea-
tures in multiple views (i.e., feature heterogeneity); dif-
ferent learning tasks might be related with each other
through one or more shared views (features) (i.e., task
heterogeneity). For example, sentiment classification
for movie reviews and for political blog posts are two
related tasks. They both have the word features. How-
ever, political blog posts may have additional features
based on the social network of the blog users. Another
example is multi-lingual web image annotation, where
images collected from Chinese web sites and English
web sites both have content-based features, and they
also have task-specific features, i.e., surrounding texts
in Chinese and English respectively. (See Figure 1 for
an illustrative example.) Neither multi-task learning
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nor multi-view learning is optimal for such a compli-
cated learning problem. Existing multi-task learning
explores the relatedness with other tasks, but disre-
gards the consistency among different views of a single
task; whereas existing multi-view learning ignores the
label information from other related tasks.

To the best of our knowledge, there does not exist an
effective learning method to fully explore both the fea-
ture heterogeneity and the task heterogeneity simulta-
neously. This is partially due to the fact that existing
multi-task learning and multi-view learning algorithms
adopt quite different methodologies (see Section 2 for
a brief review). It is not clear how to seamlessly bridge
them together to enjoy the best of both worlds.

To address such challenges, in this paper, we intro-
duce a novel Multi-Task Multi-View (M2TV ) learning
problem. On one hand, it uses the label information
from related tasks to make up for the lack of labeled
data in a single task; on the other hand, it uses the con-
sistency among different views to improve the perfor-
mance. It is tailored for the above complicated dual-
heterogeneous problems where multiple related tasks
have both shared and task-specific views (features),
since it makes full use of the available information.

For M2TV learning, we propose a graph-based frame-
work (GraM2). Within each task, we construct a bi-
partite graph for each view, modeling the relationship
between the examples and the features in this view.
The consistency among different views is obtained by
requiring them to produce the same classification func-
tion, which is commonly used in multi-view learning.
Across different tasks, we establish their relationship
by imposing the similarity constraint on the common
views. Furthermore, an iterative algorithm (IteM2) is
proposed to solve the GraM2 framework. We conduct
theoretical analysis as well as empirical evaluations to
demonstrate the effectiveness of our method.

The main contributions of this paper can be summa-
rized as follows.
1. Problem Definition: we introduce a novel problem

named Multi-Task Multi-View learning (M2TV ),
where multiple related tasks have both shared and
task-specific views.



A Graph-based Framework for Multi-Task Multi-View Learning

2. Framework: we propose a graph-based framework
(GraM2) for M2TV learning. We show that our
framework (GraM2) has a natural connection to
Reproducing Kernel Hilbert Space (RKHS).

3. Algorithm: we propose an effective algorithm
(IteM2) for the GraM2 framework. We show
that IteM2 converges to an optimal solution in
a scalable way.

The rest of this paper is organized as follows. We
first review related work in Section 2. In Section 3,
we introduce the problem definition. Then we propose
the graph-based framework (GraM2) in Section 4, fol-
lowed by an analysis of the RKHS. The IteM2 al-
gorithm is presented and analyzed in Section 5. To
demonstrate the effectiveness of IteM2, we show some
experimental results in Section 6. Finally, we conclude
in Section 7.

2. Related Work
As mentioned before, many real-world problems ex-
hibit dual-heterogeneity. Most existing works only
explore one type of heterogeneity, such as multi-task
learning and multi-view learning.

Multi-View Learning. The basic idea of multi-
view learning is to make use of the consistency
among different views to achieve better performance.
One of the earliest work in multi-view learning
is (Blum & Mitchell, 1998), where the authors pro-
pose the co-training algorithm for problems where
the examples are described by two distinct views.
The authors in (Nigam & Ghani, 2000) further ana-
lyze the performance of co-training when certain as-
sumptions are violated. More recent work in multi-
view learning include: SVM-2K algorithm proposed
in (Farquhar et al., 2005), which combines KCCA with
SVM in an optimization framework; CoMR algorithm
proposed in (Sindhwani & Rosenberg, 2008), which
is based on an RKHS with a data-dependent ‘co-
regularization’ norm; the large-margin framework for
multi-view data (Chen et al., 2010), which is based on
an undirected latent space Markov network, to name
a few. In M2TV learning, we also perform multi-view
learning within a single task. In addition, we are able
to use the label information from other related tasks,
which is particularly useful when the number of labeled
examples in a single task is very small.

Multi-Task Learning. In multi-task learn-
ing, people model task relatedness in various
ways. Some researchers assume that the func-
tion parameters for different tasks are similar,
such as the kernel methods for learning multiple
tasks (Evgeniou et al., 2005), the semi-supervised
multi-task learning framework (Liu et al., 2007), the
clustered multi-task learning algorithm (Jacob et al.,

2008), etc. Some researchers assume that differ-
ent tasks share a common representation / struc-
ture, such as the multi-task feature learning algorithm
based on 1-norm (Argyriou et al., 2008), the ASO al-
gorithm (Ando & Zhang, 2005) and its improved ver-
sion, the CASO algorithm (Chen et al., 2009), the mt-
lmnn algorithm (Parameswaran & Weinberger, 2010),
etc. In M2TV learning, we also perform multi-task
learning via the common views shared by different
tasks. In addition, we are able to leverage the consis-
tency among different views of a single task to achieve
better performance.

Other Related Work. There are some existing
works which try to explore multiple types of hetero-
geneity. Although successful in themselves, their prob-
lem settings are fundamentally different from ours.
For example, in (Cavallanti et al., 2010), the authors
study linear algorithms for online multi-task multi-
view learning. However, their settings are named
multi-view because examples from different tasks come
from different feature spaces, and the features of a
single task do not form different views; whereas in
our settings, the features of a single task form differ-
ent views, some of which are shared across different
tasks, some of which are not. Therefore, if applied in
our settings, their algorithm can not make use of the
consistency among different views of the same task.
In (Zhao & Hoi, 2010), the authors study online trans-
fer learning both in a homogeneous domain and across
heterogeneous domains. However, in this paper, we
are interested in multiple tasks instead of a single tar-
get task (domain). Furthermore, they assume that the
feature space of the source domain is a subset of that
of the target domain whereas we can address more
general settings.

3. M2TV : Problem Definition
In this section, we formally introduce our M2TV
learning. Suppose that we have T tasks and V views
in total. Each task has Vi views, 1 ≤ Vi ≤ V ,
i = 1, . . . , T . Each view corresponds to a type of fea-
ture, e.g., bag of words, linkage among the examples,
etc. For the ith task and the kth view, there are dik
features. Let Sij denote the set of indices of common
views shared by the ith and jth tasks. Sii = ϕ. For ex-
ample, S12 = {1} means that Task 1 and Task 2 share
the first view. If 1 ∈ S12, and 1 ∈ S13, then 1 ∈ S23.

Notice that existing multi-task learning and multi-
view learning are special cases of our M2TV learning.
To be specific, if Vi = 1, and Sij = {1}, i, j = 1, . . . , T ,
i ̸= j, the problem is reduced to multi-task learning; if
T = 1, the problem is reduced to multi-view learning.

For the ith task, we have ni examples, which are de-
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noted Xi = {xi1, . . . , xini} ⊂ R
∑Vi

k=1 dik . In this pa-
per, we assume that the features are non-negative, e.g.,
word frequency in document classification1. Without
loss of generality, suppose that the first mi examples
are labeled yi1, . . . , yimi , which are either 1 or -1. Note
thatmi is usually very small compared with ni. So our
goal is to leverage the label information from all the
tasks to help classify the unlabeled examples in each
task, as well as to use the consistency among different
views of a single task to improve the performance.

4. GraM2: A Graph-based Framework
In this section, we present our graph-based framework
(GraM2) for M2TV learning. We first present its ob-
jective function. Then we show how it can be reduced
to standard supervised learning via an RKHS.

4.1. Objective Function

In our GraM2 framework, we have two types of func-
tions. One is defined on the examples. To be specific,
for the ith task, define function gi(·), which takes val-
ues on xi1, . . . , xini . gi(·) > 0 indicates a positive class
label whereas gi(·) < 0 indicates a negative class label.
The other one is defined on the features. To be spe-
cific, for the ith task and the kth view, define function
fik(·), which takes values on the features in this view.
fik(·) helps determine the class label of an example
having such features. Take sentiment classification as
an example. fik(·) > 0 indicates positive polarity of
a word whereas fik(·) < 0 indicates negative polarity.
The polarity of all the words in a document together
will determine the sentiment of the document. Fur-
thermore, if |fik(·)| is large, then the corresponding
word often has strong polarity; on the other hand, if
|fik(·)| is small, then the corresponding word has weak
polarity, which may even have conflicting polarity in
different context.

For the ith task and the kth view, we construct a bi-
partite graph Gik = {Nik, Eik} where Nik is the set
of nodes and Eik is the set of undirected edges. Nik

consists of two types of nodes, i.e., the nodes that cor-
respond to the examples in this task, and the nodes
that correspond to the features in this view. There is
an edge between an example node and a feature node
if and only if the feature value for the example is pos-
itive, and the weight of the edge is just the feature
value. Figure 1 shows an example of such bipartite
graphs. Let Wik, (ni + dik) × (ni + dik), denote the
affinity matrix for Gik. It has the following structure.

Wik =

[
0ni×ni Aik

AT
ik 0dik×dik

]
1Exploring negative features is beyond the scope of the

current paper and is our future work.

where Aik is an ni × dik matrix. If the tth feature of
the sth example is positive, then Aik(s, t) (the element
of Aik in the sth row and tth column) is set to be
this feature value. Furthermore, we normalize Wik to
obtain: Tik = D

−1/2
ik WikD

−1/2
ik (1)

where Dik is a diagonal matrix whose sth element
Dik(s) is equal to the sum of the sth row of Wik.

Figure 1. Illustration of M2TV learning. Examples from
Task 1 and Task 2 (black squares) have both a shared view
(diamonds) and the task specific views (circles and trian-
gles for the 2 views of Task 1, and pluses for the 1 view of
task 2). The weight of an edge between an example node
and a feature node is set to the feature value.

On bipartite graph Gik, we hope to observe label con-
sistency among the nodes. To be specific, a positive
example (i.e., gi(·) > 0) should be connected with pos-
itive features (i.e., fik(·) > 0) and vice versa. In a more
principled way, we measure the consistency by

Cik =

ni∑
s=1

dik∑
t=1

Aik(s, t)(
gi(s)√
Dik(s)

− fik(t)√
Dik(ni + t)

)2

= ∥gi∥2 + ∥fik∥2 − 2gTi Likfik

where Lik is an ni×dik matrix, and its element in the
sth row and tth column Lik(s, t) = Tik(s, ni + t).

In this way, for Task i, we have Vi such bipartite
graphs, which correspond to Ci1, . . . , CiVi . Therefore,
the overall consistency of Task i is measured by

Ci =

Vi∑
k=1

aikCik + µi∥gi − yi∥2

where aik, µi are positive parameters, and yi is an ni-
dimensional vector. The first mi elements of yi are set
to be the class labels of the corresponding examples,
and the remaining elements are set to be 0. In Ci, the
first term implicitly measures the consistency among
different views since the function gi(·) is shared by all
the bipartite graphs, and the second term measures
the consistency with the label information.

On the other hand, if Task i and Task j are directly
related, i.e., Sij ̸= ϕ, we hope to observe similarity on
the common views of the two tasks. To be specific,
∀k ∈ Sij , ∥fik − fjk∥2 should be small. In this way,
given a certain task, the information of other related
tasks can be leveraged to improve its performance.
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Combining the overall consistency of each task and the
similarity on the common views of different tasks, we
have the following objective function for GraM2.

Q(f, g) =

T∑
i=1

Ci + b

T∑
i=1

T∑
j=1

∑
k∈Sij

∥fik − fjk∥2 (2)

where b is a non-negative parameter. When b = 0,
different tasks are decoupled.

4.2. An RKHS for GraM2

In this subsection, we construct an RKHS for GraM2,
whose inner product depends on the common views
of related tasks. For the ease of explanation, here we
assume that T = 2, V = 3, V1 = V2 = 2, and S12 =
{1}, although the analysis can be carried out to more
complex cases. Related to the two tasks, we have two
hypothesis spaces, H1 and H2. H1 (H2) is defined on
N1 = ∪2

k=1N1k (N2 = ∪2
k=1N2k), i.e., the examples

in Task 1 (Task 2) as well as the features in the two
views of Task 1 (Task 2). To be specific, ∀h1 ∈ H1,
its function value on an example in Task 1 is equal to
g1(·); its function value on a feature in the first view
of Task 1 is equal to f11(·); and its function value on a
feature in the second view of Task 1 is equal to f12(·).
∀h2 ∈ H2, its function value is defined in a similar
way. Furthermore, we impose the following norms on
H1: ∥h1∥2H1

=
∑2

k=1 a1kC1k = hT
1 M1h1, and on H2:

∥h2∥2H2
=

∑2
k=1 a2kC2k = hT

2 M2h2, where h1 and h2

can be seen as both a function and a column vector
whose elements are equal to their function values on
N1 and N2 respectively, and

M1 =

 (a11 + a12)In1×n1 −a11L11 −a12L12

−a11L
T
11 a11Id11×d11

0d11×d12

−a12L
T
12 0d12×d11 a12Id12×d12



M2 =

 (a21 + a22)In2×n2 −a21L21 −a22L22

−a21L
T
21 a21Id21×d21 0d21×d22

−a22L
T
22 0d22×d21 a22Id22×d22


M1 and M2 have the following property.

Proposition 4.1. M1 and M2 are positive semi-
definite.

Proof. Omitted for brevity.

So H1 with norm ∥ · ∥H1 and H2 with norm ∥ · ∥H2 are
RKHSs whose reproducing kernels kH1 : N1×N1 → R
and kH2 : N2 ×N2 → R are given by elements of M†

1

and M†
2 , the Moore-Penrose pseudo-inverse of M1 and

M2 respectively.

Next, consider the following space

H = {[hT
1 , h

T
2 ]

T : h1 ∈ H1, h2 ∈ H2}

with the inner product defined by

⟨[hT
1 , h

T
2 ]

T , [(h′
1)

T , (h′
2)

T ]T ⟩H =

⟨h1, h
′
1⟩H1 + ⟨h2, h

′
2⟩H2 + b(f11 − f21)

T (f ′
11 − f ′

21)

Notice that this inner product depends on the com-
mon view of the two tasks (fi1 and f ′

i1).

With respect to H, we have the following theorem
showing that it is actually an RKHS.
Theorem 4.2. Let N0 = N1∪N2. H is an RKHS with
the following reproducing kernel kH : N0 × N0 → R
defined as follows.
If z ∈ N1 and z′ ∈ N1,

kH(z, z′) = kH1(z, z
′)−bk⃗H1(z, F )(I+bS)−1k⃗H1(F, z

′)
(3)

If z ∈ N1 and z′ ∈ N2,

kH(z, z′) = bk⃗H1(z, F )(I + bS)−1k⃗H2(F, z
′) (4)

If z ∈ N2 and z′ ∈ N1,

kH(z, z′) = bk⃗H2(z, F )(I + bS)−1k⃗H1(F, z
′) (5)

If z ∈ N2 and z′ ∈ N2,

kH(z, z′) = kH2(z, z
′)−bk⃗H2(z, F )(I+bS)−1k⃗H2(F, z

′)
(6)

where F denotes the set of features in the com-
mon view of Task 1 and Task 2. k⃗H1

(F, z) and

k⃗H2(F, z) are column vectors whose elements are set
to be kH1(z0, z) and kH2(z0, z), z0 ∈ F , respec-

tively. k⃗H1(z, F ) = k⃗TH1
(F, z). k⃗H2(z, F ) = k⃗TH2

(F, z).
S = KH1(F, F ) + KH2(F, F ), where KH1(F, F ) and
KH2(F, F ) are Gram matrices of kH1 and kH2 over
the set of common features respectively.

Proof. See Appendix A.
Based on this theorem, GraM2 framework can be re-
duced to standard supervised learning as follows.

h∗ = [h∗
1, h

∗
2]

T = argminh∈H∥h∥2H+
2∑

i=1

µi

ml∑
l=1

(hi(xil)−yil)
2

The optimal functions g∗i and f∗
ik can be obtained from

h∗
i respectively.

5. IteM2: The Proposed Algorithm
In Section 4, we introduced the objective function for
GraM2, i.e., Equation (2). In this section, we pro-
pose an effective algorithm (IteM2) for solving this
optimization problem, followed by an analysis of its
optimality, convergence and time complexity.

5.1. The Proposed IteM2 Algorithm

The proposed IteM2 algorithm is described in Algo-
rithm 1. It works as follows. In Step (1), we initialize
using Algorithm 2. To be specific, we calculate the
normalized affinity matrices using Equation (1), and
initialize the function gi for Task i to contain the label
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information. Then from Step (2) to (25), we repeat-
edly update both the function gi and the function fik
by niter times. In particularly, between Steps (9) and
(17), for the kth view, we collectively update the func-
tions fik for the tasks with this view. To be specific,
we calculate the matrix A3 as follows.

A3 = A2A
−1
1 (7)

where A1 denotes an |Ik| × |Ik| matrix with diagonal
element A1(i, i) set to aIk(i)k+2b(|Ik|−1), (Ik(i) is the

ith element of Ik), and the other elements set to −2b;
A2 denotes an dk×|Ik| matrix whose ith column is set
to aIk(i)kL

T
Ik(i)k

gIk(i). Finally, in Step (26), we obtain
the predicted class labels using Algorithm 3, which
normalizes the function gi according to the proportion
of both classes in the labeled set of each task.

5.2. Analysis of IteM2

The following theorem guarantees the optimality and
convergence of the iteration process between Step (2)
and (25) of IteM2 algorithm.

Algorithm 1 IteM2 Algorithm

Input: Wik, aik, µi, Sij , yil, i, j = 1, . . . , T , k =
1, . . . , Vi, l = 1, . . . ,mi, b, niter

Output: Predicted class labels ŷil, i = 1, . . . , T , l =
mi + 1, . . . , ni

1: Initialize using Algorithm 2
2: for t = 1 to niter do
3: for i = 1 to T do
4: Si = ∪T

j=1Sij

5: for k /∈ Si do
6: fik = LT

ikgi
7: end for
8: end for
9: for k = 1 to V do

10: Let Ik denote the set of indices such that ∀s ∈
Ik, ∃s′ ∈ Ik, k ∈ Sss′ and ∀s′ /∈ Ik, k /∈ Sss′

11: if Ik is not empty then
12: Calculate matrix A3 using Equation (7)
13: for i = 1 to |Ik| do
14: Set fIk(i)k to be the ith column of A3

15: end for
16: end if
17: end for
18: for i = 1 to T do
19: Set ai =

∑Vi

k=1 aik and gi =
µi

µi+ai
yi

20: for k = 1 to Vi do
21: gi = gi +

aik

µi+ai
Likfik

22: end for
23: end for
24: end for
25: Assign class labels using Algorithm 3

Algorithm 2 Initialization of IteM2 Algorithm

Input: Wik, yil, i = 1, . . . , T , k = 1, . . . , Vi, l =
1, . . . ,mi

Output: Tik, Lik and the initial value for gi, i =
1, . . . , T , k = 1, . . . , Vi

1: for i = 1 to T do
2: for k = 1 to Vi do
3: Calculate Tik and Lik based on Equation (1)
4: end for
5: Initialize gi such that gi(l) = yil, l = 1, . . . ,mi,

gi(l) = 0, l = mi + 1, . . . , ni

6: end for

Algorithm 3 Label Assignment of IteM2 Algorithm

Input: yil, gi, i = 1, . . . , T , l = 1, . . . ,mi

Output: Predicted class labels ŷil, i = 1, . . . , T , l =
mi + 1, . . . , ni

1: for i = 1 to T do
2: Set pi to be the proportion of positive examples

in the labeled set of Task i
3: Sort gi in descending order. Set ŷil = 1 for

the top pi portion of the ranked list, and set
ŷil = −1 for the remaining

4: end for

Theorem 5.1. (Optimality and Convergence) If niter

is sufficiently large, Vi = v, µi = µ, and aik = a,
i = 1, . . . , T , k = 1, . . . , v, Step (2) to (25) of IteM2

converge to the optimal solution of Equation (2).

Proof. Taking the first derivative of Q(f, g) with

respect to gi, we have ∂Q(f,g)
∂gi

=
∑Vi

k=1(2aikgi −
2aikLikfik) + 2µi(gi − yi). Setting it to 0, we have

gi =
µi

µi +
∑Vi

k=1 aik
yi+

Vi∑
k=1

aik

µi +
∑Vi

k=1 aik
Likfik (8)

∀k, 1 ≤ k ≤ Vi, if Task i does not share the kth view

with any other task, ∂Q(f,g)
∂fik

= 2aikfik − 2aikL
T
ikgi.

Setting it to 0, we have

fik = LT
ikgi (9)

On the other hand, if Task i shares the kth view with
some other tasks, let Iik denote the set of indices such
that, ∀s ∈ Iik, k ∈ Sis. Note that Ik = {i, Iik}. In

this case, we have ∂Q(f,g)
∂fik

= 2aikfik − 2aikL
T
ikgi +

4b
∑

s∈Iik
(fik − fsk). For all the other indices in Ik,

we have a similar equation. Therefore, by setting all
these equations to 0, the obtained fik functions for
tasks with indices in Ik correspond to the columns of

A3 = A2A
−1
1 (10)

Without loss of generality, assume that I1 =
{1, . . . , r}, r > 1. When the conditions in the theo-
rem are satisfied,
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A−1
1 =

1

a2 + 2rab


a+ 2b 2b · · · 2b

2b a+ 2b · · ·
...

...
...

. . . 2b
2b . . . 2b a+ 2b


Replacing fi1 in Equation (8) with the one obtained
in Equation (10), we have, for i = 1, . . . , r,

gi =
µ

µ+ av
yi +

v∑
k=2

a

µ+ av
Likfik

+
a

µ+ av
(

r∑
j=1

2b

a2 + 2rab
aLi1L

T
j1gj +

a

a2 + 2rab
aLi1L

T
i1gi)

In matrix form, the third term in the above equations
(for all the gis) can be collectively written as a

µ+avL1g,
where

L1 =


a2+2ab
a2+2rab

2ab
a2+2rab · · · 2ab

a2+2rab

2ab
a2+2rab

a2+2ab
a2+2rab · · ·

...
...

...
. . . 2ab

a2+2rab
2ab

a2+2rab . . . 2ab
a2+2rab

a2+2ab
a2+2rab

 ∗


 L11

...
Lr1

 [
LT
11 · · · LT

r1

]
Here ∗ denotes Khatri-Rao product, and g =
[gT1 , . . . , g

T
r ]

T . It is easy to see that the two parts
of L1 are both positive semi-definite; the eigenval-
ues of the first matrix are between 0 and 1; and
the diagonal blocks of the second matrix also have
eigenvalues between 0 and 1. Therefore, accord-
ing to (Horn & Mathias, 1992), L1 is positive semi-
definite, and its eigenvalues are between 0 and 1. Sim-
ilarly, we can show that Lk is positive semi-definite,
and its eigenvalues are between 0 and 1, k = 1, . . . , v.
Therefore, by iteratively solving Equations (8), (9) and
(10), Step (2) to (25) converge to the optimal solution
of Equation (2).
Regarding the time complexity of IteM2, we have the
following lemma, which indicates that the proposed
IteM2 algorithm is scalable to the size of the data set
as well as the dimensionality of the feature space.
Lemma 5.2. (Time Complexity)
The time complexity of IteM2 is

O(niter

(∑T
i=1 ni

∑Vi

k=1 dik + dST
2 + V T 3

)
+∑T

i=1 ni log ni), where dS is the sum of dimen-
sionality of shared views whose |Ik| > 0.
Proof. Omitted for brevity.

6. Experimental Results
In this section, we present some experimental results
showing the effectiveness of the proposed IteM2 algo-
rithm. To the best of our knowledge, there is no ex-
isting work for problems where multiple related tasks

have both shared views and task-specific views. There-
fore, we compare with the following algorithms:
1. SVM-2K (Farquhar et al., 2005): an

optimization-based algorithm for problems
with multiple views.

2. SMTL (Liu et al., 2007): a semi-supervised multi-
task learning framework, which uses unlabeled
data based on Markov random walk.

3. CASO (Chen et al., 2009): a multi-task learn-
ing algorithm, which improves the ASO algo-
rithm (Ando & Zhang, 2005) with a novel regu-
larizer.

In our experiments, we apply SVM-2K on the multiple
views of each task respectively; we apply SMTL and
CASO on the common views of all the tasks. To pro-
vide a fair comparison, we adjust the output of these
competitors in the same way as Algorithm 3. We re-
peat all the experiments 40 times, and report both the
average classification error and the standard deviation.

For the proposed IteM2 algorithm, we simply set
aik = 1, i = 1, . . . , T , k = 1, . . . , Vi since there is no ev-
idence showing the superiority of one view or another.
Following the convention in (Zhou et al., 2003), we set
µi = 0.01, i = 1, . . . , T . The number of iteration steps
niter is set to 100, and b is set to 1 based on the pa-
rameter study in the next subsection. For SVM-2K, we
set the parameters by cross-validation; for SMTL and
CASO, we set the parameters according to (Liu et al.,
2007) and (Chen et al., 2009) respectively.

6.1. Two Tasks with Non-identical Views

We first perform experiments on 20 newsgroups data
set (Asuncion & Newman, 2007). On this data set,
we created 3 problems. Each problem has 2 tasks,
which share a common view consisting of the common
vocabulary. The task specific vocabulary corresponds
to the unique view of each task. Therefore, T = 2, V =
3, V1 = V2 = 2, S12 = {1}. For details, please refer to
Table 1, where the number following ‘P’ denotes the
problem index, the number following ‘T’ denotes the
task index, and the number in the parenthesis is the
number of examples.

Table 1. Task description for 20 newsgroups data set.

Label +1 -1
P1T1 comp.graphics (581) rec.autos (592)

P1T2
comp.os.ms- rec.motorcycles

windows.misc (572) (596)

P2T1
comp.sys.ibm. sci.med (594)

pc.hardware (587)

P2T2
comp.sys.mac. sci.space (593)
hardware (575)

P3T1 rec.autos (592)
talk.politics.mideast

(564)

P3T2
rec.motorcycles talk.politics.guns

(596) (545)
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Figure 2 shows the results of IteM2 when we vary the
value of b from 100 to 0. When b = 0, the performance
is the worst, especially when the number of labeled
examples from each task is small. This is because the
label information from other tasks is not utilized. On
the other hand, the performance of IteM2 is quite
robust over a wide range of values for b. Therefore,
in subsequent experiments, we fix b = 1.
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Figure 2. Parameter study: 20 newsgroups data set P1T1.

Figure 3 to Figure 5 show the comparison results on
the 3 problems respectively. In each figure, the left
subfigure shows the classification error for Task 1 vs.
the number of labeled examples in each task, and the
right subfigure shows the classification error for Task
2 vs. the number of labeled examples in each task.
From these figures, we can see that the performance
of IteM2 is always the best on both tasks, since SVM-
2K does not utilize the label information from other
tasks, whereas SMTL and CASO do not consider the
consistency among different views of a single task. Fur-
thermore, notice that the difference between SVM-2K
and IteM2 is significant when the number of labeled
examples is small. This observation, which is com-
mon in all the experiments, is consistent with our in-
tuition because labeled examples from other tasks are
particularly useful when we do not have many labeled
examples in a single task.
6.2. Multiple Tasks with Identical Views

Next, we test the performance of IteM2 on WebKB
data set, which was used to study the co-training al-
gorithm in (Blum & Mitchell, 1998). This data set
consists of 1051 web pages collected from the com-
puter science departments of 4 universities. The goal
is to classify each web page as course or non-course.
On this data set, we have 4 tasks, each of which con-
sists of the web pages from one university. For each
task, we have 3 views, which correspond to the words
in the web page, the words in the anchor text of hyper-
links pointing to that page, and the words in the title
of the web page. Notice that all 3 views are shared by
the 4 tasks. Therefore, T = 4, V = 3, Vi = 3, and
Sij = {1, 2, 3}, i, j = 1, . . . , 4, i ̸= j. Notice that for
such problems (multiple tasks with identical views),
the input to IteM2, SMTL and CASO are the same

since all the tasks have identical views. Figure 6 shows
the average classification error of all the tasks vs. the
number of labeled examples in each task. We can see
that the performance of IteM2 is significantly better
than SMTL and CASO, which indicates the impor-
tance of leveraging the consistency of multiple views.
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Figure 3. Classification error: 20 newsgroups data set P1.
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Figure 4. Classification error: 20 newsgroups data set P2.
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Figure 5. Classification error: 20 newsgroups data set P3.
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Figure 6. Average classification error: WebKB data set.

6.3. Multiple Tasks and Non-identical Views

Finally, we study the more general case where we have
multiple tasks with non-identical views. To this end,
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we use the email spam data set from ECML 2006 dis-
covery challenge2. Here we have 2 problems. In Prob-
lem A, we have emails from 3 different users (2500
emails per user); whereas in Problem B, we have emails
from 15 different users (400 emails per user). The goal
is to classify spam vs. ham. For both problems, we
create different tasks for different users. Similar as in
Subsection 6.1, the common view of all the tasks cor-
respond to the common vocabulary, and the unique
view of each task correspond to the task-specific vo-
cabulary. Therefore, for Problem A, T = 3, V = 4,
V1 = V2 = V3 = 2, and S12 = S13 = S23 = {1}; for
Problem B, T = 15, V = 16, Vi = 2, and Sij = {1},
i, j = 1, . . . , 15, i ̸= j.

Figure 7 shows the average classification error of all the
tasks vs. the number of labeled examples in each task
for Problem A and B. We can see that again the perfor-
mance of IteM2 is the best in this general setting. On
the other hand, SVM-2K performs better than multi-
task learning algorithms. This may be due to the fact
that SMTL and CASO only use the common vocabu-
lary, which limits their discrimination power.

7. Conclusion
In this paper, we introduce M2TV learning for prob-
lems with dual-heterogeneity, i.e., multiple related
tasks have both shared views and task-specific views.
We propose a graph-based framework (GraM2) for
M2TV learning, which has a natural connection to
RKHS. Furthermore, we propose an effective algo-
rithm (IteM2) to solve our GraM2 framework, which
is guaranteed to converge to the optimal solution in a
scalable way. Experimental results on several real data
sets demonstrate the effectiveness of our method.
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Figure 7. Average classification error: ECML data set.
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A. Proof Sketch of Theorem 4.2
Similar to (Sindhwani & Rosenberg, 2008), we can show
that H is a Hilbert space. To further prove that it is an
RKHS, we only consider the case where z ∈ N1. The case
where z ∈ N2 can be proven similarly. First, based on
Equations (3) and (4), we can show that kH(z, ·) ∈ H.
Next we prove the reproducing property of kH(z, ·). ∀h′ =
[(h′

1)
T , (h′

2)
T ]T ∈ H, we calculate ⟨h′, kH(z, ·)⟩H as follows.

⟨h′, kH(z, ·)⟩H = ⟨[(h′
1)

T , (h′
2)

T ]T , [hT
1 , h

T
2 ]

T ⟩H
= ⟨h1, h

′
1⟩H1 + ⟨h2, h

′
2⟩H2 + b(h1(F )− h2(F ))T (h′

1(F )− h′
2(F ))

= h′
1(z)− bk⃗H1(z, F )(Id11×d11 + bS)−1h′

1(F )

+ bk⃗H1(z, F )(Id11×d11 + bS)−1h′
2(F )

+ b(h1(F )− h2(F ))Th′
1(F )− b(h1(F )− h2(F ))Th′

2(F )

= h′
1(z) = h′(z)

where the second last equation is based on the following.
hT
1 (F )− hT

2 (F ) = k⃗H1(z, F )− bk⃗H1(z, F )(Id11×d11 + bS)−1S

= k⃗H1(z, F )(Id11×d11 + bS)−1


