
Optimal Distributed Online Prediction

Ofer Dekel oferd@microsoft.com

Ran Gilad-Bachrach rang@microsoft.com

Ohad Shamir ohadsh@microsoft.com

Lin Xiao lin.xiao@microsoft.com

Microsoft Research, USA

Abstract

Online prediction methods are typically stud-
ied as serial algorithms running on a sin-
gle processor. In this paper, we present the
distributed mini-batch (DMB) framework, a
method of converting a serial gradient-based
online algorithm into a distributed algorithm,
and prove an asymptotically optimal regret
bound for smooth convex loss functions and
stochastic examples. Our analysis explic-
itly takes into account communication laten-
cies between computing nodes in a network.
We also present robust variants, which are
resilient to failures and node heterogeneity
in an asynchronous distributed environment.
Our method can also be used for distributed
stochastic optimization, attaining an asymp-
totically linear speedup. Finally, we empiri-
cally demonstrate the merits of our approach
on large-scale online prediction problems.

1. Introduction

Many natural prediction tasks can be cast as stochas-
tic online prediction problems. These are often dis-
cussed in the serial setting, where the computation
takes place on a single processor. However, when the
examples arrive at a high rate and have to be processed
in real time, there may be no choice but to distribute
the computation across multiple cores or multiple clus-
ter nodes. For example, modern search engines pro-
cess thousands of queries a second, and indeed they
are implemented as distributed algorithms that run in
massive data-centers. In this paper, we focus on such
large-scale and high-rate online prediction problems,
where parallel and distributed computing is critical to
providing a real-time service.

Appearing in Proceedings of the 28 tℎ International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

First, we begin by defining the stochastic online pre-

diction problem. Suppose that we observe a stream
of examples z1, z2, . . ., where each zi is sampled in-
dependently from a fixed unknown distribution over a
sample space Z. Before observing each zi, we predict a
point wi from a setW . After making the prediction wi,
we observe zi and suffer the loss f(wi, zi), where f is
a predefined loss function. Then we use zi to improve
our prediction mechanism for the future (e.g., using a
stochastic gradient method). We measure the quality
of our predictions using the notion of regret, defined as

R(m) =

m
∑

i=1

(f(wi, zi)− f(w★, zi)) ,

where w★ is the minimizer of F (w) = Ez [f(w, z)] over
W . In this paper, we restrict our discussion to convex
prediction problems, where f is convex in its first ar-
gument and W is a closed convex subset of ℝn. Also,
for brevity we focus on bounds on the expected re-
gret, but note that our results are readily extendable
to high-probability bounds on the actual regret.

We model our distributed computing system as a set
of k nodes, each being an independent processor, and a
network that enables the nodes to communicate with
each other. Each node receives and handles an incom-
ing stream of examples from an outside source, such
as a load balancer/splitter, and simultaneously may
communicate with neighboring nodes in the network.
As in the real world, we assume that the network has a
limited bandwidth, so the nodes cannot simply share
all of their information, and messages sent over the
network incur a non-negligible latency.

How well can we perform in such a distributed environ-
ment? At one extreme, an ideal (but unrealistic) solu-
tion is to run a serial algorithm on a single “super” pro-
cessor that is k times faster than a standard node. This
solution is optimal, simply because any distributed al-
gorithm can be simulated on a fast-enough single pro-
cessor. Using gradient-based serial algorithms, the re-
gret bound in this case is O(

√
m), and is known to be

Optimal Distributed Online Prediction

optimal (Nemirovski & Yudin, 1983; Abernethy et al.,
2009). At the other extreme, a trivial solution to
our problem is to have each node run an independent
copy of a serial algorithm, without any communication
over the network. However, the regret of this solution
scales poorly with the network size k. Assuming that
each node processes m/k examples, the total regret is
O(k

√

m/k) = O(
√
km) - namely, a factor of

√
k worse

than the ideal solution. The first sanity-check that
any distributed online prediction algorithm must pass
is that it outperforms this trivial solution.

In this paper, we present the distributed mini-batch

(DMB) framework, which has the following important
properties:

∙ It can use any gradient-based update rule for se-
rial online prediction as a black box, and convert
it into a distributed online prediction algorithm.

∙ If the loss function f(w, z) is smooth in w (i.e.
has a Lipschitz-continuous gradient), then our
method attains an asymptotically optimal regret
bound of O(

√
m). Moreover, the coefficient of the

dominant term
√
m is the same as in the serial

bound, and independent of the network size k and
other network characteristics.

∙ When adapted to stochastic gradient based algo-
rithms for stochastic optimization, the DMB al-
gorithm achieves nearly linear speed-up with par-
allel computing.

Our paper is organized as follows. First, we give a brief
discussion of related work in Sec. 1.1, which puts our
main results mentioned above in a clear perspective.
In Sec. 2, we present our algorithm in a synchronous
distributed setup, where all nodes work properly and
at the same rate, and the network has no failures.
Since these assumptions may not be realistic in all
distributed settings, we also develop variants of our
method in Sec. 3 and Sec. 4, which are provably robust
to heterogeneous nodes, various failures, and changes
in the network topology. We conclude in Sec. 5 by
presenting several experiments on large-scale predic-
tion problems, which demonstrate the merits of our
approach. Due to limitation of space, proofs can be
found in Dekel et al. (2010a) and Dekel et al. (2010b).

1.1. Related Work

The problem of distributing online prediction and
optimization, including the case of gradient-based
algorithms, has received much attention, with no-
table early references being Tsitsiklis et al. (1986) and

Bertsekas & Tsitsiklis (1989). More recent works in-
clude Ram et al. (2009); Nedić & Ozdaglar (2009);
Zinkevich et al. (2010); Duchi et al. (2010). Despite
the large activity in this area, the existing guarantees
for all the algorithms we are aware of are either purely
asymptotic (without rate of convergence in the opti-
mization setting), or are not significantly better than
the trivial solution that has an O(

√
km) regret bound,

which scales poorly with the network size.

Perhaps the closest work to ours is Langford et al.
(2009), which address distributed online prediction
and attempts to show improved O(

√
m) regret guaran-

tees with k parallel workers, compared to the O(
√
km

)

of the trivial solution. However, the architecture they
propose is not scalable beyond a multi-core or small
cluster setting. Moreover, due to an error in the proof
of Lemma 1 therein, their improved regret bounds only
hold in special cases, when W = ℝ

n yet boundedness
of the gradients and compactness of the domain can
still be implicitly guaranteed.1

As the name distributed mini-batch suggests, our
approach makes use of the idea of mini-batches,
which is not new and has been previously explored
in both the serial and parallel setting (see, e.g.,
Delalleau & Bengio, 2007; Gimpel et al., 2010). How-
ever, as far as we know, our work is the first to use this
idea in order to obtain such provably strong results in
a distributed learning setting.

2. The Distributed Mini-Batch (DMB)
Framework

We focus on gradient-based algorithms, that conform
to the following template: after each example zj is
processed, the gradient gj = ∇wf(wj , zj) is computed,
and is used to obtain the next predictor wj+1. The
update is performed using a generic update rule �:

(wj+1, aj+1) = �(aj , gj , �j),

where aj is an auxiliary state vector that summarizes
necessary past information, and �j is an iteration-
dependent parameter such as a stepsize. This template
corresponds to large families of online algorithms, such
as mirror descent algorithms (Nemirovski et al., 2009)
and dual averaging (Nesterov, 2009; Xiao, 2010). As
an example, a special case of the mirror descent al-
gorithm is the well-known online projected gradient
descent method of Zinkevich (2003),

wj+1 = �W (wj − gj/�j) ,

where �W is Euclidean projection onto the set W .

1See Dekel et al. (2010b) for more details.

Optimal Distributed Online Prediction

2.1. Regret Bounds based on Gradient Variance

Typical regret bounds for the online algorithms men-
tioned above are based on the norm of the gradients,
supw∈W,z∈Z ∥∇wf(w, z)∥. Our approach is based on
a novel theoretical observation, that for stochastic in-
puts and smooth loss functions, one can prove regret
bounds that depend on the variance of the stochastic
gradients. More precisely, we assume

∙ Smoothness: f is L-smooth in its first argument.
More formally, ∀z ∈ Z and ∀w,w′ ∈W ,

∥∇wf(w, z)−∇wf(w
′, z)∥ ≤ L∥w − w′∥ .

∙ Bounded Gradient Variance: There exists a con-
stant � > 0 such that

∀w ∈W, Ez[∥∇wf(w, z)−∇wEz[f(w, z)]∥2] ≤ �2.

The following theorem exemplifies this for projected
gradient descent:

Theorem 1. Let f be an L-smooth convex loss func-

tion, Assume that the stochastic gradient ∇wf(w, z)
has �2-bounded variance for all w ∈ W . Also, let

D =
√

maxu,v∈W ∥u− v∥22/2. Then by running pro-

jected gradient descent on m i.i.d. examples with an

appropriate step size, the expected regret is at most

(F (w1)− F (w★)) +D2L+ 2D�
√
m.

See Dekel et al. (2010b) for the proof, as well as appro-
priate versions for mirror descent and dual averaging
algorithms. In either case, if ∇F (w★) = 0 (which is
the case if w★ is strictly inside W), then the expected
regret bounds can be simplified to

E[R(m)] ≤ 2D2L+ 2D�
√
m . (1)

For brevity, we will use (�2,m) to denote such vari-
ance bounds for predicting on m examples, and will
often focus on the case where they are equal to Eq. (1).

2.2. The DMB algorithm

The key observation from the above theoretical results
is the following: suppose that instead of updating our
predictor after each gradient, we accumulate a mini-

batch of b gradients with respect to the same predic-
tor, and only then update the predictor based on the
average of these b gradients. These averaged gradi-
ents have the same expectation as the original gradi-
ents, but smaller variance due to the averaging, lead-
ing to an improvement in the variance-based regret
bounds above. In a nutshell, the DMB framework that

Algorithm 1 Distributed mini-batch (DMB)

for j = 1, 2, . . . do
initialize ĝj := 0
for s = 1, . . . , b/k do

predict wj

receive example z sampled i.i.d. from unknown
distribution
suffer loss f(wj , z)
compute g := ∇wf(wj , z)
ĝj := ĝj + g

end for

call the distributed vector-sum to compute the
sum of ĝj across all nodes
receive �/k additional examples and continue pre-
dicting using wj

finish vector-sum and compute average gradient
ḡj by dividing the sum by b
set (wj+1, aj+1) = �

(

aj , ḡj , �j

)

end for

we propose uses the distributed network in order to
rapidly accumulate gradients with respect to the same
fixed predictor w. Once a mini-batch of sufficiently
many gradients are accumulated (parameterized by b),
the nodes collectively perform a vector-sum operation
across the network, which allows each node to obtain
the average of these b gradients. This average is then
used to update the predictor, using any gradient-based
online update rule as a black box. The pseudo-code
for any single node appears as Algorithm 1.

The regret analysis for this algorithm is based on a pa-
rameter �, which bounds the number of examples pro-
cessed by the system (all k nodes) during the vector-
sum operation. The gradients for these � examples
are not used for updating the predictor. While � de-
pends on the network structure and communication
latencies, it does not scale with the total number of
examples m processed by the system. Formally, the
regret guarantee is as follows:

Theorem 2. Let f be an L-smooth convex loss

function and assume that the stochastic gradient

∇wf(w, zi) has �2-bounded variance for all w ∈ W .

If the online update rule has the serial regret bound

 (�2,m), then the expected regret of the DMB algo-

rithm over m examples is at most

(b+ �)

(

�2

b
,

⌈

m

b+ �

⌉)

.

Specifically, if (�2,m) = 2D2L + 2D�
√
m, and the

batch size is chosen to be b = m� for any � ∈ (0, 1/2),
the expected regret is 2D�

√
m+ o(

√
m). In particular,

if m = b1/3, the regret is bound by 2D�
√
m+O(m1/3).

Optimal Distributed Online Prediction

Note that for serial regret bounds of the form 2D2L+
2D�

√
m, we indeed get an identical leading term in

the regret bound for the DMB algorithm, implying its
asymptotic optimality.

2.3. Speeding up Stochastic Approximation

The DMB framework and its analysis can be eas-
ily extended to stochastic optimization. It is well-
known that all the online update rules discussed above
can be easily converted to stochastic optimization
algorithms, by running them over the training set
z1, . . . , zm, accumulating the sequence of predictors
w1, w2, . . ., and returning their average w̄m. More-
over, if the expected regret bound of the algorithm
is (�2,m), then the expected optimality gap of the
algorithm in a stochastic optimization setting (namely,
E[F (w̄m) − infw∈W F (w)]) is at most (�2,m)/m.
Therefore, Thm. 2 implies that in a stochastic opti-
mization setting, the optimality gap is asymptotically
unaffected by moving from a serial algorithm, to a dis-
tributed algorithm using the DMB framework. How-
ever, the distributed algorithm can process examples
k times faster than the serial algorithm. Therefore,
we get an asymptotically linear speed-up in the dis-
tributed algorithm, compared to a serial algorithm.
Not only is this bound optimal, it is also the first prov-
able demonstration of a non-trivial speedup in using
distributed systems for stochastic optimization.

3. Master-Workers Architecture:
MaWo-DMB

The DMB algorithm presented earlier assumes that
all nodes are making similar progress. However, even
in homogeneous systems, which are designed to sup-
port synchronous programs, this is hard to achieve, let
alone grid environments in which each node may have
different capabilities. In this section, we describe a
variant of the DMB algorithm that has several desir-
able properties: It performs on heterogeneous clusters,
whose nodes may have varying processing rates; It can
handle dynamic network latencies; and it can be made
robust using standard fault tolerance techniques.

To provide these properties, we convert the DMB algo-
rithm to work with a single master and multiple work-
ers. Each of the workers receives examples and pro-
cesses them at its own pace. Periodically, the worker
sends the information it collected, i.e., the sum of gra-
dients, to the master. Once the master has collected
sufficiently many gradients, it performs a predictor up-
date and broadcasts the new predictor to the workers.
We call this algorithm the master-worker distributed

mini-batches (MaWo-DMB) algorithm.

In well-connected systems, one possible method to im-
plement the communication between the master and
the workers is via a shared database. Using a database,
each worker can update the gradients it collected on
the database, and check for updates from the master.
At the same time, the master can check periodically to
see if sufficiently many gradients have accumulated in
the database. When there are at least b accumulated
gradients, the master performs an update and posts
the result in a designated place in the database.

The MaWo-DMB algorithm shares a similar asymp-
totic behavior as the DMB algorithm (e.g. as discussed
in Thm. 2). The proof for the DMB algorithm applies
to this algorithm as well, where now � is the number
of examples not used in the computation of the next
prediction point. � can be coarsely bounded, for ex-
ample, by assuming the examples come at a bounded
rate, and there is bounded latency in sending messages
between the workers and the master. By picking the
batch size b to be large enough, we get asymptotically
optimal regret.

3.1. Adding Fault Tolerance

The MaWo-DMB has one potential weakness: if the
master fails, the algorithm stops making updates. This
is a standard problem in master-worker environments.
It can be solved using leader election algorithms such
as Gallager et al. (1983) and Malpani et al. (2000). If
the workers do not receive any signal from the master
for a long period of time, they start a process by which
they elect a new leader (master). Some of these algo-
rithms are suited to dynamic networks, where the net-
work can be partitioned and reconnected. Therefore,
if the network becomes partitioned, each connected
component will have its own master.

Another way to introduce robustness to the MaWo-
DMB algorithm is by selecting the master only when
an update step is to be made. Assume that there is a
central database and all workers update it. At prede-
fined time intervals, each worker locks the record in the
database; adds the gradients computed to the sum of
gradients reported in the database; and adds the num-
ber of gradients to the count of the gradients reported
in the database. At this point, the worker checks if the
count of gradients exceeds b. If it does not, the worker
releases the lock and returns to processing examples.
However, if the number of gradients does exceed b, the
worker performs the update and broadcasts the new
prediction point (using the database) before unlock-
ing the database and becoming a worker again. This
simple modification creates a distributed master such
that any node in the system can be removed without

Optimal Distributed Online Prediction

significantly affecting the progress of the algorithm.
In a sense, we are leveraging on the reliability of the
database system.

4. Robust Decentralized Architecture:
ADMB

In the previous section, we discussed asynchronous al-
gorithms based on a master-workers architecture. Us-
ing off-the-shelf fault tolerance methods, one can de-
sign simple and robust variants, capable of coping with
dynamic and heterogeneous networks. That being
said, this kind of approach also has some limitations.
For example, accessing a shared database may not be
feasible, and utilizing leader-election algorithms is po-
tentially wasteful, as it requires a single master (and a
directed acyclic graph) to be agreed upon before pre-
dictor updates can be made. Moreover, choosing a
computationally weak or communication-constrained
node will have severe repercussions. In terms of perfor-
mance guarantees, it is hard to come up with explicit
time guarantees for these algorithms, and hence the
effect on the regret incurred by the system is unclear.

In this section, we describe a robust, fully decentral-
ized and asynchronous version of DMB, which we de-
note as asynchronous DMB or ADMB. We provide a
formal analysis, and show that ADMB shares the ad-
vantages of DMB in terms of dependence on network
size and communication latency.

We assume that communication between nodes takes
place along some bounded-degree acyclic graph. In
addition, each node has a unique numerical index. We
will generally use p to denote a given node’s index, and
let q denote the index of some neighboring node.

Informally, the algorithm works as follows: each node p
receives examples, accumulates gradients with respect
to its current predictor (which we shall denote as wp),
and shares these gradients with its neighbors. Gradi-
ents are eventually propagated throughout the system,
with a mechanism to ensure that in each node, no gra-
dient is accumulated twice, and that the gradients are
with respect to the same predictor the node is working
with. Whenever a node accumulates a batch of b such
gradients, it updates wp. Note that unlike the MaWo-
DMB algorithm, here there is no centralized master
node responsible for performing the update. Also, we
no longer insist on all nodes sharing the exact same
predictor at any given time point. Of course, this can
lead to each node using a different predictor, and the
system will behave as if the nodes all run in isolation.
To prevent this, we add a mechanism, which ensures
that if a neighboring node q of node p has a predic-

tor based on more updates, then node p will switch
to use that predictor. If the two nodes have different
predictors based on the same number of updates, then
one of them adopts the other node’s predictor using a
tie-breaking rule. With this mechanism, the predictor
with the most gradient updates is propagated quickly
throughout the system, so either everyone starts work-
ing with this predictor and share gradients, or an even
better predictor is obtained somewhere in the system,
and is then quickly propagated in turn. Finally, for
technical reasons, the predictions themselves are not
made with the current predictor wp, but rather with a
running average w̄p of predictors computed so far.

4.1. The ADMB Algorithm

We now turn to describe the algorithm formally. The
algorithm has two global parameters: b, which (as in
the DMB algorithm) is the number of gradients whose
average is used to update the predictor; and t, which
regulates the communication rate between the nodes.
Each node p maintains the following data structures:

∙ A node state Sp = (wp, w̄p, vp), where wp is the
current predictor; w̄p is the running average of
predictors computed so far; and vp counts how
many predictors are averaged in w̄p (equivalently,
the number of updates performed according to the
online update rule, in order to obtain wp).

∙ A vector gp and associated counter cp, which hold
the sum of gradients computed from examples ser-
viced by node p.

∙ For each neighboring node q, a vector gqp and asso-
ciated counter cqp, which hold the sum of gradients
received from node q.

When a node p is initialized, all the variables discussed
above are set to zero, The node then begins the exe-
cution of the algorithm. The protocol is composed of
executing three event-driven functions: handling a new
incoming example (Algorithm 2), sending messages to
the node’s neighbors every t time–units, where a time–
unit is arbitrarily defined (Algorithm 3), and process-
ing an incoming message (Algorithm 4). The functions
use a subroutine update predictor (Algorithm 5) to
update the node’s predictor if needed. For simplicity,
we will assume that each of those three functions is
executed atomically.

Due to the acyclic structure of the network, no single
gradient is ever propagated to the same node twice.
Thus, the algorithm indeed works correctly, in the
sense that the updates are always performed based
on independent gradients. Moreover, the algorithm

Optimal Distributed Online Prediction

Algorithm 2 ADMB: Handle new example

Predict using w̄p

Receive example z, suffer loss and compute gradient
∇wf(wp, z)
gp := gp +∇wf(wp, z) , cp := cp + 1
if cp +

∑

q c
q
p ≥ b then

update predictor

end if

Algorithm 3 ADMB: Send Message (Every t Time–
Units)

For each neighboring node q′, send message
(

p, Sp, gp +
∑

q ∕=q′ g
q
p, cp +

∑

q ∕=q′ c
q
p

)

is well-behaved in terms of traffic volume over the net-
work, since any communication link from node p to
node q passes at most 1 message every t time–units,
where t is a tunable parameter.

As with the MaWo-DMB algorithm, the ADMB al-
gorithm also has some desirable robustness proper-
ties, such as capability of working with heterogeneous
nodes, adding/removing nodes, and dealing with com-
munication latencies. Moreover, it is robust to network
failures: even if the network is split into two (or more)
partitions, it only means we end up with two (or more)
networks which implement the algorithm in isolation.
The system can continue to run and its output will
remain valid.

4.2. Analysis

We now turn to discuss the regret performance of the
algorithm. Since we have not specified what happens
to examples sent to malfunctioning nodes, we will iso-
late a set of “well-behaved” nodes, and focus on the re-
gret incurred on the examples sent to these nodes. The
underlying assumption is that the system is mostly
functional for most of the time, so the large majority
of examples are processed by such well-behaved nodes.

To that end, let us focus on a particular set of k′ nodes,
which form a connected component of the communi-
cation framework, with diameter d′ (which may scale
up to k′, depending on the network topology). We
will define the nodes as good during some time pe-
riod, if all those nodes implement the ADMB algo-
rithm at a reasonably fast rate. More precisely, we
assume that for each node, executing each of the func-
tions defining the ADMB algorithm takes at most one
time–unit; The communication latency between two
adjacent good nodes is at most one time–unit; And the

Algorithm 4 ADMB: Process Incoming Message

Let (q, Sq, g, c) be the received message
if Sq.vq > vp or (Sq.vq = vp and Sq.wq ∕= wp and
q < p) then
Sp := Sq , gp := 0 , cp := 0 , ∀q gqp := g , cqp := c

else

if Sq.wq = wp then

gqp = g , cqp = c
if cp +

∑

q c
q
p ≥ b then

update predictor

end if

end if

end if

Algorithm 5 update predictor Subroutine

Use averaged gradient
gp+

∑
q
gq

p

cp+
∑

q
cqp

to compute updated

predictor wp

w̄p :=
vp

vp+1
w̄p +

1

vp+1
wp

vp := vp +1 , gp := 0 , cp := 0 , ∀q gqp := 0 , cqp := 0

k′ nodes receive at most M examples every time–unit.
As to other nodes, we only assume that the messages
they send to the good nodes reflect a correct node
state, as specified earlier. In particular, they may be
arbitrarily slow or even completely unresponsive.

Also, we will define a good time period to be a time
during which all k′ nodes are good for sufficiently
long. In particular, we assume that the nodes han-
dled b + 2(t + 2)d′M examples overall, and were also
good for (t + 2)d′ time–units prior to that time pe-
riod. As to other time periods, we will only assume
that at least one of the k′ nodes remained operational
and implemented the ADMB algorithm (at an arbi-
trarily slow rate). With these definitions, we have the
following result:

Theorem 3. Suppose the gradient-based update rule

has the serial regret bound (�2,m), and that for any

�2, 1

m (�
2,m) decreases monotonically in m. Let m

be the number of examples handled during a sequence

of non-overlapping good time periods. Then the ex-

pected regret with respect to these examples is at most

⌈m/�⌉
∑

j=1

�

j

(

�2

b
, j

)

,

where � = b+2(t+2)d′M . Specifically, if (�2,m) =
2D2L+ 2D�

√
m, then the expected regret bound is

4D�

√

(

1 +
2(t+ 2)d′M

b

)

m+O((b+ td′M) log(m))

Optimal Distributed Online Prediction

Figure 1. Top: average online loss for DMB (left), MaWo-DMB (center), ADMB(right). Bottom: test loss (on a held-out
set) for DMB (left), MaWo-DMB (center), ADMB(right). The mini-batch size in all experiments is b = 5000. In each
plot, k denotes number of nodes and c denotes chunk size.

We note that t, d′,M do not scale with the total num-
ber of examples m. Thus, when the batch size b scales
as m� for any � ∈ (0, 1/2), we get an asymptotic re-
gret bound of the form 4D�

√
m+o(

√
m). The leading

term is virtually the same as the one in the serial re-
gret bound. The only difference is an additional factor
of 2, essentially due to the use of averaged predictors.

5. Experiments

We conducted an empirical study using the syn-
chronous distributed mini-batches (DMB) algorithm,
the master-worker DMB (MaWo-DMB) algorithm,
and the decentralized asynchronous DMB (ADMB) al-
gorithm. We chose the binary classification task of
distinguishing between stub-articles and full-articles
on Wikipedia. The English version of Wikipedia cur-
rently has 5.8 million articles. Each article is associ-
ated with a set of categories, and some of the categories
are considered to be stub categories. We classified an
article as a stub if it is associated with at least one
stub category.

We represented each Wikipedia article by a 234-
dimensional binary feature vector, constructed as fol-
lows: we represented each article by 18 integer features
(e.g. article length, title length, number of paragraph,
number of links, etc.), and converted each integer fea-
ture to 13 binary features, by chunking the integer
range to 13 parts on a logarithmic scale.

Our goal was to learn a 234 dimensional linear classifier
by minimizing the log-loss function. If w is the current
linear classifier and z = (x, y) is an feature vector x
and a binary label y, then the log-loss attained by w
on z is defined as

f(w, z) = log
(

1 + exp(−y⟨w, x⟩)
)

.

Note that the log-loss is a smooth convex function.

We ran all of our experiments on a small 10-node clus-
ter. The 10 cluster nodes communicate via TCP over a
2Gb Ethernet network. We found the communication
latencies of TCP over Ethernet to be quite significant,
and each of our nodes generally spent half of its time
on communication. In practice, our algorithms would
greatly benefit from a low-latency network (such as
Infiniband).

We ran each of the three optimization algorithms with
k = 2, 5, 10 worker nodes, and with a mini-batch size of
b = 5000. We also experimented with different chunk
sizes of c = 500, 1000, 2500, where c is constrained to
be at most b/k. We evaluated each algorithm both
as an online predictor (measuring average online loss)
and as an online optimization algorithm (estimating
test loss using the next mini-batch of examples, which
is yet unobserved by the algorithm). We repeated each
experiment 5 times, each time on a random permuta-
tion of the data, and we report averaged results in
Fig. 1. The loss values are shown as a function of wall
clock time (in log-scale).

Optimal Distributed Online Prediction

The advantage of using more nodes is clearly reflected
in our results. For example, take the ADMB algo-
rithm in the online prediction setting. Fig. 1 clearly
shows how more nodes accelerate the convergence of
the average loss. Moreover, more nodes increase the
throughput of the online prediction system, and the
ADMB algorithm was able to process 248K, 140K and
76K examples per second, using 10, 5 and 2 workers re-
spectively. Another example is the MaWo-DMB algo-
rithm in the optimization setting. In order to achieve
an average loss of 0.55, the MaWo-DMB algorithm re-
quired 34, 47 and 52 seconds, using 10, 5 and 2 workers
respectively. Although we see a clear advantage to us-
ing more workers, the speedups do not scale linearly.
With larger values of k, we begin to observe diminish-
ing returns. The reason for this is the high communi-
cation latency associated with the TCP protocol over
Ethernet.

We also conducted experiments with simulated node
failures. In these experiments, each node flips an un-
biased coin after processing each chunk of c examples.
With probability half, the gradients from this chunk
are shared with the rest of the cluster, as prescribed
by the algorithm, and with probability half these gra-
dients are discarded. In these experiments, we count
only the loss of examples that were not discarded (this
is also what we analyze theoretically). This reinforces
our theoretical guarantees on the performance of our
algorithms in the presence of node failures.

6. Conclusions

In this paper we presented the distributed mini-
batches framework. Using this framework it is possi-
ble to achieve optimal regret bounds with smooth loss
functions in the stochastic distributed setting. This
result closes a gap in the theory of online learning
and stochastic optimization. Since distributed envi-
ronments often suffer from instabilities, we put an em-
phasis on methods that robustify the DMB framework.

References

Abernethy, J., Agarwal, A., Rakhlin, A., and Bartlett,
P. A stochastic view of optimal regret through min-
imax duality. In COLT, 2009.

Bertsekas, D. and Tsitsiklis, J. Parallel and Dis-

tributed Computation. Prentice Hall, 1989.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao,
L. Robust distributed online prediction. arXiv,
2010a. URL http://arxiv.org/abs/1012.1370.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and

Xiao, L. Optimal distributed online predic-
tion using mini-batches. arXiv, 2010b. URL
http://arxiv.org/abs/1012.1367.

Delalleau, O. and Bengio, Y. Parallel stochastic gradi-
ent descent. Talk presented at CIFAR NCAP Sum-
mer School, Toronto, Canada, 2007.

Duchi, J., Agarwal, A., and Wainwright, M. Dis-
tributed dual averaging in networks. In NIPS, 2010.

Gallager, R., Humblet, P., and Spira, P. A distributed
algorithm for minimum-weight spanning trees. ACM
TOPLAS Journal, 1983.

Gimpel, K., Das, D., and Smith, N. Distributed asyn-
chronous online learning for natural language pro-
cessing. In CoNLL, 2010.

Langford, J., Smola, A., and Zinkevich, M. Slow learn-
ers are fast. In NIPS, 2009.

Malpani, N., Welch, J., and Waidya, N. Leader elec-
tion algorithms for mobile ad hoc networks. In
DIAL-M, 2000.

Nedić, A. and Ozdaglar, A. Distributed subgradient
methods for multi-agent optimization. IEEE Trans-

actions on Automatic Control, 54(1):48–61, 2009.

Nemirovski, A. and Yudin, D. Problem complexity and

method efficiency in optimization. Series in Discrete
Mathematics. Wiley-Interscience, 1983.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro,
A. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Opti-

mization, 19(4):1574–1609, 2009.

Nesterov, Y. Primal-dual subgradient methods for
convex problems. Mathematical Programming, 120
(1):221–259, 2009.

Ram, S., Nedić, A., and Veeravalli, V. Distributed sub-
gradient projection algorithm for convex optimiza-
tion. In ICASSP, pp. 3653–3656, 2009.

Tsitsiklis, J., Bertsekas, D., and Athans, M. Dis-
tributed asynchronous deterministic and stochastic
gradient optimization algorithms. IEEE Transac-

tions on Automatic Control, 31(9):803–812, 1986.

Xiao, L. Dual averaging methods for regularized
stochastic learning and online optimization. Journal
of Machine Learning Research, 11:2543–2596, 2010.

Zinkevich, M. Online convex programming and gener-
alized infinitesimal gradient ascent. In ICML, 2003.

Zinkevich, M., Weimer, M., Smola, A., and Li, L. Par-
allelized stochastic gradient descent. In NIPS, 2010.

http://arxiv.org/abs/1012.1370
http://arxiv.org/abs/1012.1367

