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Abstract

We introduce the infinite regionalized pol-
icy presentation (iRPR), as a nonparamet-
ric policy for reinforcement learning in par-
tially observable Markov decision processes
(POMDPs). The iRPR assumes an un-
bounded set of decision states a priori, and
infers the number of states to represent the
policy given the experiences. We propose al-
gorithms for learning the number of decision
states while maintaining a proper balance be-
tween exploration and exploitation. Conver-
gence analysis is provided, along with perfor-
mance evaluations on benchmark problems.

1. Introduction

The policy controlling the behavior of an agent
in a partially observable Markov decision process
(POMDP) is represented as a mapping from the belief-
state space to the action space (Kaelbling et al., 1998).
A belief state is the probability distribution over the
states of the world the agent interacts with; it is a suf-
ficient statistic of the history of past actions and ob-
servations, and summarizes all information necessary
to determine the next non-myopic action.

Computation of belief states requires knowledge of the
true POMDP model. Therefore, belief states are unob-
servable to a reinforcement learning (RL) agent, who
does not know the true model, but tries to learn the
policy based on the experiences. The question then
arises as to how to represent the policy and learn it,
in the absence of the true model. One approach is to
obtain an estimate of the model from the agent’s expe-
riences, and then compute an (approximate) optimal
policy for the estimated model, with this used as an ap-
proximation to the optimal policy for the true model.
An alternative is to learn the policy directly from ex-
periences, without an intermediate step of estimating

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

the model. We refer to the former as a model-based
approach and the latter as a policy-based approach.

An indispensable ingredient, for both of the aforemen-
tioned approaches, is a mechanism for maintaining a
proper balance between exploration and exploitation.
Until the current policy is optimal, the agent should
always explore the consequences of actions that are
not encouraged by the current policy, to see whether
the new actions will lead to higher expected long-term
rewards. Exploration is the only way to ensure con-
tinual improvement of the policy. However, excessive
exploration makes the policy converge unnecessarily
slowly. To keep a balance, the agent needs to switch
appropriately between exploration and exploitation.

Model-based approaches usually employ Bayesian RL
for an implicit exploration and exploitation trade-off,
treating the uncertain POMDP parameters as addi-
tional states, and attempting to solve an augmented
POMDP with the model uncertainty incorporated into
the augmented belief states (Poupart & Vlassis, 2008).
However, the augmented POMDP is intractable and
approximations are used. The approximations are usu-
ally based on policy-solving of model samples, ignor-
ing the model uncertainty in future steps (Doshi-Velez
et al., 2009; Doshi-Velez, 2010); as a result, their abil-
ity to balance exploration and exploitation is limited.

There has been little work on exploration and exploita-
tion in POMDPs using policy-based approaches. One
recent study addressing this problem is reported in
(Cai et al.), in which an explicit exploration and ex-
ploitation algorithm is given for POMDPs, employing
an idea motivated by E3 (Kearns & Singh, 1998) and
R-MAX (Brafman & Tennenholtz, 2002), two RL al-
gorithms in Markov decision processes (MDPs). The
method employs a primary policy for choosing the reg-
ular actions, and an auxiliary policy for switching be-
tween exploration and exploitation. The primary pol-
icy is a regionalized policy representation (RPR) (Li
et al., 2009). The auxiliary policy is affiliated with the
primary one, using the same RPR but with a different
set of local policies (see Section 2).
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The RL algorithm in (Cai et al.) is guaranteed to con-
verge to the optimal policy. However, the optimality
is based on the assumption that the RPR has an ap-
propriate number of decision states. In practice, this
number is never known and has to be set manually.
When this number is too small, the RPR cannot ex-
press the optimal policy; when it is too large, the RPR
requires an unnecessarily large amount of exploration
to converge. Therefore, an appropriate choice of this
number is crucial to the success of the algorithm.

In this paper, we introduce the iRPR as a solution to
this problem. An iRPR is an extension of the RPR
where the parameters are a priori drawn from the hi-
erarchical Dirichlet process (HDP) (Teh et al., 2006),
which allows an infinite number of decision states and
yet is biased towards a small number of states. Given
the agent experiences, we infer the number of deci-
sion states while maintaining a proper balance between
exploration and exploitation. We provide theoretical
analysis which guarantees the iPRP converges to the
optimal policy as the rate of exploration decreases to
zero. Experiments on benchmark problems demon-
strate the performance of the iRPR.

2. Regionalized Policy Representation

Definition 1. (Li et al., 2009) A regionalized policy
representation is a tuple (A,O,Z,W, µ, π), where A,
O, and Z are respectively a finite set of actions, ob-
servations, and decision states; W is a set of Markov
transition matrices, with W zao

z′ denoting the probabil-
ity of transiting from z to z′ when taking action a in
z results in observation o; µ is the initial distribution
of decision states, with µz the probability of initially
being in z; π is a set of stochastic policies, with πza the
probability of taking action a in z.

For simplicity, Z is denoted as {1, 2, · · · , |Z|}, where
|Z| is the cardinality, and A and O are denoted in
similar ways. The set of RPR parameters are de-
noted as Θ = {π, µ,W}. A consecutively indexed
variable is abbreviated as the variable with its index
range; for example, a0:T = (a0, a1, . . . , aT ), W zao

1:|Z| =

(W zao
1 ,W zao

2 , · · · ,W zao
|Z| ), β1:∞=(β1, β2, · · · , β∞), etc.

Given ht = {a0:t−1, o1:t}, the history of actions and
observations up to t, the RPR chooses action at ac-
cording to

p(at|ht,Θ)=
p(a0:t|o1:t,Θ)

p(a0:t−1|o1:t,Θ)
=

p(a0:t|o1:t,Θ)

p(a0:t−1|o1:t−1,Θ)
, (1)

where the second equality arises because ot has no in-
fluence on the actions before t, and p(a0:t|o1:t,Θ) re-

sults from

p(a0:t, z0:t|o1:t,Θ) = µz0π
z0
a0

∏t
τ=1W

zτ−1aτ−1oτ
zτ πzτaτ , (2)

by marginalizing out latent decision states
z0:t. From equation (1) follows p(a0:t|o1:t,Θ) =∏t
τ=0 p(aτ |hτ ,Θ).

The RPR parameters are learned from the agent ex-
periences by using an empirical value function de-
fined below. Assuming the interaction between the
POMDP and the agent is episodic (Sutton & Barto,
1998), the experiences are represented as a set of
episodes. An episode of length Tk is denoted by
(ak0r

k
0o
k
1a
k
1r
k
1 · · · okTka

k
Tk
rkTk), where r is a nonnegative

immediate reward, k indexes the episodes, and the
subscripts index discrete time steps.

Definition 2. (Li et al., 2009) Let D(K) =
{(ak0rk0ok1ak1rk1 · · · okTka

k
Tk
rkTk)}Kk=1 be a set of episodes

resulting from the interaction between the POMDP
and an agent who chooses actions according to Π, an
arbitrary stochastic policy with action-selecting dis-
tributions pΠ(a|h) > 0, ∀ action a, ∀ history h. The
empirical value function is defined as

V̂ (D(K); Θ)
def.
=

1

K

K∑
k=1

Tk∑
t=0

γtrkt

∏t
τ=0 p(a

k
τ |hkτ ,Θ)∏t

τ=0 p
Π(akτ |hkτ )

(3)

where hkt = (ak0:t−1, o
k
1:t), 0 < γ < 1 is the discount as

defined in the POMDP.

It can be shown that limK→∞ V̂ (D(K); Θ) is the ex-
pected sum of discounted rewards by following the
RPR parameterized by Θ for an infinite number of
steps (Li et al., 2009). Therefore, the RPR resulting
from maximization of the empirical value function is
an approximation of the optimal policy, assuming the
number of decision states, i.e., |Z|, is large enough to
accommodate the optimal policy. Sondik (1978) has
shown that the optimal policy of any POMDP can
be approximated, to arbitrary precision, by a finite
state controller (FSC) with a sufficiently large num-
ber of internal nodes (the internal nodes correspond
to the decision states in an RPR). Meanwhile, Li et al.
(2009) have shown that the RPR subsumes the FSC
as a special case, when the parameters W and π take
particular forms. Therefore, the optimal policy can
be approximated by an RPR, and the approximation
can be made arbitrarily accurate by using a sufficiently
large number of decision states. The optimal number
of decision states can be inferred by the method that
will be presented in Section 3.

2.1. Bayesian Policy Learning

In addition to value maximization, Li et al. (2009)
have also given a Bayesian approach to learning the
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RPR, which employs V̂ (D(K); Θ) as the likelihood
function of Θ given the episodes D(K). This Bayesian
approach is nonstandard, as V̂ (D(K); Θ) is not equal
to the probability of D(K) given Θ. But this does not
prevent one from obtaining a legitimate posterior of
Θ, because, during the posterior inference, one is only
interested in V̂ (D(K); Θ) as a function of Θ. Since the
Bayesian approach forms the basis for the technical
developments in Section 3, we provide a review of it
below.

With a prior distribution G0(Θ), the posterior is de-
fined as

p(Θ|D(K))
def.
= V̂ (D(K); Θ)G0(Θ) [V̂ (D(K))]−1 (4)

where V̂ (D(K)) =
∫
V̂ (D(K); Θ)G0(Θ)dΘ is the

marginal empirical value. The posterior generally does
not have an analytic form. However, by employ-
ing the variational Bayesian technique (Beal, 2003),
one may obtain an approximation to the posterior,
along with the following byproducts: approximations
to p(zk0:t|ak0:t, o

k
1:t), ∀ t, k, and an approximation to the

nonnegative sequence ν = {νk0:Tk
}Kk=1, where νkt =

γtrkt p(a
k
0:t|o

k
1:t)∏t

τ=0 p
Π(akτ |hkτ )V̂ (D(K))

is a rescaled discounted reward1

averaged over the RPRs drawn from G0 (Li et al.,

2009). The rescaling leads to 1
K

∑K
k=1

∑Tk
t=0 ν

k
t = 1,

which normalizes V̂ (D(K)) to a unit. Denote by g(Θ)
the approximation to p(Θ|D(K)), by ν̂ = {ν̂k0:Tk

}Kk=1

the approximation to ν, and by qkt (zk0:t) the approxima-
tion to p(zk0:t|ak0:t, o

k
1:t), ∀ t, k. Letting KL(q‖p) denote

the Kullback-Leibler (KL) distance between probabil-
ity measures q and p, the approximations are found by
point-wise maximization of

LB(g(Θ), ν̂, {qkt }) = V̂ (D(K))−KL( ν̂K ||
ν
K )

− 1

K

K∑
k=1

Tk∑
t=0

ν̂kt KL
(
qkt (zk0:t)g(Θ)

∥∥p(zk0:t,Θ|ak0:t, o
k
1:t)
)
,(5)

subject to the non-negativity and normalization con-
straints on g(Θ), ν̂K , {q

k
t }. The first term on the right

side, the marginal empirical value, is a constant, thus
the maximization is equivalent to minimization of the
KL distance between each approximation and the as-
sociated true. The joint distribution p(zk0:t,Θ|ak0:t, o

k
1:t)

is factorized into a product of two marginals, i.e.,
qkt (zk0:t)g(Θ), in the approximation, and their KL dis-
tance is minimized in proportion to the weight ν̂kt .
Since the weight sequence ν̂ is an approximation to the
reward sequence ν, this ensures the approximations as-
sociated with higher rewards are more accurate.

1The νkt results from the fact one is evaluating the RPR
using episodes collected by a different policy Π.

Maximization of (5) leads to analytic solutions when
G0 is a product of Dirichlet distributions,

G0(Θ) =
[
Dir
(
µ1:|Z|

∣∣υ1:|Z|
)] [∏|Z|

i=1Dir
(
πi1:|A|

∣∣ρi1:|A|
)]

×
[∏|A|

a=1

∏|O|
o=1

∏|Z|
i=1Dir

(
W iao

1:|Z|
∣∣ωiao1:|Z|

)]
, (6)

with hyper-parameters (υ, ρ, ω), where υ = υ1:|Z|,

ρ = {ρi1:|A|}
Z|
i=1, and ω = {ωiao1:|Z|}i=1:|Z|,a=1:|A|,o=1:|O|.

The solutions, which are given in (Li et al., 2009), are
re-stated in Theorem 3.

Theorem 3. Let g(Θ) initially be the form of (6) with
hyper-parameters (υ̂, ρ̂, ω̂), then iterative application of
the following updates leads to monotonic increase of
(5), until convergence to a maxima. The updates of ν̂
and {qkt } are given by

ν̂kt =
γtrkt p(a

k
0:t|ok1:t, Θ̃)∏t

τ=0 p
Π(akτ |hkτ )V̂ (D(K)|Θ̃)

,∀ t, k, (7)

qkt (zk0:t) = p(zk0:t|ak0:t, o
k
1:t, Θ̃),∀ t, k, (8)

where Θ̃ = {π̃, µ̃, W̃} is a set of under-
normalized probability mass functions2, with

π̃im = eψ(ρ̂im)−ψ(
∑|A|
a=1 ρ̂

i
a), µ̃i = eψ(υ̂i)−ψ(

∑|Z|
j=1 υ̂j),

and W̃ iao
j = eψ(ω̂iaoj )−ψ(

∑|Z|
z=1 ω̂

iao
z ), and ψ is the

digamma function. The hyper-parameters of g(Θ) are
updated as

υ̂i = υi + 1
K

∑K
k=1

∑Tk
t=0ν̂

k
t φ

k
t,0(i)

ρ̂ia = ρia + 1
K

∑K
k=1

∑Tk
t=0 ν̂

k
t

∑t
τ=0φ

k
t,τ (i)δ(akτ , a) (9)

ω̂iaoj = ωiaoj + 1
K

∑K
k=1

∑Tk
t=0 ν̂

k
t

∑t
τ=1ξ

k
t,τ−1(i, j)

×δ(akτ−1, a)δ(okτ , o),

where

ξkt,τ (i, j) = p(zkτ = i, zkτ+1 = j|ak0:t, o
k
1:t, Θ̃) (10)

φkt,τ (i) = p(zkτ = i|ak0:t, o
k
1:t, Θ̃) (11)

are marginals of qkt (zk0:t).

2.2. Exploration-Exploitation Trade-off

The method in (Cai et al.) employs an auxiliary policy
to decide between exploration and exploitation at any
time during an episode, and the decision is conditional
on the history of past actions and observations. The
auxiliary policy, which also is an RPR, is affiliated with
the primary RPR that controls the regular actions.
The auxiliary RPR has parameters (σ, µ,W ), where

2Note that qkt (zk0:t) = p(zk0:t|ak0:t, ok1:t, Θ̃) is al-

ways properly normalized by p(ak0:t|ok1:t, Θ̃) =∑|Z|
z0,··· ,zt=1 p(z

k
0:t, a

k
0:t|ok1:t, Θ̃).
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(µ,W ) are shared with the primary RPR, and σ is
distinct from π, with σzy denoting the probability of
choosing exploration (y = 1) or exploitation (y = 0)
in decision state z. The primary RPR is learned as
discussed above. The auxiliary RPR only updates σ,
using (µ,W ) as they are learned for the primary RPR.
The σ is governed by a set of beta distributions,

σz0 ∼ Beta(uz0, u1), with σz1 = 1− σz0 , ∀ z ∈ Z, (12)

where u1 > 1 is a given constant and {uz0}
|Z|
z=1 are

updated using the rule,

ui0 =
∑K
k=1

∑Tk
t=0 ν̂

k
t

∑t
τ=0φ

k
t,τ (i), ∀ i ∈ Z, (13)

where ν̂kt and φkt,τ (i) are as given in (7) and (11), re-
spectively. At time t during an episode, the probabil-
ity p(yt|ht) is computed using (1) and (2), replacing at
with yt and π with σ. The update in (13) is performed
concurrently with (9), upon completion of an episode.

Intuitively, uz0 represents the total amount of imme-
diate and future rewards3 (over all time steps in pre-
vious episodes) that the agent receives when execut-
ing πz1:|A|, the local policy in decision state z. Since
πz1:|A| is executed only when z is occupied, the reward

at t is allocated to uz0 in proportion to
∑t
τ=0 φ

k
t,τ (z),

where φkt,τ (z) is the probability that z is occupied at τ
in episode k, given the actions and observations that
have led to the reward at t, as one recalls from (11).

When uz0 � u1, one has σz0 � σz1 , which implies the
agent almost never performs exploration. Therefore,
u1 defines, up to a constant multiplier, the total reward
required in z for the agent to stop exploration in z.

As rewards accumulate in each decision state, the
probability of exploration gradually decreases. It is
shown in (Cai et al.) that, with a sufficiently large
u1, the RPR is guaranteed to converge to the optimal
policy (assuming |Z| is appropriate).

3. The Infinite RPR

Definition 4. The infinite regionalized policy repre-
sentation (iRPR) is a tuple (A,O,Z, λ, α, ρ), where A
and O are as in Definition 1; Z is an unbounded set
of decision states indexed by positive integers; (λ, α, ρ)
determine (W,µ, π), the RPR parameters in Definition
1, as follows (notations described under Definition 1),

ηi ∼ Beta(1, λ), i = 1, 2, · · · ,∞,
βi = ηi

∏i−1
j=1(1− ηj), i = 1, 2, · · · ,∞,

W iao
1:∞ ∼ DP(α, β1:∞), i = 1, 2, · · · ,∞,

3Recall that ν̂kt approximates a rescaled reward received
by following the RPR.

µ1:∞ ∼ DP(α, β1:∞),
πi1:|A| ∼ Dir(· | ρ1:|A|), i = 1, 2, · · · ,∞,

∀ a ∈ A and ∀ o ∈ O, where DP(α, β1:∞) denotes a
Dirichlet process (Ferguson, 1973) with concentration
α and base probability measure β1:∞.

The iRPR is defined based on the hierarchical Dirich-
let process (HDP) (Teh et al., 2006), which places a
nonparametric prior on Θ = (W,µ, π). The stick-
breaking weights β1:∞ specify a probability measure
on Z = {1, 2, · · · ,∞}. The initial state distribution
(µ) and the next-state distributions (W ) are indepen-
dently drawn from DP(α, β1:∞). The local policies (π)
are drawn independently from a Dirichlet distribution
with parameters ρ1:|A|.

Assuming ρa = 1/|A|, ∀ a ∈ A (i.e., the agent takes
random actions a priori), we are interested in learn-
ing the RPR parameters Θ, along with the hyper-
parameters (λ, α) if inference of the latter is desirable.
The learning is based on Gibbs sampling, which it-
eratively samples the decision-state occupancies {zkt },
the RPR parameters Θ, the latent parameters β1:∞,
and the hyper-parameters (λ, α) (if desirable), with
the samples of one group of parameters conditional on
all other parameters.

During the inference, one may employ Theorem 3 as a
basic ingredient. To see why this is possible, we first
note that the nonparametric prior can be expressed
using the parametric prior in (6) by introducing a spe-
cial state z∗ summarizing all decision states currently
unoccupied by the episodes. Given that the number
of (distinct) unoccupied decision states is n, one may
write a parametric prior as

Gn0 (Θ)=
[
Dir
(
µ1:n+1

∣∣αβ1:n+1

)][∏n+1
i=1 Dir

(
πi1:|A|

∣∣ρ1:|A|
)]

×
[∏|A|

a=1

∏|O|
o=1

∏n+1
i=1 Dir

(
W iao

1:n+1

∣∣αβ1:n+1

)]
, (14)

where z∗ is indicated by n + 1, {βi}ni=1 are the same
as in definition 4 and βn+1 = 1−

∑n
i=1 βi.

Given Gn0 (Θ), one may employ Theorem 3 to obtain
ν̂, {qkt (zk0:t)}∀ t,k, and g(Θ), which are the approxi-
mations to the rescaled rewards ν, the decision-state
posterior {p(zk0:t|ak0:t, o

k
1:t)}∀ t,k, and the RPR posterior

p(Θ|D(K)), respectively. Given {qkt (zk0:t)}∀ t,k, one can
obtain decision-state occupancies {zkt,0:t}t=0:Tk,k=1:K ,

where zkt,0:t ∼ qkt (zk0:t) with qkt (zk0:t) given in (8). Let
Is be an indictor function that equals one if s is true
and zero otherwise. Define

ϕiaoj =

K∑
k=1

Tk∑
t=1

ν̂kt

t∑
τ=1

Izkt,τ−1=i,akτ−1=a,okτ=o,zkt,τ=j
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which is the reward-weighted sum of transitions from
i to j given that action a results in observing o.

If
∑
i,a,o ϕ

iao
n+1 = 0, there is currently no occupancy at

z∗, then β is updated as

β1:n+1 ∼ Dir(β1:n+1|
∑
i,a,om

iao
1 , · · · ,

∑
i,a,om

iao
n , λ)

with {miao
j } a set of auxiliary variables sampled from

p(miao
j =m|z, β, α) ∝ S(dϕiaoj e,m)(αβj)

m, m=1,· · ·, n,

where S(·, ·) is a Stirling number of the first kind (Teh
et al., 2006); dxe is the smallest integer no less than x.

If
∑
i,a,o ϕ

iao
n+1 > 0, it indicates there is at least one oc-

cupancy at z∗, then one generates a new decision state
to hold the occupancy, releasing z∗ as a special state.
Assuming n + 1 and n + 2 respectively indicates the
new decision state and z∗, one first samples {miao

1:n+1}
and then samples β1:n+2, similarly as above.

Given the samples of {ϕiao}, {miao}, and β, one may
sample the concentration parameters (α, λ), assuming
they have gamma priors. The details are similar to
those as described in the appendix of (Teh et al., 2006).

So far, one has completed a single iteration of Gibbs
sampling. Given the update of (α, β), the prior in
(14) is updated, and one begins a new iteration. The
process is repeated until the Gibbs sampler converges.

4. Exploration vs Exploitation in iRPR

We extend the exploration-exploitation method in Sec-
tion 2.2 to account for the unbounded set of deci-
sion states. Definition 2 requires pΠ(a|h) > 0, ∀
action a and history h, so that the empirical value
function converges to the true value function as the
episodes grow. We consider Π as a mixture of the
iRPR and the uniformly random policy, i.e., ∀h, we
let pΠ(a|h) = p(y = 0|h)p(a|h,Θ) + p(y = 1|h)/|A|.
The mixing proportions, p(y|h) =

∑
z∈Z σ

z
yp(z|h), are

computed using the auxiliary policy in Section 2.2,
with the special state z∗ included in Z to represent
any potential unseen experiences.

Before the (K + 1)-th episode starts, the agent has
learned Θ based on the previous episodes D(K) and
the prior in (14), where the special state z∗ = n + 1
is currently unoccupied and reserved to hold possible
occupancies in future episodes.

Moreover, the agent has used (13) to allocate each pre-
vious reward to uz0 in proportion to the probabilities
that z is occupied at and before the time of receiving
the reward. A large uz0, therefore, implies either or
both of the following events: (i) the local policy πz1:|A|

has contributed to large immediate or future rewards;
(ii) there has been a large amount of visits to z leading
to small rewards. Note that uz

∗

0 ≡ 0, since z∗ is not
occupied in D(K).

Since p(y = 0|h) � p(y = 1|h) implies that uz0 � u1

for any z ∈ {z : p(z|h) � 0}, which in turn implies
that the decision states closely associated with h have
received a large amount (relative to u1) of rewards
and/or visits so far. As a result, when u1 in (12) is
sufficiently large, one can conclude

Hknown
Def.
= {h : p(y = 0|h)� p(y = 1|h)} (15)

represents the part of H in which the agent has ac-
quired so much information, in the form of either a
few large rewards or a large number of small rewards,
that the iRPR policy it has learned is nearly optimal
there, where H is the set of all possible histories. Let
umin

1 denote the minimum u1 such that this is true.

Define Hunseen = {h : p(z = z∗|h) � 0}, which is
the part of H that can not be represented by cur-
rent decision states. Note that h ∈ Hknown im-
plies h /∈ Hunseen, because h ∈ Hunseen contradicts
p(y = 0|h) � p(y = 1|h), using the fact that
uz
∗

0 ≡ 0. Thus Hunseen ⊂ Hunknown = (H \ Hknown).
Letting Hseen = Hunknown \ Hunseen, one may write
H = Hknown ∪Hseen ∪Hunseen, with the subsets mutu-
ally exclusive.

During the (K + 1)-th episode, the agent follows the
iRPR policy in Hknown to obtain high rewards (ex-
ploitation), takes random actions to increase knowl-
edge in Hseen or start new knowledge in Hunseen (both
are exploration). Upon completion of the episode,
{uz0,1}Zz=1 are updated to reflect the increased knowl-
edge, with a new decision state introduced to hold the
new knowledge if Hunseen has been visited.

The iRPR always maintains the minimum Z for any
given episodes D(K), which is a key difference from the
RPR apart from inferring Z. Identification of Hunseen

leads to incremental augmentation of Z, and all new
decision states (including z∗) are initially activated
for constant exploration, recalling from Section 3 that
ρz = 1/|Z|,∀ z ∈ Z.

In contrast, the RPR assumes the optimal policy is
representable on a fixed Z. When |Z| is under-
specified, an apparently large p(y = 0|h) does not nec-
essarily imply h is known, because the RPR cannot
identify Hunseen. Thus, even if uz1 � u0, ∀ z ∈ Z, the
RPR cannot claimHknown as known; instead, the RPR
will converge to a suboptimal policy in this case. It is
clear then, the above definition for Hknown is correct
for the RPR only when |Z| is appropriate, while it
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is correct for the iRPR even if |Z| is initially under-
specified.

It is important to note that the agent does not have
to see every history in H, nor try all actions, to obtain
a good policy. Recall an RPR policy is a mapping
from H to A. Given that any h ∈ H corresponds
to a belief state in the underlying POMDP, one may
define the similarity between two histories based on
the similarity between the corresponding belief states.
As similar belief states are likely to have the same
optimal action (Sondik, 1978), so are similar histories.
Therefore, the agent needs to see typical histories only,
instead of every single history in H.

When no new decision state emerges, it means Hunseen

is null; when all existing decision states have their
u0’s significantly exceeding u1, it means Hseen is null.
When both occur, one has H = Hunseen and the learn-
ing stops.

Thus, we have provided an approach to balancing ex-
ploration and exploitation while at the same time in-
ferring the number of decision states. A formal con-
vergence analysis of the approach is given below.

4.1. Optimality and Convergence Analysis

The following theorem guarantees that an agent fol-
lowing the Π specified above will continue exploration
until the iRPR has converged to the optimal policy.
Moreover, the theorem quantitatively relates the ex-
ploration rate to the difference between the optimal
value and the value of the current iRPR. The theorem
extends the analysis in (Cai et al.) to account for the
unbounded Z. The proof is in the Appendix.

Let M denote the true model of the POMDP. Then

V (M; Θ) =
∞∑
t=0

∑
a0:t,o1:t,rt

γtrt p(a0:t, o1:t, rt|Θ,M), (16)

is the true value function of Θ, where rt = 0, ∀ t > T ,
for an episode of length T .4. Let Rmax denote the
maximum r. Since r ≥ 0, as one recalls from Section
2, one must have Rmax > 0 (otherwise r ≡ 0).

Theorem 5. Let Θ∗ be the optimal iRPR for the un-
derlying POMDP. Let Θ be the iRPR learned from
D(K), and σ be governed by (12), with u1 ≥ umin

1

and {uz0}
|Z|
z=1 updated as in (13). For any ε ≥ 0, if

V (M; Θ) < V (M; Θ∗)− ε, then

Pe = 1− p(y0:∞ = 0|σ,Θ) > (1− γ)ε/Rmax. (17)

where Pe denotes the probability of exploration, and

4After an episode terminates, the agent stays in an ab-
sorbing state with zero reward (Sutton & Barto, 1998).

y0:t = 0 is a shorthand for “yτ = 0, ∀ τ ∈ [0, t]”.

Theorem 5 shows that, when the value of the cur-
rent iRPR is ε away from the optimal value, the
agent will perform exploration with probability Pe >
(1− γ)ε/Rmax. Conversely, when Pe ≤ (1− γ)ε/Rmax,
the value of the current iRPR is guaranteed to be ε
close to the optimal value.

Given a history h, the agent may explore in either of
the two cases: (i) z∗ ∈ Z(h) = {z : p(z|h) � 0}, (ii)
Z(h) contains an occupied decision state z for which
uz0 � u1 is false. In case (i), h ∈ Hunseen, the agent
explores to start the learning in h, while in case (ii),
h ∈ Hseen, the agent resumes the learning in h. When
nether (i) nor (ii) occurs, the iRPR is optimal with
the minimum necessary number of decision states.

5. Results

We study the empirical performance of the iRPR
based on three benchmark POMDP models, i.e,
Littman’s noisy 1D maze and Hallway, and Tag.
The models are available at http://www.cs.brown.

edu/research/ai/pomdp/examples/index.html and
http://www.science.uva.nl/~mtjspaan/pomdp.

In all the experiments, we assume gamma priors for the
HDP concentration parameters, i.e., α ∼ Ga(10, 10)
and λ ∼ Ga(3, 10), where Ga(ag, bg) is a gamma distri-
bution with scale ag and shape bg. Upon completion of
each episode, the iRPR parameters are updated using
the inference algorithm presented in Section 3, based
on all available episodes. All results shown result from
an average over ten independent Monte Carlo runs,
with error bars showing the variances.

5.1. Effects of History Information and u1

We first examine the effects of u1 and history infor-
mation on the performance of balancing exploitation
and exploration. Figure 1 plots the following exper-
imental outputs as a function of log(k) : (i) the cu-
mulative discounted reward averaged over episodes 1
through k, with the optimal reward subtracted, (ii)
the average exploration rate in the k-th episode, i.e.,

1
Tk+1

∑Tk
t=0 p(y

k
t |hkt ), (iii) the number of decision states

|Z| learned from episodes 1 through k. For a curve la-
beled with u1 only, the exploration or exploitation is
determined by ykt ∼ p(ykt |hkt ), using the u1 shown. For
a curve labeled with u1 and Pe, the agent draws ykt
from a Bernoulli distribution with p(ykt = 1) = Pe,

where Pe = 1∑k
i=1 Ti+1

∑k
i=1

∑Ti
t=0 p(y

k
t |hkt ) is the aver-

age exploration rate for the curve that is labeled with
the corresponding u1 only.

http://www.cs.brown.edu/research/ai/pomdp/examples/index.html
http://www.cs.brown.edu/research/ai/pomdp/examples/index.html
http://www.science.uva.nl/~mtjspaan/pomdp
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Figure 1. The iRPR’s performance on the noisy 1D maze: (left) relative reward (middle) exploration rate (right) |Z|.

It is seen from Figure 1 that, when u1 = 2, the iRPR
converges to optimality after 1000 learning episodes,
and the exploration rate drops to zero accordingly.
This indicates the amount of exploration allowed by
u1 is appropriate. When u1 = 20, the iRPR converges
to optimality, but at a lower convergence rate. This
indicates that the amount of exploration as specified
by u1 = 20 is excessively large. With u1 = 200, the
convergence is too slow to be seen within the number
of episodes shown here. When u1 = 0.2, the explo-
ration rate quickly drops to zero, without giving the
agent enough time for exploration, and as a result,
the iRPR only converges to a suboptimal policy. The
results show relations between exploration rates and
values (accumulative discounted rewards) that are in
agreement with Theorem 5.

The performances significantly degrade when using
fixed exploration rate (not considering history infor-
mation), demonstrating that the use of history infor-
mation is crucial to balancing exploitation and explo-
ration. The number of decision states inferred by the
iRPR generally increases with the number of episodes,
and with the increase of exploration rates.

5.2. Performance Comparisons

We compare the performance of the iPRP to those of
the RPR and the iPOMDP (Doshi-Velez et al., 2009),
the latter is a nonparametric model-based approach
that infers the number of world states of a POMDP.5

We report the results on Hallway and Tag, in the form
of the un-discounted reward summed over interactions.

5The iPOMDP was employed in (Doshi-Velez, 2010) to
implement an infinite FSC (iFSC), which can be regarded
as a special case of the iRPR (refer to the text under Defini-
tion 2 for the relations between an iRPR and a FSC). How-
ever, the iFSC was learned by fitting to expert trajectories
(using standard likelihood functions), while learning of the
iRPR uses the empirical value function in (3). As shown in
(Li et al., 2009), learning with the empirical value function
is closely related to policy iteration (Sondik, 1978). The
iFSC and the iRPR are based on totally different learning
frameworks, which should not be confused.

The results of iPOMDP and EM (which is the finite
counterpart of iPOMDP), which are cited from (Doshi-
Velez, 2010), are available only within a small portion
of the interactions shown here. It is seen from Fig-
ure 2 that the iPRR performs much better than the
iPOMDP and EM.

The RPR has its performance dependent on the num-
ber of decision states. The iRPR always achieves su-
perior performance by using appropriate numbers of
decision states. The advantage of iRPR is more promi-
nent as the agent has accumulated more experiences
to make the inference of |Z| more accurate.

6. Conclusions

We have extended the RPR to represent the POMDP
policy on an a priori unbounded set of decision states.
The resulting iRPR infers the a posteriori number of
decision states, to match policy complexity dynami-
cally to the experiences. We have given an approach to
balancing exploration and exploitation while inferring
the decision states. Convergence analysis guarantees
that the iRPR performs exploration with a rate com-
mensurate with the difference from the optimal value.
Experimental results agree with the theoretical analy-
sis and demonstrate the iRPR’s superior performance
over those of the RPR and the iPOMDP.
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Appendix

Proof of Theorem 5: We note that V (M; Θ∗) is upper
bounded by

Vf (M;σ,Θ)=

∞∑
t=0

∑
a0:t,o1:t,rt

γtrtp(a0:t, o1:t, rt, y0:t=0|σ,Θ,M)

+

∞∑
t=0

γtRmax

∑
a0:t,o1:t,rt

∑
y0:t 6=0

p(a0:t, o1:t, rt, y0:t|σ,Θ,M), (18)
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Figure 2. Performance comparison between iRPR, RPR, iPOMDP (top) Hallway (bottom) Tag

where y0:t = 0 is an abbreviation for “yτ = 0, ∀ τ ∈ [0, t]”
and y0:t 6= 0 for “yτ 6= 0, ∃ τ ∈ [0, t]”.

To verify the upper bound, one notes that Vf is constructed
as an optimistic value function, in which the agent receives
Rmax at any time t unless y0:t = 0. However, observing
y0:t = 0 implies {hτ : τ ∈ [0, 1]} ⊂ Hknown, in which Θ
is optimal (see (15) and the discussions thereabout). Note
that the probability of observing y0:t = 0, i.e., p(y0:t = 0)
can be small, which means the first term in Vf may also
be small.

The premise implies ε < Vf (E ; Θ) − V (E ; Θ). Substi-
tuting (16), (18), the equation p(a0:t, o1:t, rt|Θ,M) =∑
y0:t

p(a0:t, o1:t, rt, y0:t|σ,Θ,M), and integrating out a’s
and o’s, one obtains

ε <
∑∞
t=0

∑
rt
γt(Rmax−rt)

∑
y0:t 6=0 p(rt, y0:t|Θ, σ),

<
∑∞
t=0

∑
rt
γtRmax

∑
y0:t 6=0 p(rt, y0:t|Θ, σ),

=
∑∞
t=0γ

tRmax

∑
y0:t 6=0 p(y0:t|Θ, σ),

=
∑∞
t=0γ

tRmax(1−p(y0:t = 0|Θ, σ))

<
∑∞
t=0γ

tRmax(1−p(y0:∞ = 0|Θ, σ))

=
Rmax

1− γ (1−p(y0:∞ = 0|Θ, σ)),

from which (17) follows. �
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