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Abstract
A tree-structured multiplicative gamma process
(TMGP) is developed, for inferring the depth of
a tree-based factor-analysis model. This new
model is coupled with the nested Chinese restau-
rant process, to nonparametrically infer the depth
and width (structure) of the tree. In addition to
developing the model, theoretical properties of
the TMGP are addressed, and a novel MCMC
sampler is developed. The structure of the in-
ferred tree is used to learn relationships between
high-dimensional data, and the model is also ap-
plied to compressive sensing and interpolation of
incomplete images.

1. Introduction
Factor models are classical tools for analysis of high-
dimensional data, widely utilized in the social sciences,
statistics and machine learning literature. Such models
seek to represent data in RP , typically for large P , as the
superposition of a small number of factor loadings; each
factor loading is also in RP , and the same typically small
set of loadings are used to linearly represent each data sam-
ple. The sample-dependent weights on the loadings are
termed factor scores. Recent developments include sparse
PCA in which the loadings are regularized to be sparse,
allowing for potentially interpretable loadings (Zou et al.,
2004; Archambeau & Bach, 2009). Another direction of
research involves nonlinear extensions, for example via
a mixture of factor analysis models (MFAs) (Tipping &
Bishop, 1999). In this setting each mixture component is
a linear factor model, and cumulatively all mixture compo-
nents yield a nonlinear mapping from data to factor scores.
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MFAs may be understood as a Gaussian mixture model
with a low-rank assumption for the covariance matrix of
each Gaussian (Roweis & Ghahramani, 1999). There are
two model-selection challenges for an MFA: inferring the
number of mixture components, and the number of factor
loadings per mixture component (the number of loadings
need not be the same for each mixture component). To
address this problem, Bayesian priors (Griffiths & Ghahra-
mani, 2006; Paisley & Carin, 2009; Knowles & Ghahra-
mani, 2007; Bhattacharya & Dunson, 2010) have been uti-
lized, allowing the number of factor loadings and mixture
components to be inferred from the data (Rasmussen, 1999;
Teh et al., 2006). For example, in (Chen et al., 2010)
beta-Bernoulli priors were utilized to infer the number of
factors, and a Dirichlet process was used to perform mix-
ture modeling; this framework simultaneously learns the
number of mixture components and the number of factor
loadings in each mixture component. Using this approach
(Chen et al., 2010) reported state-of-the-art results for a
compressive sensing application. However, the method in
(Chen et al., 2010) does not share factor loadings between
mixture components, missing an opportunity to enhance
statistical strength, and improve learning of relationships
between the data.

In this paper we extend the mixture model setting to learn a
multi-scale tree-structured hierarchy, with each factor load-
ing defined by a node of the tree. Nodes and hence factor
loadings may be shared among different mixture compo-
nents (tree branches) and each tree branch is modeled as
a probabilistic sparse PCA. The depth of each branch is
inferred from the data, defining the number of factor load-
ings for a given mixture component. Further, the number
of mixture components is also inferred, corresponding to
the number of branches in the tree. The multi-scale na-
ture of the learned factor loadings (tree) is of interest for
model interpretation, allowing the viewing of data at mul-
tiple scales.
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Learning a tree-structured hierarchy of observed variables
is an appealing but challenging approach for exploring la-
tent structure. In (Jenatton et al., 2010) a set of dictionary
elements embedded in a prespecified tree-structured hierar-
chy was developed, and the model was successfully applied
to represent both natural images and documents. However,
such hierarchical structure is often unobserved, and it is de-
sirable that it be inferred from data. The combinatoric na-
ture of selecting from among possible tree structures makes
typical model-selection techniques impractical (e.g., cross
validation). In the conclusion to (Jenatton et al., 2010),
the authors noted that the next major challenge is to in-
fer dictionary-learning trees in a nonparametric Bayesian
setting, to avoid the assumptions that they were required
to make with regard to the structure of the tree; this paper
seeks to address this research challenge, presenting a new
nonparametric Bayesian model for learning tree-based hi-
erarchical factor models.

The nested Chinese restaurant process (nCRP) (Blei et al.,
2004) has been proposed as a generative probabilistic
model for inferring a latent tree-structured hierarchy with
an unbounded width, inferring semantic topics from a doc-
ument corpus. Further, (Blei et al., 2010) extended this
model to let the branch depth also be inferred from the
data; this was done through modeling the discrete distri-
bution over topics of each document using a stick-breaking
process. In (Wang & Blei, 2009) the authors integrate the
nCRP with factor analysis to model both continous data
and discrete data, with factor loadings embedded in a tree
as well; however, the depth of each branch was fixed in
advance and as a result the number of factor loadings per
branch cannot be inferred based on data.

A tree structure learned by nCRP has also been applied suc-
cessfully in the computer-vision community, for example
to discover latent hierarchies of images or high-level se-
mantic information (Li et al., 2010; Bart et al., 2008). How-
ever, such models operate only on a discrete representation
of data, in terms of a pre-defined codebook of features ex-
tracted from images. In contrast, the proposed model can
learn the codebook (dictionary) at the same time it builds
the tree-structured hierarchy for the continuous data. Fur-
ther, the data are not mapped to a single codebook, but are
represented as a linear combination of the factor loadings
of the nodes of a tree branch. The stick-breaking process of
(Blei et al., 2010) may not be applied readily to this prob-
lem. Other priors over an infinite tree have been proposed,
but based on a different modeling philosophy; for exam-
ple, the tree-structured stick-breaking prior (Adams et al.,
2010) has been constructed to partition the data to nodes
of a tree. The model proposed in (Rai & Daumé, 2008) is
similar to our work in spirit, but the tree is restricted to be
binary and requires a pseudo-time hazard process to model
the depth of the tree.

To address the open problems elucidated above, this paper
makes two principal contributions:

• A tree-structured multiplicative gamma process is de-
veloped; coupled with the nCRP, it manifests factor
loadings embedded in a tree-structured hierarchy with
unbounded depth and width. A convergence guaran-
tee is also provided for the proposed model.

• We propose an efficient collapsed Gibbs sampler to
explore the combinatorial tree-structured hierarchy
space, automatically inferring the appropriate data-
adapted depth of each branch.

2. Background
2.1. Nested Chinese restaurant process

The nested Chinese restaurant process (nCRP) (Blei et al.,
2004; 2010) is a generative probabilistic model that defines
a prior distribution over a tree-structured hierarchy with in-
finite many branches. We denote the infinite set of branches
as T = {bk}∞k=1, with the superscript defining the kth
branch; each branch bk = {bkl }∞l=1 is a set of an infinite
number of nodes, and the subscript means the lth layer of
the branch. We use |bk| to denote the size of set bk, defin-
ing the number of associated nodes. For observed variable
{yi}Ni=1, where N is the total number of data, a branch
bk ∈ T is assigned to it according to a distribution speci-
fied below. Here we use bi = {bl,i}∞l=1 to represent the set
of nodes chosen by sample i at each layer l of the branch.
Finally, we use l(n) to denote the layer that node n lives in,
and c(n) denotes the set of children nodes of node n.

Now assume that data sample i is at a particular parent
node n; integer index bc(n),i defines the child of node n
that sample i transitions to. In the nCRP the probability
of which child node sample i transitions to is dictated by
the behavior of the previous i − 1 samples (the data are
distributed within the tree sequentially). Specifically, the
probability that sample i transits to child bc(n),i = k is
p(bc(n),i = k|bc(n),1:i−1) = α

mn+α
if k is a newly vis-

ited node, and p(bc(n),i = k|bc(n),1:i−1) =
mn,k

mn+α
other-

wise. Integer mn denotes the number of the previous i− 1
samples that employ node n, mn,k denotes the number of
these that employ child k, and α is a parameter controlling
the probability of spawning a new node/branch; a differ-
ent α may be used for each layer of the tree. Note that the
nCRP statistical relationship is defined recursively for an
infinite number of nodes {bl,i}∞l=1, which we simply de-
note as bi ∼ nCRP(α).

2.2. Multiplicative gamma process

Consider a factor model of form yi = Dzi + εi, εi ∼
N
(
εi
∣∣0,Λ−1), where D = {dpn, 1 ≤ p ≤ P, 1 ≤ n ≤
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K} and yi ∈ RP , zi ∈ RK . The multiplicative gamma
process (MGP) (Bhattacharya & Dunson, 2010) is defined
on each dpn as

dpn ∼ N
(
dpn
∣∣0, φ−1pn τ−1n )

, φpn ∼ Ga(φpn|3/2, 3/2)

τn =

n∏
l=1

δl , δ1 ∼ Ga(δ1|a1, 1), δl ∼ Ga(δl|a2, 1), l ≥ 2

where δl, l = 1, . . . ,∞ are independent. The τn is a glob-
ally shared shrinkage parameter for factor loadings dn, and
φpn is a local shrinkage parameter for dpn. The

∏
l∈p(n) δl

are stochastically increasing under the restriction a2 > 1,
which favors more shrinkage as n increases.

Although each draw of δl from a gamma distribution is not
guaranteed to be greater than one, in practice for normal-
ized data δl is inferred to be great than one when a2 > 1, for
moderately large l (l ≥ 3 in all our experiments). However,
an MGP based on a left-truncated gamma distribution may
be easily derived: τn =

∏n
l=1 δl, (δl−1) ∼ Ga(δl−1|a, 1),

where both the conjugacy and theoretical properties are re-
tained (Bhattacharya & Dunson, 2010). In the following
we only focus on the non-truncated version of MGP.

3. Proposed Model
3.1. Model and prior specification

To learn an infinite tree-structured hierarchical model
means to infer both the number of tree branches and depth
of each branch. To address the first problem we adopt the
nCRP prior. As opposed to other priors on infinite trees
(Mauldin et al., 1992; Rai & Daumé, 2008), the nCRP has
the flexibility of allowing an unbounded number of chil-
dren nodes for each parent node, rather than only allowing
two children; this enhances model flexibility, removing re-
dundant inner nodes (Adams et al., 2010). Let bi represent
the branch that data yi chooses, according to the nested
Chinese restaurant process (nCRP): bi ∼ nCRP(α) where
α = {α1, α2, . . . , α∞}, allowing different α for each layer
of the tree.

Assuming a Gaussian noise/residual model, observed data
yi ∈ RP are assumed drawn

yi ∼ N

(
yi
∣∣ ∑
n∈bi

dnxni +mbi ,Λ
−1

)
(1)

where Λ = diag{λ1, . . . , λP } is a diagonal precision
matrix. The set of N data samples are denoted Y =
{y1, . . . ,yN}. Factor loading dn is associated with node
n in the tree, and xni ∈ R is the associated weight (factor
score) on this factor loading for data yi; vector mbi

∈ RP
is the mean on branch bi. The diagonal Λ ∈ RP×P al-
lows the residual precision to vary across the P compo-
nents of the data, and we place a gamma prior Ga(a0, b0)

on each diagonal element. Note that we could make Λ be
branch specific. We impose the following priors on the fac-
tor loadings, scores and means: dpn ∼ N

(
dpn
∣∣0, γ−1pn ),

mpbi
∼ N

(
mpbi

∣∣0, ξ−1pbi

)
, xni ∼ N

(
xni
∣∣0, 1) . We re-

strict xni to be drawn from a unit-variance standard Gaus-
sian because of the arbitrary sharing of scale between xni
and γ−1pn , as discussed in (Roweis & Ghahramani, 1999).
Upon marginalizing out the factor scores, we have

yi ∼ N
(
yi
∣∣mbi

,Ωbi

)
(2)

with Ωbi
=
∑
n∈bi

dnd
′
n + Λ−1 where d′n denotes the

transpose of column vector dn. Note that for any two tree
branches (mixture components) bi and bj , the covariance
matrices Ωbi and Ωbj are partly shared (via the shared
nodes).

Notice that data associated with each branch bk ∈ T is
modeled via a factor model, and the rank of each factor
model is |bk|. However, |bk| is unbounded, as each branch
is drawn from nCRP. Thus an extra condition is needed for
(2) to be well defined. Toward this end, we extend the mul-
tiplicative gamma process to a tree-structured multiplica-
tive gamma process (TMGP): denote p(n) as the set of an-
cestors of node n (those nodes above node n) and for each
node n in the infinite tree, we define the TMGP for dpn’s
precision parameter

γpn = φpn
∏
l∈p(n)

ζl, φpn ∼ Ga (φpn|3/2, 3/2)

ζ1 ∼ Ga (ζ1|c1, 1) , ζl ∼ Ga (ζl|c2, 1) , l ≥ 2 (3)

denoted simply as γp ∼ TMGP(c1, c2). As for MGP,
the TMGP is also conjugate to the precision parameter in
a normal density function, allowing an efficient sampling
scheme, as discussed below. Note that for indices n corre-
sponding to nodes that are deeper in the tree, the parameter
γpn increases. Thus with TMGP each tree branch is mod-
eled as a probabilistic sparse PCA, or sparse FA if diagonal
covariance matrix is employed. Note that for usual shrink-
age priors on the loadings they exhibit the phenomenon of
factor splitting, in which none of the columns dn, n ∈ b
have all loading elements dpn close to zero even when l(n)
is large. The TMGP avoids this problem by shrinking in-
creasingly in columns dn for which l(n) is large. More
specifically, this choice of shrinkage prior on the infinite
number of factor loadings and means allows Ωbk to con-
verge almost surely for every infinite branch bk ∈ T , as
stated in the following theorem; a sketch of the proof can
be found in the supplemental material.

Theorem 1. For all bk ∈ T , the covariance matrix Ωbk =∑
n∈bk dnd

′
n + Λ−1 converges almost surely.

Our model can be thought as an innovative tree-structured
extension of infinite Gaussian mixture model (iGMM)
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(Rasmussen, 1999), with means and low-rank covariance
matrices shared by mixture components via a tree topol-
ogy. Specifically, we can rewrite the model as

y ∼
∑
bk∈T

wbk
N
(
y
∣∣mbk

,Ωbk

)
(4)

where Ωbk
is defined in (2), wbk

is the mixture weight of
this tree-structured iGMM drawn from the tree-structured
stick-breaking process introduced in (Wang & Blei, 2009).
We will discuss the usage of this specific formulation in
Section 5, where analytic compressive sensing(CS) inver-
sion is performed.

4. Posterior inference
4.1. Truncate tree branch depth to finite

For computational purposes, we would like to approximate
the infinite set of nodes on each branch bk ∈ T of the tree
(which correspond to an infinite set of factor loadings) to
a finite set bk(Lk) = {bk1 , bk2 , . . . , bkLk

}. Denote the trun-
cated tree T̂ (L) = {bk(Lk)}∞k=1 and |T̂ (L)| as the number
of truncated branches in the tree. As justification, we show
theoretical bounds on the depth truncation approximation
error between bk and bk(Lk). In the following discussion
we discard the branch-specific superscript k for notational
simplicity. Let Ωb(L) =

∑
n∈b(L) dnd

′
n + Λ−1 represent

the truncated version of Ωb; the following theorem states
that the prior probability of Ωb(L) being arbitrarily close to
Ωb increases exponentially fast to one as L tends to infin-
ity, generalizing Theorem 2.4 in (Bhattacharya & Dunson,
2010) to a tree-structured hierarchal setting and the proof
can be found therein.

Theorem 2. If c2 > 1, then ∀ε > 0, ∀b ∈ T ,

∃L̂ =
log(4Pb/ε(1− a))

log(1/a)
, s.t. when L > L̂

p(d∞(Ωb,Ωb(L)) > ε) <
6Pb

ε(1− a)
aL

where a = E(δ−11 ) and a2 = E(δ−12 ), and d∞(A,B) =
max1≤r,s≤p |ar,s − br,s| is the sup-norm metric for P × P
matrices A = (ars), B = (brs).

4.2. Collapsed Gibbs sampler with fixed truncation

We propose an efficient collapsed Gibbs sampler with fixed
truncation level for simultaneously exploring the parameter
space and the large latent tree-structured hierarchy. The
Gibbs sampler can be divided into two parts:

4.2.1. GIVEN {bi}Ni=1 SAMPLE OTHER PARAMETERS

With known branch assignments, the inference reduces to
a conventional sampler for factor models. Factor loading

dn, factor score xni, branch mean mb and precision ma-
trix Λ defined in equation (1) can be sampled from their
corresponding conditional distribution which we do not re-
produce here. Due to the conjugacy of the TMGP parame-
ters defined in (3), they can be sampled directly from their
conditional distribution p(·|−) given all other parameters
(Bhattacharya & Dunson, 2010). Denote Cn as the set of
children nodes of n and |Cn| as the size of that set we have:

p(φpn|−) = Ga

(
ν + 1

2
,
ν +

∏
l∈p(n) ζpd

2
pl

2

)
(5)

p(ζn|−) = Ga

(
ĉn +

P |Cn|
2

, 1 +

∑
c τ

(n)
c
∑P
p=1 φpcd

2
pc

2

)
where ν = 3 as parameterized in our previous setting, and
ĉ1 = c1, ĉn = c2 for n > 1, and τ (n)c =

∏
t∈pc,t6=n ζt,

for all children nodes c ∈ Cn. Finally, nCRP hyperparam-
eter α and hyperparameters a0, b0 on diagonal precision
matrix Λ are updated using standard Metropolis-Hastings
steps within the Gibbs sampler (Blei et al., 2010).

4.2.2. SAMPLE {bi}Ni=1 GIVEN OTHER PARAMETERS

Denote all the hyperparameters as θ, for sample i the con-
ditional distribution of choosing bL ∈ T̂ (L) is:

p(bi = bL|{dl,ml}l∈b, b−i,yi,θ)

∝p(yi|{dl,ml}l∈b,θ)p(bi = bL|b−i) (6)

where b−i denotes the tree branch assignments for all
data other than sample i. This expression is an out-
come of Bayes’ rule, where p(bi = bL|b−i) is the
prior of choosing bi given the choices of all other data,
p(yi|{dl,ml}l∈bi , bi) is the data likelihood of the data yi
given a particular tree branch assignment bi as formulated
in (2), where the latent factors in (1) are integrated out for
faster mixing of the sampler.

Note that to evaluate (2) we need the precision matrix and
the determinant for every branch bL ∈ T̂ (L), and for a tree
with |T̂ (L)| branches the computational cost is approxi-
matelyO(P |T̂ (L)|2) if advanced techniques are employed
(Roweis & Ghahramani, 1999) but still quadratic in |T̂ (L)|,
which is computationally prohibitive as |T̂ (L)| grows ex-
ponentially fast to the branch truncation level L. Note that
since the branch depth is modeled as the intrinsic latent di-
mension of observed variables, this issue will be critical
when handling complex data, e.g., when P is large. In the
following we propose an efficient Gibbs sampler by explor-
ing the tree structure that scales as O(P |T̂ (L)|).

Writing Ωb(0) = Λ and Ωb(l) =
∑
n∈b(l) dnd

′
n+Λ which

is interpreted as the covariance for branch b(l) with trunca-
tion level l, then for 1 ≤ l ≤ Lwe have the recursive repre-
sentation of covariance matrix: Ωb(l) = dbld

′
bl

+ Ωb(l−1).
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Denote Γlb = (Ωb(l))
−1 as the precision matrix of branch

b(l) with truncation level l, and writing Γ0
b = Λ−1,

then based on the recursive representation and Sherman-
Morrison-Woodbury matrix identities we can calculate the
matrix inversion and determinant recursively by operating
on matrix d′blΓb(l)dbl + 1 of dimension 1 for L + 1 times
from l = L to 0 as explained below:

Γlb = Γl−1b −Γl−1b dbl
(
d′blΓ

l−1
b dbl + 1

)−1
d′blΓ

l−1
b (7)

1

|Γlb|
=
|d′blΓ

l−1
b dbl + 1|
|Γl−1b |

(8)

An important observation from (7) and (8) is that, since ma-
trix Γlb corresponds to the precision matrix on branch b(l)
with truncation level l, its result can be reused when com-
puting matrices Γl

′

b by all branches b(l′) with b(l) ⊂ b(l′).
Thus we can make use of breadth first search (BFS) of the
tree to transform the heavy computations of branch spe-
cific precision matrices and determinants into operations
on each node within one sweep of the tree, where the com-
putational cost on each node is simply O(P ). Since the
number of nodes N = O(|T̂ (L)|), the computation cost is
reduced from O(P |T̂ (L)|2) to O(P |T̂ (L)|).

4.3. Truncating branches using adaptive Gibbs sampler

The above Gibbs sampler needs a predefined depth trunca-
tion level. However, its desirable to have a computational
strategy for choosing an appropriate level of truncation Lb

automatically for each b ∈ T . Here we extend the adap-
tive Gibbs sampler proposed in (Bhattacharya & Dunson,
2010) to our setting.

We modify the sampler described above, tuning the num-
ber of loadings on each branch b(Lb) as the sampler pro-
gresses. To be specific, we trigger the adaptation procedure
with probability p(t) = exp(z0 + z1t) at the tth iteration,
with z0, z1 chosen so that adaptation occurs around every
10 iterations at the beginning of the chain but decreases in
frequency exponentially fast. Denote L?b as the underly-
ing true number of loadings on branch b, and the adaptive
sampler starts with a conservative guess Lb of L?b. If the
adaptation is triggered at iteration t, let qδ(t) = {n|c(n) =
∅, ||dn||p < δ} denotes the set of tree leaves with corre-
sponding loading’s `p norm less than some pre-specified
threshold δ. Intuitively for each branches b(Lb) if its leaf
bLb
∈ qδ(t) then its loading has a negligible contribution

at the tth iteration to the covariance, and thus removed. On
the other hand, if leaf node bLb

/∈ qδ(t) then it suggests that
branch bLb

may need more parameters to model the data
that live in it, and as a result bLb

is replaced by bLb+1 with
a new leaf node bLb+1 introduced with parameters draw
from prior distribution.

An important aspect of the adaptive Gibbs sampler is that

the convergence of the chain is guaranteed, as the adap-
tations are designed to satisfy the diminishing adaptation
condition in Theorem 5 of (Roberts & Rosenthal, 2007),
which we do not reproduce here for brevity.

5. Experiments
In all experiments the hyperparameters of TMGP were set
as c1 = 1, c2 = 3, to ensure Theorems 1 and 2 hold. In the
adaptive sampler we adopted the `2 norm with z1 = −0.5,
and z2 = −0.001. An important thresholding parameter δ
is introduced by TMGP to discard the factor loadings that
has `2 norm less than δ, and the learned size of the tree
is sensitive to δ. Relative large δ will lead to better pre-
dictive performance while introduce more factor loadings,
thus the choice of δ is a trade-off between performance and
scalability. However, it’s not required to fix the value of
δ in advance and we can vary it based on the model out-
put (e.g., the number of nodes) during the early stage of
MCMC chain. This is because the adaptive Gibbs sampler
introduced in Section 4.3 has the flexibility of changing the
value of δ , where the convergence guarantee would still be
met as long as the diminishing adaptation condition meets.

All quantitative results below were obtained based on mul-
tiple posterior samples, and for the tree structure we will
show only a single (representative) sample from the poste-
rior distribution for illustration, as discussed in (Blei et al.,
2010). Unless stated otherwise, we discarded the first 5000
burn-in samples and collected 500 samples from every 10
iterations after burn-in. All the experiments were con-
ducted on a cluster of blade-based servers with 2.5 GHz
clock frequency, eight CPU-cores and 16 Gb shared RAM.
As an example, for the faces data considered next the
MCMC sampler required around 35 seconds per sample.

5.1. Face data

We first consider the face dataset studied in (Tenenbaum
et al., 2000). It contains a total of N = 698 faces, each
with P = 4906 pixels; the images are from the same sub-
ject, but with different pose and illumination. In Figure 1
we present the inferred hierarchical tree. Each image is as-
signed to a branch of the tree, and modeled by a FA model
on that branch (one factor loading at each node). In Fig-
ure 1, the image at tree node n is the average of all data
1
Nn

∑
i:n∈bi

yi that live in that node, where Nn is the total
number of such data. Note that a parent may have a sin-
gle child; if a parent has a single child, this is equivalent
to multiple factor loadings contributing to the same node
(since there is no branch splitting).

The results are presented in a manner such that disagree-
ments in the pose/illumination of data on the same node
manifests blurriness of the average image at that node. The
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Figure 1. The full tree structure inferred from faces data where each node is plotted as the average of all images that were assigned to
that node. Leaves at branches with different depth are placed on same horizontal level for purpose of interpretation.

model captures common structure (nodes on the top layers)
and idiosyncrasies (bottom nodes and leaves) characteristic
of the whole dataset. The degree of similarity between two
clusters (branches) is manifested by the number of nodes
they share. By contrast, conventional mixture model based
clustering methods (Chen et al., 2010; Rasmussen, 1999)
cannot capture the intrinsic relation among observed vari-
ables above, because they are modeled to be conditionally
independent given cluster assignments. We further studied
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Figure 2. CS reconstruction error for faces data. The curves rep-
resent the average over 10 partitions of the data, and the error bars
denote standard deviation.

the proposed model in the context of compressive sensing
(CS), with comparison to factor analysis (FA) and tradi-
tional mixture of factor analyzer (MFA) models; the latter
has achieved state-of-the-art performance in a recent study
(Chen et al., 2010). We randomly divide the faces data into
a training subset of 598 images, with a testing subset of 100
images, and the relative CS reconstruction error is defined
as ||X−X̂||F||X||F where X ∈ R4906×100 is the testing data set

and X̂ is the reconstruction. Note that because the underly-
ing model is a low-rank GMM, as shown in (4), we may use
the same analytic CS inversion as developed in (Chen et al.,
2010). In order to perform a fair comparison, we also use
the adaptive Gibbs sampler and MGP to infer the number
loadings used in the comparison MFA, and for the single

(non-mixture) FA. For the MFA model, the same Dirich-
let process model as considered in (Chen et al., 2010) is
used to infer the number of FA mixture components. We
ran the CS analysis 10 times, for different partitions of the
training and test data, and the average reconstruction per-
formance of the models is summarized in Figure 2. We ob-
serve that the proposed model is better on average, and has
tighter variance, than both the MFA (Chen et al., 2010) and
FA alternatives. These are believed to be state-of-the-art
CS recovery results for data that live on a low-dimensional
subspace of RP .

5.2. Cell Line Panel

The HGDP-CEPH Human Genome Diversity Cell Line
Panel (Rosenberg et al., 2002) is a dataset comprising geno-
types at P = 377 autosomal microsatellite loci, sampled
from N = 1056 individuals in 52 populations across the
major geographic regions of the world. It is useful for in-
ferring human evolutionary history and migration. Each
data sample has a label that indicates which area it comes
from, and there are 26 areas corresponding to 22 countries.

In this experiment we study the hierarchical clustering of
our model through analyzing the relationship between the
tree-structured hierarchy learned from the data; we relate
the results to the geographical locations of the data (geogra-
phy is not used in the analysis itself, only for presentation).
In Figure 3, the top picture plots the inferred tree structure
learned from the data, and the middle and bottom two maps
illustrate the node-clustering results of the countries on the
second and third layer of the tree. We assign each area into
one node if most of its data are mapped to it in the learned
tree structure. If two areas/countries share the same color,
this indicates that they belong to the same node. Consider
the middle of Figure 3, which corresponds to layer two
in the tree. If a country at that layer is uniquely associ-
ated with one node (e.g., Russian and China), this will also
be true at layer 3 (bottom), as they will have a unique set
of children nodes. If two or more countries share a node
at layer 2 (e.g., Mexico, Brazil and Columbia), they may
be distinguished at the third layer (note that Brazil sepa-
rates from these three at layer 3, the bottom in Figure 3).
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Figure 3. Summary of cell-line results. Top: inferred tree struc-
ture. Middle: layer-2 association of countries with nodes (de-
noted by colors). Bottom: layer-3 association of countries with
nodes (denoted by colors). As examples, consider the nodes num-
bered on the tree (top). On layer-2, node 1 is represented as red
in the middle map (Central South America and Central South
Africa). On layer-3, node 2 is represented as purple (Mexico
and Columbia); node 3 is represented as brown (Central South
Africa); node 4 has no corresponding color because none of the
countries in the map has majority of data clustered to it; and node
5 is represented as red (Brazil).

Note that for both the second and third tree layers, western
countries UK, France and Italy are clustered together with
Pakistan, consistent with a previous analysis of these data
(Rosenberg et al., 2002). We found that the samples from
a given country were generally strongly associated with a
particular node, at each scale. For example, 73% of the
China samples were associated with one node at layer 2.
As another example, for Italy 90% were in the same node
at layer 2.

5.3. Natural Image Patches

In the last experiment we test our model on interpolating
(“inpainting") missing pixels from images, as also consid-
ered in (Jenatton et al., 2010) with a specified tree (here the
tree structure is learned). In (Jenatton et al., 2010) the au-
thors studied the same problem, and made comparisons to
a “flat” model, which here is a conventional FA. We also
make comparisons to a “flat" FA model, and also to the
same class of MFA models studied above in the context of
compressive sensing.

Table 1. Quantitative results of the reconstruction tasks on natural
image patches. First row: percentage of missing pixels. Second
and third row: mean square error multiplied by 100

50% 60% 70% 80%
FA 17.6± 0.2 22.3 ±0.1 30.1 ±0.0 47.7± 0.0

MFA 16.1± 0.3 22.6 ±0.2 31.6 ±0.3 50.2± 0.4
Tree 16.6± 0.3 21.1 ±0.2 29.8 ±0.3 41.3± 0.1

We extracted 125, 000 non-overlapping patches of P = 64
pixels (8 × 8 patches), from the Berkeley segmentation
database of natural images. We divided them into a train-
ing set Xtr of size 100, 000 and a testing set Xte of size
25, 000. The tree learning based on Xtr uses the complete
data, and Xte is analyzed in the presence of missing pix-
els (selected uniformly at random); this is the same task
as (Jenatton et al., 2010) considered. When learning the
model, we ran the adaptive Gibbs sampler 10,000 itera-
tions on Xtr, and retained the maximum-likelihood sam-
ple (defining the tree structure and associated multi-scale
dictionary). This model was then fixed, and 5000 Gibbs
iterations were then employed when analyzing Xte.

An example of a learned dictionary embedded in the tree
structure learned from Xtr is shown in Figure 4, and the
quantitative reconstruction results are reported on Table 1.
Note that we only plot the top six layers of the tree because
of the limited space. As observed from Figure 4, the dictio-
nary elements embedded at the bottom of the tree structure
corresponds to detail information of the data set, whose `2
norms are small (around 0.2) and thus contribute less to
the model. This is consistent with the assumption imposed
by TMGP. From Table 1 we observe that the improvement
of tree-structured model is most significant when there are
most missing values in Xte, similar results were also re-
ported in (Jenatton et al., 2010).

6. Conclusions
A new model has been developed for inferring the structure
of a latent tree, used to encode relationships between load-
ings in a factor model. In addition to developing model
properties, an efficient MCMC inference engine has been
developed. Several encouraging experimental results have
been presented, significantly generalizing related and mo-
tivating models that assumed that the tree structure was
known (Jenatton et al., 2010).
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Figure 4. Tree-structured hierarchy(with top six layers) embedded with dictionaries learned from 100,000 patches of size 16 × 16 pixels.
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