
Variational Inference for Policy Search in changing Situations

Gerhard Neumann GERHARD@IGI.TU-GRAZ.AC.AT

Institute for Theoretical Computer Science, Graz University of Technology, A-8010 Graz, Austria

Abstract
Many policy search algorithms minimize the
Kullback-Leibler (KL) divergence to a certain
target distribution in order to fit their policy. The
commonly used KL-divergence forces the result-
ing policy to be ’reward-attracted’. The policy
tries to reproduce all positively rewarded expe-
rience while negative experience is neglected.
However, the KL-divergence is not symmet-
ric and we can also minimize the the reversed
KL-divergence, which is typically used in vari-
ational inference. The policy now becomes
’cost-averse’. It tries to avoid reproducing any
negatively-rewarded experience while maximiz-
ing exploration.

Due to this ’cost-averseness’ of the policy, Varia-
tional Inference for Policy Search (VIP) has sev-
eral interesting properties. It requires no kernel-
bandwith nor exploration rate, such settings are
determined automatically by the inference. The
algorithm meets the performance of state-of-the-
art methods while being applicable to simultane-
ously learning in multiple situations.

We concentrate on using VIP for policy search
in robotics. We apply our algorithm to learn
dynamic counterbalancing of different kinds of
pushes with human-like 2-link and 4-link robots.

1. Introduction
Variational inference is a widely used approximate infer-
ence method. While there exists first applications of varia-
tional inference for discrete reinforcement learning (Furm-
ston & Barber, 2010), it has never been used for pol-
icy search in high dimensional parameter spaces. Varia-
tional inference introduces an approximate distribution q
and iteratively minimizes the Kullback-Leibler divergence
KL(q||p) between q and the target distribution p. This min-

Appearing in Proceedings of the 28th International Conference on
Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011 by
the author(s)/owner(s).

imization is also known as I(nformation)-projection of dis-
tribution p.

In policy search, many algorithms also apply approximate
inference. However, all these algorithm use the M(oment)-
projection, which is given by the reversed KL-divergence
KL(p||q) to estimate their policy. While at the first glance
this might only be a minor difference, it turns out that the
resulting policies may differ considerably. Policies calcu-
lated by the M-projection try to reproduce all experience
with high reward, but neglect information coming from
negative experience. We will therefore call these policies
’reward-attracted’. The I-projection forces the resulting
policy to be ’cost-averse’. Here, the focus of the policy
is to avoid reproducing negative experience, while explo-
ration is maximized.

Which projection is better suited for policy search? We
argue for the I-projection. When using a common Gaus-
sian policy, the M-projection averages over all positively
rewarded experience seen so far. However, in the case of
a multi-modal or non-concave target distribution taking the
average might be a bad choice. The I-projection always
tries to exclude negative experience from the resulting dis-
tribution, and thus, concentrates at one mode of the tar-
get distribution. Non-concave target distributions typically
occur if we want to apply policy search for multiple situ-
ations. The I-projection can be applied with ease in this
context. The ’cost-averseness’ also comes with additional
advantages. The algorithm automatically determines the
optimal kernel bandwidth for a new situation and adapts its
exploration rate and used search directions.

In difference to the M-projection, the I-projection can’t
be minimized in closed form. We have to rely on non-
linear optimization methods like gradient descent. Here,
we present a new method where gradient descent is per-
formed on meta-parameters of the approximate distribution
q.

We will apply our new Variational Inference for Policy
Search (VIP) algorithm to learn complex motor skills with
robots. In robotics we often need to search for parametrized
movement plans in related, but different scenarios. These
movement plans, also called Dynamic Movement Primi-

Variational Inference for Policy Search

tives (Ijspeert et al., 2002), Motion Templates (Neumann
& Peters, 2009) or Muscle Synergies (E. Bizzi, 2008) are
often only valid locally, and hence, need to be adjusted for
a new situation.

For example, a tennis playing robot has to adapt its move-
ment to the trajectory of the ball or a humanoid robot has
to react differently to counter-balance different kinds of
pushes. Hence, we need to find a policy π(w|s0) which
is able to choose good parametric descriptions w ∈ W of
the movement plan given the initial conditions s0. Learn-
ing such a policy π is very challenging due to the high-
dimensionality of parameter-space W . Our algorithm is
well suited for such tasks.

Many policy search algorithm like the CMA-ES (Heidrich-
Meisner & Igel, 2009), Cross-Entropy search (Mannor
et al., 2003) or the PoWER (Kober & Peters, 2009) al-
gorithm are limited to the single-situation setting. Only
few algorithms exist for learning in multiple initial con-
ditions. Here, we can use Reward-Weighted Regression
(RWR)(Kober et al., 2010) or Cost-Regularized-Kernel Re-
gression (CRKR) (Kober et al., 2010), which is the kernel-
ized version of RWR. Both algorithms use locally weighted
linear regression methods to interpolate between differ-
ent initial states s0

i . In addition to the local weighting,
the data points are weighted by their corresponding re-
wards. The reward-weighted linear regression represents
an M-projection of the reward distribution (see Section
3.1), therefore these algorithms suffer from the previously
mentioned limitations of the M-projection.

Both algorithms require that the user specifies the shape or
bandwidth of the receptive fields or kernels. This shape is
not only kept constant during the learning phase, it is also
constant in the whole state space. Therefore the user al-
ways has to make a tradeoff between fast learning speed
and good quality of the final performance. Because the I-
projection always wants to exclude samples with low re-
ward, the ’kernel shape’ automatically adapts to the data
density as well as to the shape of the target distribution.

Note that CRKR and RWR have only been used to learn
meta-parameters of the motion (Kober et al., 2010) (like
the duration or the end-point of the motion). The remain-
ing (typically higher-dimensional) parametrization for the
shape of the trajectory was kept fixed. Therefore, the ap-
plication is limited to similar shapes of the movement.
The VIP approach allows learning with the full-parametric
representation of a movement for multiple scenarios, and
therefore, can find completely different movements for dif-
ferent subregions of the state space.

We will apply our method to a 2-link and a 4-link dynamic
robot balancing task where the robot has to counterbalance
different kinds of pushes.

2. Kullback Leibler (KL) Divergences
We quickly review concept of KL-divergences because it
is of great importance for this paper. The KL divergence
between two probability distributions q and p is defined as

KL(q||p) = −
Z

X
q(X) log

p(X)
q(X)

dX

It is zero if and only if the two distributions are equal. Since
the KL-divergence is not symmetric, there are 2 kinds of
KL-divergences which we can minimize in order to approx-
imate a target distribution p with an approximate distribu-
tion q.

• The M-projection q = argminqKL(p||q): The M-
projection forces the approximate distribution q to
have high probability everywhere where p has high
probability. Therefore, if distribution q is a Gaussian,
the M-projection tries to average over all modes of p.

• The I-projection q = argminqKL(q||p): It forces
the approximate distribution q to be zero everywhere
where p is zero. Can not be calculated in closed form
for the most distributions. When using a Gaussian dis-
tribution q, the I-projection typically concentrates on
a single mode of the target distribution.

These differences between the projections are well known
(Bishop, 2006), however, the effect of these difference for
policy search have never been evaluated.

3. Inference for policy search
Many policy search algorithms (Kober & Peters, 2009;
Vlassis et al., 2009; Heidrich-Meisner & Igel, 2009) use
inference or inference related methods to iteratively opti-
mize the policy.

In order to use inference for policy search we define a bi-
nary reward event R = 1 as observed variable. To simplify
notation we will always write R when we mean R = 1.
The probability of this reward event is given by p(R|τ) ∝

exp(−C(τ)), where τ is a trajectory and C(τ) are the as-
sociated costs. This is a common method to transform an
optimization problem into an inference problem (Toussaint,
2009). We want to find parameter vectors θ with high evi-
dence

p(R;θ) =
Z

τ

p(R|τ)p(τ;θ)dτ,

where τ is a trajectory and p(τ;θ) is the parametric model
of the trajectory distribution. The policy π is contained in
this model.

We can now introduce a variational distribution q(τ) which
is used to decompose the log-evidence

Variational Inference for Policy Search

log p(R;θ) = L(q,θ)+KL(q||pR), (1)

where

L(q,θ) =
Z

τ

q(τ) log
p(R|τ)p(τ;θ)

q(τ)
dτ

is the lower bound of the log evidence and

KL(q||pR) = −
Z

τ

q(τ) log
p(τ|R;θ)

q(τ)
dτ (2)

is the KL-divergence between the q and the reward-
weighted trajectory distribution

pR(τ) = p(τ|R;θ) =
p(R|τ)p(τ;θ)

p(R;θ)
(3)

The correctness of Equation (1) can be easily verified by
substituting Equation (3) into Equation (2). Note that
this decomposition is the same as used in expectation-
maximization (EM) and variational inference algorithms.
It has also already been used in (Furmston & Barber, 2010)
for using variational inference for learning the model of
discrete MDPs.

The lower bound L(q,θ) is now iteratively improved by
an expectation (E-) and a maximization (M-) step. In the
E-step, we minimize KL(q||pR) with respect to q. Since
log p(R;θ) is fixed, the lower bound has to increase. In the
M-step we maximize the lower bound L(q,θ) with respect
to θ.

3.1. M-Projection: Monte-Carlo EM-based Policy
Search Algorithms

Monte-Carlo (MC) EM-based algorithms (Kober & Peters,
2009; Vlassis et al., 2009) use a sample based approxi-
mation for q, i.e. in the E-step they minimize the KL-
divergence KL(q||pR) by setting q(i) ∝ p(R|τi)p(τi;θ) for
a discrete set of samples τi. Subsequently, the q(i) are used
to replace the integral in the lower bound L(q,θ) by a sum.
The lower bound therefore reads

L(q,θnew) = ∑
τi

p(R|τi)p(τi;θold) log
p(τi;θnew)
p(τi;θold)

= −KL(pR(τ)||p(τ;θnew))+ const

As we can see maximizing the lower bound with respect
to the new parameter vector θnew is equivalent to calculat-
ing the M-projection of pR(τ). Note that this is exactly the
same lower bound as given in (Kober & Peters, 2009) for
the PoWER and RWR algorithm. Thus, these algorithms
are special cases of the decomposition shown in Equation
1.

3.2. I-projection: Variational Inference for Policy
Search

In the variational approach, a parametric representation of
q is used instead of a sample-based approximation. We
choose q(τ;ω) to be from the same family of distributions
as p(τ;θ). Now, we will use a sample-based approxima-
tion to replace the integral in the KL-divergence KL(q||pR)
needed for the E-step. Thus we need to minimize

KL(q||pR) = −∑
τi

q(τi;ω)/Zq log
pR(τi)/Zp

q(τi;ω)/Zq
, (4)

with respect to ω, which is equivalent to the I-projection
of pR(τ). The terms Zq and Zp are used to normalize the
sample-based approximations. The M-step now trivially
reduces to setting the new parameter vector θnew to ω.

Both algorithms only differ in the used projections of
pR(τ). As the projections are in general different, they con-
verge to a different (local) maximum of the lower bound
L(q,θ). When using a Gaussian model distribution, the
I-projection concentrates on a single mode. This is not a
problem if all modes are almost equally good, however, the
I-projection might also choose a sub-optimal mode (which
has lower reward probability). In our evaluations we could
not observe this problem. The M-projection always aver-
ages over all modes and therefore might also include large
areas of low reward in the distribution. Hence, we consider
the use of the I-projection to be less harmful. If the target
distribution is concave, both projections yield almost the
same solutions, however, using the I-projection is compu-
tationally more demanding.

The discussed projections are applicable for any kind of
policy search problems, however, in this paper we will
focus on single-step decision problems with high dimen-
sional action spaces because these problems are of high
importance for motor skill learning with motion primitives.

4. Policy Search in multiple situations
In this paper we concentrate on policy search in multiple
situations. Thus, we want to learn a policy π(w|s0;θ) for
choosing the parametric description w of our movement
plan when being in situation s0.

We will treat the policy search problem as 1-step reinforce-
ment learning problem and neglect any sequential nature of
the decision problem. The agent chooses its desired trajec-
tory description w in the initial state s0 and then observes
the whole trajectory τ and the associated costs C(τ) as one
big step. The trajectory τi itself is therefore determined by
the state-action pair 〈s0

i ,wi〉 and its associated costs C(i).
All derivations from Section 3 are still valid, we just re-
place the trajectories τi with the state-action pairs 〈s0

i ,wi〉.

Variational Inference for Policy Search

M−ProjectionI−Projection

Figure 1. Comparison of the Variational Policy Search algorithm
using the I-projection against the M-projection on a bi-modal re-
ward function. A simple Gaussian distribution was used as model
distribution. The M-projection tries to average over both modes,
while the I-projection concentrates on a single mode.

As samples we will always use the whole history of the
agent, i.e. we will use samples from all situations s0

i expe-
rienced so far. For the sake of simplicity, we neglected any
importance weights in Equation 4 which should be used to
compensate for the fact that the history of the agent is usu-
ally not sampled uniformly from the state-action space. In
the subsequent discussion we assume that each dimension
of the parameter vector has been scaled to the interval [0;1].

If the reward weighted probability pR(τi) is very close to
0 we can’t use the log function. Instead, we use a penalty
term of −Pz for log pR(τi). It turned out that reasonable
settings of this value have to scale exponentially with the
number of dimensions of the parameter space to account
for the increasing volume of the search space.

4.1. Approximate Distribution

For representing p(s0
i ,wi;θ) we use Gaussian distributions

N ([s0;w]|µ,Σ). Since a Gaussian is a rather simple repre-
sentation we re-estimate the Gaussian for a new, currently

(a) M-projection (b) I-projection

Figure 2. Comparison of I-projection and M-projection on a non-
concave reward function. Dark background indicates negative re-
ward. The model distribution is a Gaussian of which the mean
(indicated by ’x’) of the state variable (x-axis) has been clamped
at different locations. The M-projection again tries to average
over the non-concave function while the I-projection nicely ap-
proximates the desired policy.

active situation s0
t . For every re-estimation, the state com-

ponents of µ are clamped at s0
t by putting a sharply peaked

prior on these components (see next section).

In Figure 1 and 2, we illustrated the difference of policy
search with the M- and the I-projection for bimodal and
non-concave target distributions. For the bi-modal distri-
bution, the M-projection concentrates on both modes while
the I-projection only tries to cover one mode. For the non-
concave target distribution we assumed that the first vari-
able represents a state variable which is observed. There-
fore, we clamped this dimension of the mean of the Gaus-
sian to be the observed value. Again, the M-projection
tries to average over the non-concave function, and hence
also includes regions of low reward, while the I-projection
nicely approximates the desired distribution.

4.2. Minimization of the I-projection

The I-projection KL(q||pR) is difficult to use because it
can’t be calculated in closed form. We have to rely on non-
linear optimization methods, i.e. gradient descent. How-
ever, optimizing directly the parameters of a Gaussian is
difficult because of the quadratic number of parameters
needed to represent the covariance matrix.

Hence, we propose a sample oriented approach which is
computationally more tractable. For each sample we intro-
duce a weighting vi. These weightings are used to calculate
the weighted maximum likelihood (ML) estimate from the
data-points. We will denote the weighted sample mean as
m and the weighted sample covariance matrix as S. The
weights vi are normalized such that maxi vi = 1.

In order to clamp the state-space part of the mean µ at the
current initial state s0

t , we combine the ML-estimate m with
a Gaussian prior distribution P(µ|s0

t) = N (µ|µ0,S0) with

Variational Inference for Policy Search

µ0 =
[
s0

t ,0.5
]T and S0 is a diagonal matrix which is set

such that the prior is sharply peaked for the state variables
s0 and almost flat in the action space. The mean µ of our
Gaussian distribution is then given by

µ = (S−1
0 +S−1)−1(S−1

0 µ0 +S−1m)

For the covariance matrix Σ of our model, we also use
a combination of a prior covariance matrix C0 and the
weighted sample covariance S.

Σ = ∑i viS+αC0

∑i vi +α
, C0 = k ·diag([σ2

i])+∑
l−1
j=1 c jΣ j,

where Σ j are the covariance matrices of the previous itera-
tions of VIP. The Σ j are used to incorporate previous search
directions into the current search. The parameters k, σ2

1:d
and c1:l−1 are also optimized by gradient descent.

After calculating µ and Σ we can evaluate the KL-
divergence KL(q||pR) on our sample points by the use of
Equation 4. The gradient with respect to vi, α, k, σ2

i and
c j is calculated numerically by finite differences. Subse-
quently we apply standard gradient descent augmented by a
line search algorithm to estimate the optimal learning rate.
The algorithm always runs for 10 iterations.

We also use a slight modification of the original vari-
ational algorithm. Instead of using the model distribu-
tion p(s0

i ,wi;θ) for calculating the reward weighted tra-
jectory distribution pR(i) we use the sample weights vi
found by the previous KL-divergence minimization, i.e
pR(i) = vi p(R|s0

i ,wi). This turned out to be numerically
more stable in high dimensional parameter spaces.

4.3. Reward Transformation

Instead of using the standard reward transformation
p(R|s0

i ,wi) = exp(−C(s0
i ,wi)), we will use a baseline

V (s0
i) and also introduce a scaling factor ρ to the costs, i.e.

p(R|s0
i ,wi) = exp

(
−(C(s0

i ,wi)−V (s0
i))/ρ

)
. Both mecha-

nisms help to improve accuracy of the algorithm as well as
to reduce the number of required iterations.

As baseline we use an estimate of the value V (s0
i) =R

w C(s0
i ,w)p(w|s0

i ;θ)dτ at state s0
i . In order to do so, we

use the tuples 〈s0
i ,Ci〉 as data points to estimate a Gaussian

cost model. Each data point gets again weighted by the
weights vi found by the previous KL-minimization. Sub-
sequently, we condition this Gaussian cost model on the
scenario states s0

i of our samples. This results in a linear
Gaussian model from which we use the (state-dependent)
mean as baseline V (s0

i).

The scaling factor ρ regulates the greediness of our dis-
tribution p(R|s0,w). We use the standard deviation of the
conditioned Gaussian cost model to determine ρ.

Algorithm 1 Variational Policy Search

Require: History of the agent H = 〈s0
i ,wi,Ci〉, current sce-

nario s0, initial covariance Σ0.
1: µ0 = [s0;1/2]
2: vi = N ([s0

i ;wi]|µ0,Σ0) for all i
3: for l = 1 to L do
4: Estimate V (s0

i) and ρ by calculating a Gaussian cost
model using vi.

5: Calculate cost weighted trajectory distribution
6: pR(i) = vi exp

(
−

(
Ci −V (s0

i)
)
/ρ

)
7: Check effective number of examples, eventually re-

duce sharpness of pR
8: while ∑i pR(i)/max j pR(j) < nact do
9: pR(i) = pR(i)0.9 for all i

10: end while
11: Acquire new vi, µ and Σ (minimize KL(q||pR))
12: [vi,µl ,Σl] = I-project(pR,H,{Σ0, · · ·Σl−1})
13: Set new model distribution...
14: p(s0,w;θ) = N ([s0;w]|µl ,Σl)
15: end for
16: Calculate policy (conditional Gaussian)
17: π(w|s0;θ) = p(s0,w;θ)/p(s0;θ)

If the effective number of activations of our target distribu-
tion pR(i) gets too small (i.e. ∑i pR(i)/max j pR(j) < nact)
we do not have enough data-points to reliably estimate the
Gaussian models. Hence, we iteratively reduce the sharp-
ness of pR(i) by setting all pR(i) to pR(i)0.9 until the ef-
fective number of samples is larger than nact. The parame-
ter nact has to be specified by the user and depends on the
dimensionality of the state-space (in our experiments we
varied the value between 5 and 15).

4.4. Estimating the policy

So far we have estimated a model which describes the prob-
ability of whole trajectories, i.e. in our case a probability
distribution over the state and action space. In order to de-
termine the policy π(w|s0

t ;θ) we just have to condition on
the current state s0

t . This is again a linear Gaussian model
which can be easily calculated.

The whole algorithm is summarized in Algorithm 1. The
number of iterations L was always set to 10. For perfor-
mance reasons we only use the last N examples (between
100 and 10000) from the history. The initial covariance Σ0
as given in Algorithm 1 is typically almost flat in the action
space and state space. The method is almost invariant to
this setting.

In difference to MC-EM based algorithms like RWR or
CRKR we use several iterations to estimate the model dis-
tribution. Additionally, the introduced scaling factor ρ of
the reward function helps to set the greediness of the result-

Variational Inference for Policy Search

ing distribution correctly. If we would use the M-projection
and only apply one iteration (L = 1) without the scaling fac-
tor ρ and the baseline V (s0

i), VIP reduces to RWR.

5. Experiments
In our evaluations of the algorithms we always use the me-
dian over 20 trials. The median is used to get rid of outliers,
1 or 2 trials out of 20 usually did not find good solutions.

We first evaluate our algorithm on a Cannon Toy Task.
Here, the task is to hit a target located at distance d with
a cannon ball. The controls are the launching angle α

and the launching velocity v of the cannon ball. The an-
gle was restricted to [0;π/2] and the velocity to [0;10]m/s.
The cannon-ball was modelled as 1-kg point mass, gravity
and a horizontal wind force f act on the ball. The wind
force f can be in the range of [0;1] and the target loca-
tions were also restricted to [0;10]. This results in a 2-
dimensional state space s0 = [d,w] and a two dimensional
parameterspace w = [α,v]. As reward function we used 20
times the negative squared distance of the impact position
to the target. Note there are several solutions to hit a target
at a certain distance, rendering the reward function multi-
modal. We compared our algorithm using the I-projection
and M-projection against the CRKR algorithm. Every 50
episodes we evaluated the policy at 20 randomly chosen
states (which were fixed for every evaluation). The param-
eter nact was set to 5 and Pz to 10.

The result can be seen in Figure 3. The I-projection clearly
outperformed the M-projection in learning speed as well as
in the quality of the learned policy. The final average dis-
tance to the target was 0.08m with the I-projection while
the final policy of the M-projection missed the target at a
average distance of 0.26m. The learning speed of CRKR
matched the speed of the M-projection, but could not find
as good solutions. We also compared both approaches
with the finite difference policy gradient algorithm using a
fixed set of basis functions (Kober et al., 2010) in the state
space. The algorithm did converge after approximately 105

episodes, which is not shown in Figure 3 due to the bad
performance.

5.1. 2 and 4 Link Humanoid Balancing

Here we use a 2-link and a 4-link model to learn dynamic
humanoid balancing strategies. The masses and lengths of
the links as well as the maximum torques were chosen to
crudely match a human.

The joints of the 2-link model resemble the ankle and the
hip joints. For a more exact description of the model please
refer to (Atkeson & Stephens, 2007). The robot is pushed
with a certain force 0 ≤ F ≤ 25Ns which results in an im-
mediate jump in the joint velocities. The robot has to learn

1000 2000 3000 4000 5000
−80

−60

−40

−20

0

Episodes

P
er

fo
rm

an
ce

I−Projection
M−projection
CRKR

Figure 3. Evaluation of VIP on Cannon-Toy task. We compared
our algorithm using the I and the M-projection. The I-projection
converges much faster and also produces a final policy with higher
quality. The competing algorithm CRKR could not find as good
solutions.

to keep balance. This requires completely different strate-
gies for different forces (Atkeson & Stephens, 2007). If the
joints leave the intervals φ1 ∈ [−0.4;0.8] or φ2 ∈ [−0.1;1.6]
the robot has fallen and the episode is terminated. An
episode is considered as successful if the robot has man-
aged to keep balance for 5s. The state space is defined by
the applied (one dimensional) force F . We used the follow-
ing reward function

C(τ) = −2000(T −5)2 −0.01
T

∑
t=1

uT
t ut ,

where T is the point in time the robot falls over (or 5s if the
robot keeps balance).

The whole movement representation consisted of 19 pa-
rameters. Since the exact representation of the movement
is of minor importance for this paper we refer to the sup-
plementary material for further information. For perfor-
mance reasons, we always create 30 samples from the cur-
rently estimated policy. The parameter nact was again set
to 5 and the punishment for including samples with zero
probabilities to Pz = 300 In our first experiment we com-
pared our algorithm to CMA-ES, which is a highly com-
petitive stochastic optimizer, in a single situation setup with
F = 25Ns. We evaluated VIP one time with learning all di-
agonal entries σ2

i of the covariance matrix and VIP when
keeping these factors fixed. As we can see in Figure 4(a),
VIP with the full representation performed best. VIP with
the fixed diagonal entries showed similar performance as
the CMA-ES algorithm. Because of the huge computa-
tional requirements of the full representation (one trial runs
for 10h) we will only use the fixed diagonal representation
(one trial runs for 90min) for the remaining experiments.
In the next experiment (Figure 4(b)) we used a small noise
for our force F which was uniformly sampled from interval
[−2.5;0]Ns. This noise was known to the VIP, however, as
CMA-ES is inherently unaware of the state s0, it could not
learn a useful policy. The VIP algorithm was only slightly
affected by the noise. The final performance was similar as
learning without noise.

Variational Inference for Policy Search

0 1000 2000

−10
4

−10
3

Episodes

M
ea

n
pe

rf
or

m
an

ce

VIP−fixed
VIP−full
CMA−ES

(a)

0 1000 2000

−10
4

−10
3

Episodes

M
ea

n
pe

rf
or

m
an

ce

VIP
VIP−noise
CMA

(b)

Figure 4. (a)Comparison of the VIP with full representation of the
covariance (VIP-full) and the fixed representation (VIP-diag) with
the CMA-ES algorithm. In order to compare our algorithm to
CMA-ES, we only used a single force F = 25Ns. We use the
maximum value seen so far for the plot of CMA-ES. (b) In this
experiment we added a uniformly distributed noise ε ∈ [−2.5;0]
to the force F . As the CMA-ES is unaware of this noise it could
not cope with this setting. VIP was only sightly disturbed and
could find solutions of the same quality as in (a).

0 1 2
x 10

4

−10
4

−10
3

−10
2

Episodes

M
ea

n
pe

rf
or

m
an

ce

I−projection
M−projection
VIP−single

(a)

2 4 6
x 10

4

−3

−2

−1

x 10
4

Episodes

M
ea

n
pe

rf
or

m
an

ce

(b)

Figure 5. (a)Comparison of the I-projection and M-projection on
the multi-force setup. VIP-single denotes learning for each force
separately. The I-projection could outperform the M-projection
and also slightly the VIP-single setup. (b) Learning curve of the
4-link balancing experiment with random forces.

Next, we evaluated the VIP algorithm once with the M-
projection and the I-projection on the multi-force setup.
The force was chosen uniformly from the interval [0,25]Ns.
We also compared our algorithm to the noisy single situa-
tion setting. Here, we used 10 different forces from 2.5
to 25Ns and performed individual learning trials for each
force (we again added a noise of [−1.25,1.25] to the force).
The result can be seen in Figure 5, again, the I-projection
outperformed the M-projection, however, the difference
was not that extreme as in the Cannon task. Still, the fi-
nal performance of the I-projection (−51.2) was better than
the M-projection (−62.1) by 20%. We can also see that
learning with all forces at once could slightly improve the
learning speed in comparison to the average of the noisy
single-force setup.

The 4-link model consisted of an ankle, a knee, a hip and
a shoulder joint. In this experiment the force F was a

t = 0.10 s t = 0.60 s t = 1.10 s t = 1.60 s t = 2.10 s

Figure 6. Learned balancing strategies for different random forces
(with |F| = 25Ns). The robot has learned to apply completely
different strategies in different situations.

4-dimensional vector, denoting the force value applied to
each body part. Thus, our state space is 4 dimensional.
The movement representation for this task had 39 param-
eters. We always normalized the force vector F, such that
|F| = 25Ns. In this experiment we used 16 randomly cho-
sen force vectors, which were additionally perturbed by a
uniformly sampled noise in the interval ±2.5Ns. The pa-
rameter nact was set to 10 and Pz to 105. The learning curve
for this experiment can be seen in Figure 5(b). After 60000
episodes the agent was able to balance almost all experi-
enced forces. The resulting balancing strategies for differ-
ent forces can be seen in Figure 6. As we can see, the robot
has learned to apply completely different strategies in dif-
ferent situations.

6. Conclusion and future work
Existing policy search algorithms typically approximate
the policy by using the M-projection to the reward-
weighted trajectory distribution. In this paper we pro-
posed to use the I-projection of the reward-weighted trajec-
tory distribution as interesting alternative. The I-projection
alleviates many problems connected to the M-projection.
While the I-projection is computationally a much more dif-
ficult operation, the ’cost-averse’ policy resulting from the
I-projection comes along with several advantages. Because
the I-projection always wants to exclude negative exam-
ples, the algorithm does not suffer from problems which
occur by averaging over non-concave or multi-modal target
distributions. Consequently, it shows an increased learning
speed, improved performance of the final policy and it can
also be applied with ease to the learning in multiple situa-

Variational Inference for Policy Search

tions simultaneously.

The main restriction of VIP is the computation time. In
future, we plan to use mixture of Gaussian models to alle-
viate this problem. This should give us considerable speed
up because we do not have to re-estimate our distributions
over and over again. Furthermore, a more efficient method
for calculating the I-projection is needed.

VIP is not limited to the single step reinforcement learning
setup. In the future we plan to use the algorithm also for
sequential decision tasks. In this case, message passing al-
gorithms like the one presented in (Toussaint, 2009) could
extend our framework.

7. Acknowledgments
Written under partial support by the European Union
project # FP7-216593 (SECO), project # FP7-506778
(PASCAL2), project # 248311 (AMARSi) and by the Aus-
trian Science Fund FWF, project # P17229-N04.

References
Atkeson, C. and Stephens, B. Multiple balance strategies

from one optimization criterion. In Proceedings of the
7th IEEE-RAS International Conference on Humanoid
Robots, 2007.

Bishop, Christopher M. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, 2006.

E. Bizzi, V.C.K Cheung, A. d’Avella P. Saltiel M. Tresch.
Combining modules for movement. Brain Research Re-
views, 57:125–133, 2008.

Furmston, Thomas and Barber, David. Variational methods
for reinforcement learning. In Proceedings of the Thir-
teenth Conference on Artificial Intelligence and Statis-
tics, 2010.

Heidrich-Meisner, V. and Igel, C. Neuroevolution strate-
gies for episodic reinforcement learning. Journal of Al-
gorithms, 64(4):152–168, 2009.

Ijspeert, A.J., Nakanishi, J., and Schaal, S. Learning attrac-
tor landscapes for learning motor primitives. In Proceed-
ings of the Advances in Neural Information Processing
Systems 15 (NIPS2002), pp. 1547–1554, 2002.

Kober, J. and Peters, J. Policy search for motor primitives
in robotics. In Proceedings of the Advances in Neural
Information Processing Systems 22 (NIPS 2008). MA:
MIT Press, 2009.

Kober, Jens, Oztop, Erhan, and Peters, Jan. Reinforcement
learning to adjust robot movements to new situations. In

Proceedings of the 2010 Robotics: Science and Systems
Conference (RSS 2010), 2010.

Mannor, Shie, Rubinstein, Reuven, and Gat, Yohai. The
cross entropy method for fast policy search. In Proceed-
ings of the International Conference for Machine Learn-
ing (ICML) 2003, pp. 512–519, 2003.

Neumann, G. and Peters, J. Learning complex motions by
sequencing simpler motion templates. In Proceedings
of the International Conference on Machine Learning
(ICML 2009), 2009.

Toussaint, Marc. Robot trajectory optimization using ap-
proximate inference. In Proceedings of the International
Conference on Machine Learning (ICML 2009), pp. 132,
2009.

Vlassis, Nikos, Toussaint, Marc, Kontes, Georgios, and
Piperidis, Savas. Learning model-free robot control by a
Monte Carlo EM algorithm. Autonomous Robots, 27(2):
123–130, 2009.

