
Contractive Auto-Encoders:
Explicit Invariance During Feature Extraction

Salah Rifai(1) rifaisal@iro.umontreal.ca
Pascal Vincent(1) vincentp@iro.umontreal.ca
Xavier Muller(1) mullerx@iro.umontreal.ca
Xavier Glorot(1) glorotxa@iro.umontreal.ca
Yoshua Bengio(1) bengioy@iro.umontreal.ca
(1) Dept. IRO, Université de Montréal. Montréal (QC), H3C 3J7, Canada

Abstract

We present in this paper a novel approach
for training deterministic auto-encoders. We
show that by adding a well chosen penalty
term to the classical reconstruction cost func-
tion, we can achieve results that equal or sur-
pass those attained by other regularized auto-
encoders as well as denoising auto-encoders
on a range of datasets. This penalty term
corresponds to the Frobenius norm of the
Jacobian matrix of the encoder activations
with respect to the input. We show that
this penalty term results in a localized space
contraction which in turn yields robust fea-
tures on the activation layer. Furthermore,
we show how this penalty term is related to
both regularized auto-encoders and denoising
auto-encoders and how it can be seen as a link
between deterministic and non-deterministic
auto-encoders. We find empirically that this
penalty helps to carve a representation that
better captures the local directions of varia-
tion dictated by the data, corresponding to a
lower-dimensional non-linear manifold, while
being more invariant to the vast majority of
directions orthogonal to the manifold. Fi-
nally, we show that by using the learned fea-
tures to initialize a MLP, we achieve state
of the art classification error on a range of
datasets, surpassing other methods of pre-
training.

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

1. Introduction

A recent topic of interest1 in the machine learning
community is the development of algorithms for un-
supervised learning of a useful representation. This
automatic discovery and extraction of features is often
used in building a deep hierarchy of features, within
the contexts of supervised, semi-supervised, or unsu-
pervised modeling. See Bengio (2009) for a recent
review of Deep Learning algorithms. Most of these
methods exploit as basic building block algorithms for
learning one level of feature extraction: the represen-
tation learned at one level is used as input for learning
the next level, etc. The objective is that these rep-
resentations become better as depth is increased, but
what defines a good representation? It is fairly well un-
derstood what PCA or ICA do, but much remains to
be done to understand the characteristics and theoret-
ical advantages of the representations learned by a Re-
stricted Boltzmann Machine (Hinton et al., 2006), an
auto-encoder (Bengio et al., 2007), sparse coding (Ol-
shausen and Field, 1997; Kavukcuoglu et al., 2009), or
semi-supervised embedding (Weston et al., 2008). All
of these produce a non-linear representation which, un-
like that of PCA or ICA, can be stacked (composed) to
yield deeper levels of representation. It has also been
observed empirically (Lee et al., 2009) that the deeper
levels often capture more abstract features. A sim-
ple approach (Hinton et al., 2006; Bengio et al., 2007),
also used here, to empirically verify that the learned
representations are useful, is to use them to initialize
a classifier (such as a multi-layer neural network), and
measure classification error. Many experiments show
that deeper models can thus yield lower classification
error (Bengio et al., 2007; Jarrett et al., 2009; Vincent

1see NIPS’2010 Workshop on Deep Learning and Unsu-
pervised Feature Learning



Contractive Auto-Encoders

et al., 2010).

Contribution. What principles should guide the
learning of such intermediate representations? They
should capture as much as possible of the information
in each given example, when that example is likely
under the underlying generating distribution. That is
what auto-encoders (Vincent et al., 2010) and sparse
coding aim to achieve when minimizing reconstruc-
tion error. We would also like these representations
to be useful in characterizing the input distribution,
and that is what is achieved by directly optimizing
a generative model’s likelihood (such as RBMs). In
this paper, we introduce a penalty term that could be
added in either of the above contexts, which encour-
ages the intermediate representation to be robust to
small changes of the input around the training exam-
ples. We show through comparative experiments on
many benchmark datasets that this characteristic is
useful to learn representations that help training bet-
ter classifiers. We hypothesize that whereas the pro-
posed penalty term encourages the learned features to
be locally invariant without any preference for partic-
ular directions, when it is combined with a reconstruc-
tion error or likelihood criterion we obtain invariance
in the directions that make sense in the context of the
given training data, i.e., the variations that are present
in the data should also be captured in the learned rep-
resentation, but the other directions may be contracted
in the learned representation.

2. How to extract robust features

To encourage robustness of the representation f(x) ob-
tained for a training input x we propose to penalize its
sensitivity to that input, measured as the Frobenius
norm of the Jacobian Jf (x) of the non-linear map-
ping. Formally, if input x ∈ IRdx is mapped by encod-
ing function f to hidden representation h ∈ IRdh , this
sensitivity penalization term is the sum of squares of
all partial derivatives of the extracted features with
respect to input dimensions:

‖Jf (x)‖2F =
∑
ij

(
∂hj(x)
∂xi

)2

. (1)

Penalizing ‖Jf‖2F encourages the mapping to the fea-
ture space to be contractive in the neighborhood of the
training data. This geometric perspective, which gives
its name to our algorithm, will be further elaborated
on, in section 5.3, based on experimental evidence.
The flatness induced by having low valued first deriva-
tives will imply an invariance or robustness of the rep-
resentation for small variations of the input. Thus
in this study, terms like invariance, (in-)sensitivity, ro-

bustness, flatness and contraction all point to the same
notion.

While such a Jacobian term alone would encourage
mapping to a useless constant representation, it is
counterbalanced in auto-encoder training2 by the need
for the learnt representation to allow a good recon-
struction of the input3.

3. Auto-encoders variants

In its simplest form, an auto-encoder (AE) is com-
posed of two parts, an encoder and a decoder. It was
introduced in the late 80’s (Rumelhart et al., 1986;
Baldi and Hornik, 1989) as a technique for dimen-
sionality reduction, where the output of the encoder
represents the reduced representation and where the
decoder is tuned to reconstruct the initial input from
the encoder’s representation through the minimization
of a cost function. More specifically when the en-
coding activation functions are linear and the num-
ber of hidden units is inferior to the input dimen-
sion (hence forming a bottleneck), it has been shown
that the learnt parameters of the encoder are a sub-
space of the principal components of the input space
(Baldi and Hornik, 1989). With the use of non-linear
activation functions an AE can however be expected
to learn more useful feature-detectors than what can
be obtained with a simple PCA (Japkowicz et al.,
2000). Moreover, contrary to their classical use as
dimensionality-reduction techniques, in their modern
instantiation auto-encoders are often employed in a so-
called over-complete setting to extract a number of fea-
tures larger than the input dimension, yielding a rich
higher-dimensional representation. In this setup, using
some form of regularization becomes essential to avoid
uninteresting solutions where the auto-encoder could
perfectly reconstruct the input without needing to ex-
tract any useful feature. This section formally defines
the auto-encoder variants considered in this study.

Basic auto-encoder (AE). The encoder is a func-
tion f that maps an input x ∈ IRdx to hidden represen-
tation h(x) ∈ IRdh . It has the form

h = f(x) = sf (Wx+ bh), (2)

where sf is a nonlinear activation function, typi-
cally a logistic sigmoid(z) = 1

1+e−z . The encoder is
parametrized by a dh × dx weight matrix W , and a

2Using also the now common additional constraint
of encoder and decoder sharing the same (transposed)
weights, which precludes a mere global contracting scal-
ing in the encoder and expansion in the decoder.

3A likelihood-related criterion would also similarly pre-
vent a collapse of the representation.



Contractive Auto-Encoders

bias vector bh ∈ IRdh .

The decoder function g maps hidden representation h
back to a reconstruction y:

y = g(h) = sg(W ′h+ by), (3)

where sg is the decoder’s activation function, typically
either the identity (yielding linear reconstruction) or
a sigmoid. The decoder’s parameters are a bias vector
by ∈ IRdx , and matrixW ′. In this paper we only explore
the tied weights case, in which W ′ = WT .

Auto-encoder training consists in finding parameters
θ = {W, bh, by} that minimize the reconstruction error
on a training set of examples Dn, which corresponds
to minimizing the following objective function:

JAE(θ) =
∑

x∈Dn

L(x, g(f(x))), (4)

where L is the reconstruction error. Typical choices
include the squared error L(x, y) = ‖x − y‖2 used
in cases of linear reconstruction and the cross-entropy
loss when sg is the sigmoid (and inputs are in [0, 1]):
L(x, y) = −

∑dx

i=1 xi log(yi) + (1− xi) log(1− yi).

Regularized auto-encoders (AE+wd). The sim-
plest form of regularization is weight-decay which fa-
vors small weights by optimizing instead the following
regularized objective:

JAE+wd(θ) =

( ∑
x∈Dn

L(x, g(f(x)))

)
+ λ

∑
ij

W 2
ij , (5)

where the λ hyper-parameter controls the strength of
the regularization.

Note that rather than having a prior on what the
weights should be, it is possible to have a prior on what
the hidden unit activations should be. From this view-
point, several techniques have been developed to en-
courage sparsity of the representation (Kavukcuoglu
et al., 2009; Lee et al., 2008).

Denoising Auto-encoders (DAE). A successful al-
ternative form of regularization is obtained through
the technique of denoising auto-encoders (DAE) put
forward by Vincent et al. (2010), where one simply
corrupts input x before sending it through the auto-
encoder, that is trained to reconstruct the clean ver-
sion (i.e. to denoise). This yields the following objec-
tive function:

JDAE(θ) =
∑

x∈Dn

Ex̃∼q(x̃|x)[L(x, g(f(x̃)))], (6)

where the expectation is over corrupted versions x̃ of
examples x obtained from a corruption process q(x̃|x).
This objective is optimized by stochastic gradient de-
scent (sampling corrupted examples).

Typically, we consider corruptions such as additive
isotropic Gaussian noise: x̃ = x+ ε, ε ∼ N (0, σ2I) and
a binary masking noise, where a fraction ν of input
components (randomly chosen) have their value set to
0. The degree of the corruption (σ or ν) controls the
degree of regularization.

4. Contractive auto-encoders (CAE)

From the motivation of robustness to small perturba-
tions around the training points, as discussed in sec-
tion 2, we propose an alternative regularization that
favors mappings that are more strongly contracting
at the training samples (see section 5.3 for a longer
discussion). The Contractive auto-encoder (CAE) is
obtained with the regularization term of eq. 1 yielding
objective function

JCAE(θ) =
∑

x∈Dn

(
L(x, g(f(x))) + λ‖Jf (x)‖2F

)
(7)

Relationship with weight decay. It is easy to see
that the squared Frobenius norm of the Jacobian cor-
responds to a L2 weight decay in the case of a linear
encoder (i.e. when sf is the identity function). In this
special case JCAE and JAE+wd are identical. Note
that in the linear case, keeping weights small is the
only way to have a contraction. But with a sigmoid
non-linearity, contraction and robustness can also be
achieved by driving the hidden units to their saturated
regime.

Relationship with sparse auto-encoders. Auto-
encoder variants that encourage sparse representations
aim at having, for each example, a majority of the
components of the representation close to zero. For
these features to be close to zero, they must have been
computed in the left saturated part of the sigmoid non-
linearity, which is almost flat, with a tiny first deriva-
tive. This yields a corresponding small entry in the
Jacobian Jf (x). Thus, sparse auto-encoders that out-
put many close-to-zero features, are likely to corre-
spond to a highly contractive mapping, even though
contraction or robustness are not explicitly encouraged
through their learning criterion.

Relationship with denoising auto-encoders. Ro-
bustness to input perturbations was also one of the
motivation of the denoising auto-encoder, as stated in



Contractive Auto-Encoders

Vincent et al. (2010). The CAE and the DAE differ
however in the following ways:

CAEs explicitly encourage robustness of representa-
tion f(x), whereas DAEs encourages robustness of re-
construction (g ◦ f)(x) (which may only partially and
indirectly encourage robustness of the representation,
as the invariance requirement is shared between the
two parts of the auto-encoder). We believe that this
property make CAEs a better choice than DAEs to
learn useful feature extractors. Since we will use only
the encoder part for classification, robustness of the
extracted features appears more important than ro-
bustness of the reconstruction.

DAEs’ robustness is obtained stochastically (eq. 6) by
having several explicitly corrupted versions of a train-
ing point aim for an identical reconstruction. By con-
trast, CAEs’ robustness to tiny perturbations is ob-
tained analytically by penalizing the magnitude of first
derivatives ‖Jf (x)‖2F at training points only (eq. 7).

Note that an analytic approximation for DAE’s
stochastic robustness criterion can be obtained in the
limit of very small additive Gaussian noise, by follow-
ing Bishop (1995). This yields, not surprisingly, a term
in ‖Jg◦f (x)‖2F (Jacobian of reconstruction) rather than
the ‖Jf (x)‖2F (Jacobian of representation) of CAEs.

Computational considerations

In the case of a sigmoid nonlinearity, the penalty on
the Jacobian norm has the following simple expression:

‖Jf (x)‖2F =
dh∑
i=1

(hi (1− hi))
2

dx∑
j=1

W 2
ij .

Computing this penalty (or its gradient), is similar
to and has about the same cost as computing the re-
construction error (or, respectively, its gradient). The
overall computational complexity is O(dx × dh).

5. Experiments and results

Considered models. In our experiments, we com-
pare the proposed Contractive Auto Encoder (CAE)
against the following models for unsupervised feature
extraction:

• RBM-binary : Restricted Boltzmann Machine
trained by Contrastive Divergence,

• AE: Basic auto-encoder,
• AE+wd: Auto-encoder with weight-decay regu-

larization,
• DAE-g: Denoising auto-encoder with Gaussian

noise,
• DAE-b: Denoising auto-encoder with binary

masking noise,

All auto-encoder variants used tied weights, a sigmoid
activation function for both encoder and decoder, and
a cross-entropy reconstruction error (see Section 3).
They were trained by optimizing their (regularized)
objective function on the training set by stochastic
gradient descent. As for RBMs, they were trained by
Contrastive Divergence.

These algorithms were applied on the training set
without using the labels (unsupervised) to extract a
first layer of features. Optionally the procedure was
repeated to stack additional feature-extraction layers
on top of the first one. Once thus trained, the learnt
parameter values of the resulting feature-extractors
(weight and bias of the encoder) were used as initiali-
sation of a multilayer perceptron (MLP) with an extra
random-initialised output layer. The whole network
was then fine-tuned by a gradient descent on a super-
vised objective appropriate for classification 4, using
the labels in the training set.

Datasets used. We have tested our approach on a
benchmark of image classification problems, namely:
CIFAR-bw: a gray-scale version of the CIFAR-
10 image-classification task(Krizhevsky and Hinton,
2009) and MNIST: the well-known digit classifica-
tion problem. We also used problems from the same
benchmark as Vincent et al. (2010) which includes five
harder digit recognition problems derived by adding
extra factors of variation to MNIST digits, each with
10000 examples for training, 2000 for validation, 50000
for test as well as two artificial shape classification
problems5.

5.1. Classification performance

Our first series of experiments focuses on the MNIST
and CIFAR-bw datasets. We compare the classifica-
tion performance obtained by a neural network with
one hidden layer of 1000 units, initialized with each of
the unsupervised algorithms under consideration. For
each case, we selected the value of hyperparameters
(such as the strength of regularization) that yielded,
after supervised fine-tuning, the best classification per-

4We used sigmoid+cross-entropy for binary classifica-
tion, and log of softmax for multi-class problems

5These datasets are available at http://www.iro.
umontreal.ca/~lisa/icml2007: basic: smaller subset of
MNIST; rot: digits with added random rotation; bg-rand:
digits with random noise background; bg-img: digits with
random image background; bg-img-rot: digits with rota-
tion and image background; rect: discriminate between tall
and wide rectangles (white on black); rect-img: discrimi-
nate between tall and wide rectangular image on a different
background image.



Contractive Auto-Encoders

Table 1. Performance comparison of the considered models
on MNIST (top half) and CIFAR-bw (bottom half). Re-
sults are sorted in ascending order of classification error on
the test set. Best performer and models whose difference
with the best performer was not statistically significant are
in bold. Notice how the average Jacobian norm (before
fine-tuning) appears correlated with the final test error.
SAT is the average fraction of saturated units per exam-
ple. Not surprisingly, the CAE yields a higher proportion
of saturated units.

Model
Test Average

SAT
error ‖Jf (x)‖F

M
N

IS
T

CAE 1.14 0.73 10−4 86.36%
DAE-g 1.18 0.86 10−4 17.77%
RBM-binary 1.30 2.50 10−4 78.59%
DAE-b 1.57 7.87 10−4 68.19%
AE+wd 1.68 5.00 10−4 12.97%
AE 1.78 17.5 10−4 49.90%

C
IF

A
R

-b
w CAE 47.86 2.40 10−5 85,65%

DAE-b 49.03 4.85 10−5 80,66%
DAE-g 54.81 4.94 10−5 19,90%
AE+wd 55.03 34.9 10−5 23,04%
AE 55.47 44.9 10−5 22,57%

formance on the validation set. Final classification er-
ror rate was then computed on the test set. With the
parameters obtained after unsupervised pre-training
(before fine-tuning), we also computed in each case the
average value of the encoder’s contraction ‖Jf (x)‖F
on the validation set, as well as a measure of the av-
erage fraction of saturated units per example6. These
results are reported in Table 1. We see that the lo-
cal contraction measure (the average ‖Jf‖F ) on the
pre-trained model strongly correlates with the final
classification error. The CAE, which explicitly tries to
minimize this measure while maintaining a good re-
construction, is the best-performing model. datasets.

Results given in Table 2 compares the performance
of stacked CAEs on the benchmark problems of
Larochelle et al. (2007) to the three-layer models re-
ported in Vincent et al. (2010). Stacking a second layer
CAE on top of a first layer appears to significantly
improves performance, thus demonstrating their use-
fulness for building deep networks. Moreover on the
majority of datasets, 2-layer CAE beat the state-of-
the-art 3-layer model.

6We consider a unit saturated if its activation is below
0.05 or above 0.95. Note that in general the set of saturated
units is expected to vary with each example.

5.2. Closer examination of the contraction

To better understand the feature extractor produced
by each algorithm, in terms of their contractive prop-
erties, we used the following analytical tools:

What happens locally: looking at the singular
values of the Jacobian. A high dimensional Jaco-
bian contains directional information: the amount of
contraction is generally not the same in all directions.
This can be examined by performing a singular value
decomposition of Jf . We computed the average singu-
lar value spectrum of the Jacobian over the validation
set for the above models. Results are shown in Fig-
ure 2 and will be discussed in section 5.3.

What happens further away: contraction
curves. The Frobenius norm of the Jacobian at some
point x measures the contraction of the mapping lo-
cally at that point. Intuitively the contraction induced
by the proposed penalty term can be measured beyond
the immediate training examples, by the ratio of the
distances between two points in their original (input)
space and their distance once mapped in the feature
space. We call this isotropic measure contraction ra-
tio. In the limit where the variation in the input space
is infinitesimal, this corresponds to the derivative (i.e.
Jacobian) of the representation map.

For any encoding function f , we can measure the aver-
age contraction ratio for pairs of points, one of which,
x0 is picked from the validation set, and the other
x1 randomly generated on a sphere of radius r cen-
tered on x0 in input space. How this average ratio
evolves as a function of r yields a contraction curve.
We have computed these curves for the models for
which we reported classification performance (the con-
traction curves are however computed with their initial
parameters prior to fine tuning). Results are shown in
Figure 1 for single-layer mappings and in Figure 3 for 2
and 3 layer mappings. They will be discussed in detail
in the next section.

5.3. Discussion: Local Space Contraction

From a geometrical point of view, the robustness of
the features can be seen as a contraction of the input
space when projected in the feature space, in particu-
lar in the neighborhood of the examples from the data-
generating distribution: otherwise (if the contraction
was the same at all distances) it would not be useful,
because it would just be a global scaling. Such a con-
traction is happening with the proposed penalty, but
much less without it, as illustrated on the contraction
curves of Figure 1. For all algorithms tested except
the proposed CAE and the Gaussian corruption DAE



Contractive Auto-Encoders

Table 2. Comparison of stacked contractive auto-encoders with 1 and 2 layers (CAE-1 and CAE-2) with other 3-layer
stacked models and baseline SVM. Test error rate on all considered classification problems is reported together with a
95% confidence interval. Best performer is in bold, as well as those for which confidence intervals overlap. Clearly CAEs
can be successfully used to build top-performing deep networks. 2 layers of CAE often outperformed 3 layers of other
stacked models.

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-1 CAE-2
basic 3.03±0.15 3.46±0.16 3.11±0.15 2.84±0.15 2.83±0.15 2.48±0.14

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 11.59±0.28 9.66±0.26

bg-rand 14.58±0.31 11.28±0.28 6.73±0.22 10.30±0.27 13.57±0.30 10.90 ±0.27

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 16.70±0.33 15.50±0.32

bg-img-rot 55.18±0.44 51.93±0.44 47.39±0.44 43.76±0.43 48.10±0.44 45.23±0.44

rect 2.15±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.48±0.10 1.21±0.10

rect-img 24.04±0.37 24.05±0.37 22.50±0.37 21.59±0.36 21.86±0.36 21.54±0.36

(DAE-g), the contraction ratio decreases (i.e., towards
more contraction) as we move away from the train-
ing examples (this is due to more saturation, and was
expected), whereas for the CAE the contraction ratio
initially increases, up to the point where the effect of
saturation takes over (the bump occurs at about the
maximum distance between two training examples).

Think about the case where the training examples con-
gregate near a low-dimensional manifold. The vari-
ations present in the data (e.g. translation and ro-
tations of objects in images) correspond to local di-
mensions along the manifold, while the variations that
are small or rare in the data correspond to the direc-
tions orthogonal to the manifold (at a particular point
near the manifold, corresponding to a particular ex-
ample). The proposed criterion is trying to make the
features invariant in all directions around the training
examples, but the reconstruction error (or likelihood)
is making sure that that the representation is faith-
ful, i.e., can be used to reconstruct the input exam-
ple. Hence the directions that resist to this contract-
ing pressure (strong invariance to input changes) are
the directions present in the training set. Indeed, if the
variations along these directions present in the training
set were not preserved, neighboring training examples
could not be distinguished and properly reconstructed.
Hence the directions where the contraction is strong
(small ratio, small singular values of the Jacobian ma-
trix) are also the directions where the model believes
that the input density drops quickly, whereas the di-
rections where the contraction is weak (closer to 1,
larger contraction ratio, larger singular values of the
Jacobian matrix) correspond to the directions where
the model believes that the input density is flat (and
large, since we are near a training example).

We believe that this contraction penalty thus helps
the learner carve a kind of mountain supported by the

training examples, and generalizing to a ridge between
them. What we would like is for these ridges to cor-
respond to some directions of variation present in the
data, associated with underlying factors of variation.
How far do these ridges extend around each training
example and how flat are they? This can be visual-
ized comparatively with the analysis of Figure 1, with
the contraction ratio for different distances from the
training examples.

Note that different features (elements of the represen-
tation vector) would be expected to have ridges (i.e.
directions of invariance) in different directions, and
that the “dimensionality” of these ridges (we are in
a fairly high-dimensional space) gives a hint as to the
local dimensionality of the manifold near which the
data examples congregate. The singular value spec-
trum of the Jacobian informs us about that geometry.
The number of large singular values should reveal the
dimensionality of these ridges, i.e., of that manifold
near which examples concentrate. This is illustrated
in Figure 2, showing the singular values spectrum of
the encoder’s Jacobian. The CAE by far does the best
job at representing the data variations near a lower-
dimensional manifold, and the DAE is second best,
while ordinary auto-encoders (regularized or not) do
not succeed at all in this respect.

What happens when we stack a CAE on top of an-
other one, to build a deeper encoder? This is illus-
trated in Figure 3, which shows the average contrac-
tion ratio for different distances around each training
point, for depth 1 vs depth 2 encoders. Composing
two CAEs yields even more contraction and even more
non-linearity, i.e. a sharper profile, with a flatter level
of contraction at short and medium distances, and a
delayed effect of saturation (the bump only comes up
at farther distances). We would thus expect higher-
level features to be more invariant in their feature-



Contractive Auto-Encoders

Figure 1. Contraction curves obtained with the considered
models on MNIST (top) and CIFAR-bw (bottom). See the
main text for a detailed interpretation.

specific directions of invariance, which is exactly the
kind of property that motivates the use of deeper ar-
chitectures.

A related approach is tangent propagation (Simard
et al., 1992), which uses prior known transformations
to define the directions to which the final classification
output should be invariant. By contrast, we encourage
invariance of the hidden representation in directions
learnt from the dataset in a fully unsupervised man-
ner. Another related approach is semi-supervised em-
bedding (Weston et al., 2008) in which a contraction
is explicitly applied in directions along the manifold,
obtained from a neighborhood graph. Also it is used in
conjunction with a supervised classification cost. By
contrast, our unsupervised criterion contracts mostly
in directions orthogonal to the manifold (due to the
reconstruction cost canceling the contraction in the
directions parallel to the manifold), and does not ex-
plicitly use neighborhood relationships.

Figure 2. Average spectrum of the encoder’s Jacobian, for
the CIFAR-bw dataset. Large singular values correspond
to the local directions of “allowed” variation learnt from
the dataset. The CAE having fewer large singular values
and a sharper decreasing spectrum, it suggests that it does
a better job of characterizing a low-dimensional manifold
near the training examples.

6. Conclusion

In this paper, we attempt to answer the following ques-
tion: what makes a good representation? Besides be-
ing useful for a particular task, which we can measure,
or towards which we can train a representation, this
paper highlights the advantages for representations to
be locally invariant in many directions of change of
the raw input. This idea is implemented by a penalty
on the Frobenius norm of the Jacobian matrix of the
encoder mapping, which computes the representation.
The paper also introduces empirical measures of ro-
bustness and invariance, based on the contraction ra-
tio of the learned mapping, at different distances and
in different directions around the training examples.
We hypothesize that this reveals the manifold struc-
ture learned by the model, and we find (by look-
ing at the singular value spectrum of the mapping)
that the Contractive Auto-Encoder discovers lower-
dimensional manifolds. In addition, experiments on
many datasets suggest that this penalty always helps
an auto-encoder to perform better, and competes or
improves upon the representations learned by Denois-
ing Auto-Encoders or RBMs, in terms of classification
error.

References

Baldi, P. and Hornik, K. (1989). Neural networks and
principal component analysis: Learning from exam-



Contractive Auto-Encoders

Figure 3. Contraction effect as a function of depth. Deeper
encoders produce features that are more invariant, over a
farther distance, corresponding to flatter ridge of the den-
sity in the directions of variation captured.

ples without local minima. Neural Networks, 2, 53–
58.

Bengio, Y. (2009). Learning deep architectures for AI.
Foundations and Trends in Machine Learning , 2(1),
1–127. Also published as a book. Now Publishers,
2009.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,
H. (2007). Greedy layer-wise training of deep net-
works. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing
Systems 19 (NIPS’06), pages 153–160. MIT Press.

Bishop, C. M. (1995). Training with noise is equivalent
to Tikhonov regularization. Neural Computation,
7(1), 108–116.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Japkowicz, N., Hanson, S. J., and Gluck, M. A. (2000).
Nonlinear autoassociation is not equivalent to PCA.
Neural Computation, 12(3), 531–545.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and Le-
Cun, Y. (2009). What is the best multi-stage ar-
chitecture for object recognition? In Proc. Interna-
tional Conference on Computer Vision (ICCV’09).
IEEE.

Kavukcuoglu, K., Ranzato, M., Fergus, R., and Le-
Cun, Y. (2009). Learning invariant features through

topographic filter maps. In Proceedings of the Com-
puter Vision and Pattern Recognition Conference
(CVPR’09). IEEE.

Krizhevsky, A. and Hinton, G. (2009). Learning mul-
tiple layers of features from tiny images. Technical
report, University of Toronto.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J.,
and Bengio, Y. (2007). An empirical evaluation of
deep architectures on problems with many factors of
variation. In Z. Ghahramani, editor, Proceedings of
the Twenty-fourth International Conference on Ma-
chine Learning (ICML’07), pages 473–480. ACM.

Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse
deep belief net model for visual area V2. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Ad-
vances in Neural Information Processing Systems 20
(NIPS’07), pages 873–880. MIT Press, Cambridge,
MA.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y.
(2009). Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical represen-
tations. In L. Bottou and M. Littman, editors, Pro-
ceedings of the Twenty-sixth International Confer-
ence on Machine Learning (ICML’09). ACM, Mon-
treal (Qc), Canada.

Olshausen, B. A. and Field, D. J. (1997). Sparse cod-
ing with an overcomplete basis set: a strategy em-
ployed by V1? Vision Research, 37, 3311–3325.

Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536.

Simard, P., Victorri, B., LeCun, Y., and Denker, J.
(1992). Tangent prop - A formalism for specify-
ing selected invariances in an adaptive network. In
J. M. S. Hanson and R. Lippmann, editors, Ad-
vances in Neural Information Processing Systems 4
(NIPS’91), pages 895–903, San Mateo, CA. Morgan
Kaufmann.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and
Manzagol, P.-A. (2010). Stacked denoising autoen-
coders: Learning useful representations in a deep
network with a local denoising criterion. Journal of
Machine Learning Research, 11(3371–3408).

Weston, J., Ratle, F., and Collobert, R. (2008).
Deep learning via semi-supervised embedding. In
W. W. Cohen, A. McCallum, and S. T. Roweis, ed-
itors, Proceedings of the Twenty-fifth International
Conference on Machine Learning (ICML’08), pages
1168–1175, New York, NY, USA. ACM.


