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Abstract

We describe an algorithm for approximate in-
ference in graphical models based on Hölder’s
inequality that provides upper and lower
bounds on common summation problems
such as computing the partition function
or probability of evidence in a graphical
model. Our algorithm unifies and extends
several existing approaches, including vari-
able elimination techniques such as mini-
bucket elimination and variational methods
such as tree reweighted belief propagation
and conditional entropy decomposition. We
show that our method inherits benefits from
each approach to provide significantly better
bounds on sum-product tasks.

1. Introduction

Probabilistic graphical models provide a powerful set
of tools for machine learning. A major difficulty
in many learning and inference tasks is to calculate
the partition function, or normalization constant of
the distribution. This task corresponds to comput-
ing the probability of evidence in Bayesian networks,
and is a critical component of learning a model from
data. For trees, the partition function can be calcu-
lated efficiently by variable elimination, but for mod-
els with cycles this calculation is exponential in the
tree width. This makes approximations, particularly
upper or lower bounds, of great interest. Examples in-
clude approximate elimination methods such as mini-
bucket (Dechter & Rish, 2003), and variational ap-
proximations such as tree-reweighted belief propaga-
tion (TRBP) (Wainwright et al., 2005).

TRBP exploits convexity to provide a bound in terms
of a collection of spanning trees. The number of pos-
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sible spanning trees is extremely large, so direct opti-
mization of the bound is difficult; instead Lagrangian
duality is used to derive a loopy fixed-point update,
and the tree “weights” are optimized by gradient as-
cent. Generalized TRBP (Wiegerinck, 2005) extends
TRBP to collections of hypertrees, but selecting hy-
pertrees and weights is difficult and typical imple-
mentations use only trees and random, unoptimized
weights (Mooij, 2010; Schmidt, 2007).

In contrast, mini-bucket elimination is a simple relax-
ation of variable elimination. It provides either an
upper or lower bound and is fast and non-iterative.
Computation is controlled with a simple clique size
parameter; results can be poor with small cliques, but
larger cliques are easily used to improve its bounds.

We propose a generalization of mini-bucket based on
Hölder’s inequality. We show that the dual form of
our bound is equivalent to CED or generalized TRBP,
closely connecting variational algorithms with mini-
bucket. However, our primal representation inherits
many of the benefits of both approaches, giving signif-
icant advantages over either. In experiments, we show
that our method effectively trades off iterative updates
with clique size to greatly improve bound quality.

2. Graphical Models

Graphical models capture the factorization structure
of a distribution over a collection of variables. Let

p(x) =
1
Z

∏
α∈I

ψα(xα), (1)

where α indexes subsets of variables, and Z is a nor-
malizing constant, called the partition function. We
associate p(x) with a graph G = (V,E), where each
variable xi, i = 1 . . . n is associated with a node i ∈ V
and (ij) ∈ E if {xi, xj} ⊆ α for some α. The set I
is then the set of cliques (fully connected subgraphs)
of G. Calculation of Z is a central problem in many
learning and inference tasks, but exact evaluation re-
quires summing over an exponential number of terms.
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The overcomplete exponential family form of (1) is

p(x|θ) = exp
(
θ(x)− Φ(θ)

)
, θ(x) =

∑
αθα(xα),

where θα = log(ψα), and Φ(θ) = logZ(θ) is the log-
partition function. Φ(θ) is a convex function of θ and
its derivatives equal the marginal distributions of p(x).

2.1. Variational Upper Bounds

Tree reweighted BP (Wainwright et al., 2005) builds
an upper bound on Φ(θ) based on convexity. The idea
is to split the parameter vector θ into a sum of vectors
{θr},

∑
r θ

r = θ, each of which is a parameter vector of
some simpler graphical model Tr (such as a spanning
tree). We assign a set of weights w = [w1, · · · , wR]
with

∑
r wr = 1, wr ≥ 0 and apply Jensen’s inequality:

Φ(θ) = Φ
(∑

rwr
θr

wr

)
≤ wr

∑
rΦ
( θr
wr

)
def
= Ψ(θ̄, w).

Finding θr and wr to obtain the tightest upper bound
is difficult to solve directly since the number of span-
ning trees R may be extremely large. Wainwright et al.
(2005) provide an elegant alternative by finding a dual
formulation of the θ̄-optimal bound for fixed w:

min
θ̄

Ψ(θ̄, w) = max
τ∈L(G)

〈τ, θ〉+
∑
H(xi)−

∑
µijIij , (2)

where L is the locally consistent polytope, or set of sin-
gleton τi(xi) and pairwise marginals τij(xi, xj) that
are consistent on their intersections. Hi denotes the
entropy of τi and Iij the mutual information of τij , and
µij is the so-called edge appearance probability, the
sum of weights wr in trees Tr that contain edge (ij).
This dual form can be optimized via a simple “message
passing” fixed-point algorithm on G, similar to loopy
belief propagation. For w, Wainwright et al. (2005)
proposed a conditional gradient method to optimize
the µij directly, by solving a max-weight spanning tree
problem at each iteration. Generalized TRBP (Wain-
wright et al., 2005; Wiegerinck, 2005) gives a natural
extension of TRBP to combinations of hypertrees, sim-
ilar to generalized BP (Yedidia et al., 2005).

However, a few significant difficulties arise. First, the
dual guarantees a valid bound only at message conver-
gence, which may require damping and an unknown
number of iterations. Second, it is not obvious how
to choose the cliques or “regions” for GTRBP. Fi-
nally, weight optimization is significantly more dif-
ficult in non-pairwise models; typical implementa-
tions of TRBP use randomly generated, unoptimized
weights (Mooij, 2010; Schmidt, 2007).

Conditional entropy decomposition (CED) (Globerson
& Jaakkola, 2007) extends GTRBP by working purely

in the dual, using collections of “elimination orders”
(which we call CED-orders, as they consist of both
an elimination order and a choice of parent subset for
each variable) to define a more general bound. Al-
though potentially tighter, this has similar drawbacks
to GTRBP: the dual may not be a bound before con-
vergence, and the desired set of CED-orders must be
enumerated and their weights optimized. Here we
mainly focus discussion on TRBP, as it is the most
common of this general class of variational bounds.

2.2. Bucket Elimination and Mini-Bucket

On the other hand, elimination methods such as
bucket or variable elimination (Dechter, 1999; Koller
& Friedman, 2009) act by directly summing out the
variables in sequence. Bucket elimination assumes a
fixed elimination order, and groups factors by placing
each ψ in the “bucket” Bi of its earliest argument xi in
the order. We assume without loss of generality that
the elimination order is o = [x1, · · · , xn]. To illustrate,
we use a simple running example with pairwise factors:
p(x) = 1

Zψ12ψ13ψ14ψ23ψ24ψ34. Its buckets are

B1: {ψ12, ψ13, ψ14} B2: {ψ23, ψ24} B3: {ψ34} B4: {}
Inference proceeds by multiplying all factors in Bi and
eliminating xi, resulting in a new factor over all other
arguments of factors in Bi; this new factor is then
added to the bucket of its “parent” or earliest un-
eliminated variable, denoted pa(i). This process is
easily seen as applying a distributive property, where
each group of factors corresponds to a bucket:

Z =
∑
x4

∑
x3

ψ34

∑
x2

ψ23ψ24

∑
x1

ψ12ψ13ψ14.

The computational cost of bucket elimination is ex-
ponential in the induced width of the graph given the
elimination order. Mini-bucket (Dechter & Rish, 2003)
is an approximation algorithm deriving lower and up-
per bounds that builds on bucket elimination.

We illustrate mini-bucket with our example. Consider
the first bucket B1, where a sum is performed for each
tuple (x2, x3, x4), with total cost O(d4), where d is the
number of possible states of xi. In general, the compu-
tational complexity is O(dω), where ω is the number of
variables in each summation (bounded by the induced
width of this order). We can instead split the bucket
into several smaller “mini-buckets”, and eliminate sep-
arately; Dechter & Rish (2003) used the inequalities∑

x1
1

ψ12(x1
1)ψ13(x1

1) ·min
x2

1

ψ14(x2
1) ≤

∑
x1

ψ12ψ13ψ14

≤
∑
x1

1

ψ12(x1
1)ψ13(x1

1) · max
x2

1

ψ14(x2
1),
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where the sum and max in the bounds are performed for
each value of (x2, x3) and x4 separately, having com-
plexity only O(d3). For more than two mini-buckets,
sum is used on one and max applied to all others.

Mini-bucket uses these bounds to approximate the sum
in each bucket, placing the resulting factors in subse-
quent buckets. We terminate when all buckets are pro-
cessed. Usually, a parameter ibound defines the max-
imal number of variables allowed in each mini-bucket,
controlling the cost-accuracy tradeoff; smaller ibounds
have less cost, but are typically less accurate.

Mini-bucket is simple, fast, and terminates in a finite
(and easy to estimate) number of steps. This enables
it to be used with relatively high ibound (typically
10–20) to achieve excellent performance. However, it
relies primarily on clique size for quality; it cannot
be improved iteratively, and few additional heuristics
have been proposed (Rollon & Dechter, 2010). Per-
haps surprisingly, despite their apparent differences we
show that TRBP methods and mini-bucket are closely
related, by first generalizing mini-bucket, then show-
ing its connection to TRBP. The resulting algorithm
inherits the advantages of both styles, giving consid-
erable power to trade-off performance factors.

3. Hölder’s Inequality and WMB

In this section, we introduce Hölder’s inequality, and
propose a generalization of mini-bucket called weighted
mini-bucket (WMB). Let fi(x), i = 1 . . . n be pos-
itive functions over a discrete variable x. Let w =
[w1, w2, · · · , wn] be a vector of weights. We define a
weighted summation (or power sum), given by

wi∑
x

fi(x)
def
=
(∑

x

fi(x)1/wi
)wi

.

Let w0 =
∑
i wi. If wi > 0 for i ≥ 1, Hölder’s inequal-

ity (Hardy et al., 1988) states that
w0∑
x

∏
i

fi(x) ≤
∏
i

wi∑
x

fi(x). (3)

If only one weight is positive, e.g., w1 > 0 and wi < 0
for all i > 1, we have the reverse Hölder’s inequality,
where the direction of the bound changes.

The Hölder and reversed Hölder inequalities can be
used to provide upper (resp. lower) bounds for the
partition function similar to mini-bucket. Following
our running example, we assign weights w = [w1, w2]
satisfying w1 + w2 = 1 on the copies of variable x1,
and generalize the mini-bucket bound to

Z ≤
∑

x2,x3,x4

ψ34ψ23ψ24

w1∑
x1

ψ12(x1
1)ψ13(x1

1)
w2∑
x1

ψ14(x2
1)

Algorithm 1 (Weighted) Mini-bucket Elimination
Input: The factors of the graphical model F =
{ψα(xα)}, an elimination order o, and ibound
Output: an upper or lower bound on Z
for i← 1 to n do
Bi ← {ψα|ψα ∈ F, i ∈ α}, F ← F −Bi
Partition Bi into Ri subgroups B̄i = ∪Ri

r=1Bir ,
such that | ∪ var(Bir )| ≤ ibound+ 1 for all r
Assign subgroup r weight wir , where

∑
r wir = 1

F ← F ∪ {
∑wir

xir

∏
ψ∈Bir

ψ}
end for
The partition function bound is Ẑ =

∏
ψ∈F ψ.

Note: wr
i are set to 1 or 0+/0− in standard mini-bucket.

for w1 > 0 and w2 > 0; for w1 > 0, w2 < 0 or
w1 < 0, w2 > 0, the bound reverses to provide a lower
bound. Note that limw→0+

∑w
x f(x) = maxx f(x) and

limw→0−
∑w
x f(x) = minx f(x), so the mini-bucket

bounds correspond to a limiting case of Hölder’s
bounds when w2 → 0+ or w2 → 0−.

Weighted mini-bucket (WMB) replaces the näıve mini-
bucket bound with Hölder’s inequality. The same al-
gorithm is used, but sum/max are replaced by weighted
sum operators, whose weights sum to one on the set of
replicates of variables that are split; see Algorithm 1.

Due to limited space, here we focus only on the upper
bound component. The lower bound can be analyzed
similarly, but its variational form is less well-known
and analysis is more complex due to non-convexity is-
sues; see Liu & Ihler (2010).

4. Weighted Log-Partition Function

Although formulated as a sequential elimination al-
gorithm, WMB can be considered “inference” using
weighted sum operators on a “covering graph” made
by splitting nodes of G into disconnected replicates.
Several related variable splitting views have been ap-
plied to max-product (Johnson, 2008; Choi & Dar-
wiche, 2009; Yarkony et al., 2010). We first give a “pri-
mal” view of our bound and establish a few properties,
then relate it to TRBP through duality (Section 4.3).

4.1. Building a Covering Graph

First, we interpret the splitting & elimination process
of mini-bucket as a series of splitting & triangulation
operations on G, where at each step one node is split
into several disconnected replicates and adding edges
to triangulate their neighboring, un-eliminated nodes.
This process leads to a “covering graph” G = (V̄ , Ē),
with V̄ = {ir|i ∈ G, r = 1, · · · , Ri} being the set of
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replicates, where ir is r-th replicate of node i, and Ri is
the number of replicates of i. See Fig. 1 for an example.
We use “bar” notation to represent the variables and
parameters of the new, augmented graph.

The WMB bound can be expressed as a sequence of
weighted sums over factors of the covering graph. For
notation, we split each xi in G into Ri replicates x̄i =
[xir ]Ri

r=1 with weights w̄i = [wir ]Ri
r=1, where

∑
r wir =

1. Let x̄ = [x̄1, · · · , x̄n], w̄ = [w̄1, · · · , w̄n]. The
natural extension of elimination order o = [1 . . . n] on
G to Ḡ is ō = [11, · · · , 1R1 ; 21 · · · 2R2 ; · · · ;n1 · · ·nRn ].
For convenience, we also introduce a linear index ō =
[1, · · · , k · · · , n̄] to represent ō, so that ir ∈ V̄ and
k ∈ V̄ are two ways to refer to the nodes in Ḡ. Let c0k
be the set of neighbors subsequent to node k ∈ V̄ in
order ō, and define ck = {k} ∪ c0k.

This transformation is notationally complex, but sim-
ple in concept and practice: we simply follow a mini-
bucket elimination, keeping track of what elimination
operation produced each factor. Set c0k equals the vari-
ables in the newly created factor; we again define a
“parent” pa(k) = min{c0k} to indicate the bucket in
which that factor is placed.

We create a parameter vector θ̄ on G, and require two
conditions of the resulting collection of weights and
parameters θ̄ (or equivalently factors ψ̄) over variable
copies x̄. The weights obey sum and sign constraints,

w̄ ∈ D(w) = {w̄|
∑
rwir = 1, wir ≥ 0}.

Second, we require the parameters θ̄ be equivalent to
the original θ when all replicate copies are equal:

θ̄ ∈ D(θ) = {θ̄|θ̄(x̄) = θ(x),when xir ≡ xi ∀i, r}.

4.2. The Weighted Log-Partition Function

In general, the WMB bound has the form

Z̄w(θ̄, w̄) =
w̄n̄∑
x̄n̄

· · ·
w̄1∑
x̄1

exp(θ̄(x̄))
def
=

w̄∑
x̄

exp(θ̄(x̄)),

where the sum follows order ō. (Unlike sum, weighted
sum operators are not commutative.) We call
Φ̄w(θ̄, w̄) = log Z̄w(θ̄, w̄) the weighted log-partition
function of p̄(x̄|θ̄). The tightest such bound is

min
θ̄,w̄

Φ̄w(θ̄, w̄) s.t. θ̄ ∈ D(θ), w̄ ∈ D(w)

It turns out that Φ̄w(θ̄, w̄) has properties similar to Φ
that are useful for solving the optimization; we state
these without proof due to limited space. First, as the
partition function is defined by p(x), we can conversely
define a new distribution q̄(x̄) in terms of the weighted

Algorithm 2 Inference equations for Φ̄w
For node k∈ V̄ , parent l=pa(k) and neighbors ∼k:
Forward: (weighted mini-bucket elimination)

mk→l(x̄cl
) =

w̄k∑
x̄k

ψ̄ck

∏
j:k∈pa(j)

mj→k (7)

Backward: (to compute marginals, gradients)

ml→k =
[ ∑

x̄cl/ck

(ψ̄cl
m∼l)1/w̄lm

−1/w̄k

k→l
]w̄k (8)

Note that backward messages depend on forward ones,
but not vice versa. Here ψ̄ck

= exp(θ̄ck
).

Marginals: q̄(xck
) ∝ (ψ̄ck

m∼k)1/wk (9)

Bound: Φ̄w(θ̄, w̄) = log
∏

k:pa(k)=∅

w̄k∑
x̄k

ψ̄ck
m∼k (10)

partition function Z̄w. This is defined by a chain rule
expansion:

q̄(x̄|θ̄, w̄) =
n̄∏
k=1

q̄(x̄k|x̄k+1:n̄; θ̄, w̄), (4)

q̄(x̄k|x̄k+1:n̄; θ̄, w̄) ∝
[ w̄1:k−1∑
x̄1:k−1

exp(θ̄(x̄))
]1/w̄k

We then have the following result:

Theorem 4.1. The derivatives of Φ̄w correspond to
the moments and conditional entropies of q̄(·), i.e.,

∂
∂θ̄α

Φ̄w(θ̄, w̄) = q̄(x̄α|θ̄, w̄), (5)

∂

∂w̄k
Φ̄w(θ̄, w̄) = Hw(x̄k|x̄k+1:n̄ ; q̄), (6)

where q̄(x̄α|θ̄, w̄) is the marginal of q̄(x̄|θ̄, w̄) and
Hw(·|·; q̄) is the conditional entropy of q̄:

Hw(x̄k|x̄k+1:n̄ ; q̄) = −
∑
x̄

q̄(x̄k:n̄) log q̄(x̄k|x̄k+1:n̄).

Further, Φ̄w is jointly convex w.r.t. [θ, w̄] when w̄ > 0.

Algorithm 2 gives a message-passing computation for
these quantities. The forward pass exactly equals the
WMB of Algorithm 1 and Φ̄w its bound; the backward
pass computes the marginals q̄(·). This procedure can
be viewed as message-passing on the junction tree of
cliques C = {ck}, with hyperedges connecting ck and
cpa(k). Since the induced width of G is bounded by
ibound, the total complexity is O(dibound).
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4.3. Duality and Connection to TRBP

We now describe the dual representation of Φ̄w(θ̄, w̄),
again parallel to the regular log-partition function.
Note that in this section we consider Φ̄w as a func-
tion of θ̄, for fixed positive weights w̄ > 0.
Theorem 4.2. (1). Φ̄w(θ̄, w̄) is a convex function of
θ̄ for fixed w̄ > 0, and has dual representation,

Φ̄w(θ̄) = max
τ̄∈M(G)

〈τ̄ , θ̄〉+
n̄∑
k=1

w̄kHw(x̄k|x̄c0k ; τ̄), (11)

where M(G) is the marginal polytope on G, and
Hw(x̄k|x̄c0k ; τ̄) is the conditional entropy under τ̄ . The
maximum is obtained iff τ̄(x̄) = q̄(x̄|θ̄, w̄).

(2). Let Γ : V̄ → V map replicates to their original
nodes, i.e., Γ(ir) = i. For fixed w̄ > 0, we have

min
θ∈D(θ)

Φ̄w(θ̄) = max
τ∈L(G)

〈τ, θ〉+
n̄∑
k=1

w̄kH(xΓ(k)|x̄Γ(c0k) ; τ)

where L(G) is the local polytope for beliefs τ defined
over sets of variables Γ(ck) in the original graph G.

Theorem 4.2(1) gives the dual form of the weighted
log-partition function. When w̄k = 1 for all k, this
reduces to the standard dual of the log-partition func-
tion (Wainwright & Jordan, 2008). Note that since G
is triangulated, M(G) is also the collection of τ̄ that
are consistent on the intersections of cliques {ck}n̄k=1.

Theorem 4.2(2) is a corollary of Theorem 4.2(1), which
gives a dual approach for finding the θ̄-optimal bound.
It has the form of a weighted sum of conditional en-
tropies, and it is not difficult to show that it is equiv-
alent to some set of CED-orders consistent with elim-
ination order o, and is thus a form of CED; if these
conditional entropies are consistent with some hyper-
tree order (always true for ibound = 1), it will also
be a form of generalized TRBP, and suggests that one
way to optimize θ̄ is via TRBP message passing.

Interestingly, the elementary building blocks of CED
are single CED-orders, for which w̄k = 1 or 0+, which
can be seen to correspond to a dual form of mini-
bucket with max. The WMBE bound for a given
covering tree corresponds to some collection of CED-
orders or GTRBP hypertrees (we return to this point
shortly). Also, any CED-order can be expressed as
some covering tree. As CED uses collections of CED-
orders, we could elect to use a TRBP-like “weighted
collection” of more than one covering tree to achieve
as tight a bound as CED. However, here we focus on
the expressive power of a single covering tree, which
enables a simple and efficient primal bound and the
use of existing heuristics for clique choice.

(a) (b) (c) (d)

Figure 1. (a) A 3×3 grid. (b) A covering graph with ibound
2 (column-first order). (c) A covering tree. (d) The set of
spanning tree that is equivalent to the covering tree in (c).

4.4. Primal vs. Dual, Covering vs. Spanning

In addition to closely connecting these algorithms, our
technique has significant practical advantages. Al-
though its dual is equivalent to that GTRBP or CED,
WMB gives a concise and novel primal bound. The
primal form of TRBP is intractable unless the number
of spanning trees is small. Even CED’s dual form re-
lies on a small number of CED-orders to be tractable,
and the primal form derived in Globerson & Jaakkola
(2007) (a geometric program) is computationally infea-
sible. In contrast, WMBE uses only a few parameters
to capture the equivalent of a large collection of span-
ning trees or orders. This set can be made precise, but
we illustrate it with a simple example in Fig. 1. For a
3× 3 grid, the covering tree in panel (c) gives a bound
equivalent to that of the collection of 16 spanning trees
in panel (d). In general the covering tree can have
many fewer degrees of freedom than its corresponding
collection of trees or orders (here, 4α versus 15α).

Not only is this more efficient, it also improves the pre-
convergence bound. The “extra” degrees of freedom
can only loosen the bound; their removal corresponds
to enforcing they take on optimal values. These ad-
vantages improve our ability to represent and optimize
a primal form of the bound with many spanning trees.
Advantages over the dual form include easily optimiz-
ing w̄ (in TRBP, the gradient is technically valid only
at convergence), the ability to flexibly balance opti-
mizing θ̄, w̄, or increasing the ibound, and providing
a valid bound at any point (any any-time property).

5. Tightening the Primal Bound

Our concise WMB bound lends itself to efficient primal
algorithms for optimizing θ̄ and w̄. Generally speaking
the optimization is a convex program with simple con-
straint conditions; the time complexity of the objective
function, gradient or Hessian is O(dibound), under user
control. We could thus use black-box convex optimiza-
tion routines to optimize the bound. However, since
Φ̄w is calculated using message-passing, it seems most
effective to update θ̄ and w̄ while computing messages.
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Algorithm 3 Tightening the bound Φ̄w
Initialize θ̄, w̄ and messages m
repeat

for i← 1 to n do
pre-update backward messages (optional):
update mir→pa(ir) and then mpa(ir)→ir by (7)-
(8) for all replicates of i.
Reallocate / reweight:
update θ and/or w̄ by fixed point (12), log-
gradient (13) or other methods.
Update forward messages:
update mi→pa(ir) by (7) for all replicates of i.

end for
Calculate the bound Φ̄w by (10).
for i← n to 1 do

Reallocate / reweight:
Update θ and/or w̄ by fixed point (12), log-
gradient (13) or other methods.
Update backward messages:
update mpa(ir)→i by (8) for all replicates of i.

end for
until stopping criterion satisfied.

A surprisingly powerful version of this is explored in
our experiments (Section 6), by non-iteratively opti-
mizing “on the fly” during a single forward pass.

5.1. Optimizing θ̄

Consider a node i ∈ V and its replicates {ir}. For
a given initial θ̄, we have freedom to reallocate fac-
tors between the replicates, e.g., we can update θ̄ to
θ̄ +

∑
r ϑir , where ϑir are singleton factors satisfying∑

r ϑir (xi) = 0. The optimal ϑir satisfy a moment
matching condition bir (xi) ≡ bi(xi), i.e., all replicates
share the same marginal; this parallels the matching
condition in Wainwright et al. (2005). To select ϑir ,
we can use the fixed-point update:

Updating θ̄ = log ψ̄:

bir =
∑

x̄\{xir}

(ψ̄cirm∼ir )1/wir , bi =
(∏

r

bir
wir

) 1P
r wir

ψ̄cir ← ψ̄cir

( bi
bir

)wir

(12)

where bir is the marginal of bcir in (9), and bi is the
weighted geometric mean of the bir . It is easy to show
that updates keep θ̄ consistent with θ, and that the
fixed point satisfies the marginal matching condition.
It is also easily generalized to larger sets of replicates.

Update (12) can be inserted into forward-backward
calculations in different ways; Algorithm 3 describes
two variants. Since backward messages mpa(ir)→ir de-

pend on the forward messages, updating the forward
messages invalidates the backward messages. The op-
tional step of Algorithm 3 “pre-updates” the backward
messages before updating θ̄.

Many other update choices are equally valid. For ex-
ample, a projected gradient step is particularly simple:

θir ← θir + µ(bir − bi),

where bi is the arithmetic mean of bir ; and Newton-like
methods could also improve speed and convergence.

5.2. Optimizing w̄

Unlike the TRBP dual, in which the weight gradient is
only correct after θ̄ has been optimized, our algorithm
can update w̄ independent of θ̄. In our experiments we
found weight updates could be surprisingly important.

By the KKT conditions, the stationary condition is

wir (Hir|≺ −Hi|≺) = 0,∀ir ∈ V̄ ,

where Hir|≺ = Hw(xir |xc0
ir

), and Hi|≺ =
∑
r wirHir|≺

is the average conditional entropy over the replicates.
Thus at the stationary point, either the weight is zero
or the replicate conditional entropy equals the average.

The constraint set D(wi) is simple, and can be trans-
formed to an unconstrained problem by taking wir =
exp(uir )/

∑
r exp(uir ), for uir ∈ R. Taking the gradi-

ent w.r.t. uir and substituting gives log-gradient step:

Updating weights:
wir ← wir exp(−εwir (Hir|≺ −Hi|≺))
wir ← wir/

∑
rwir . (13)

where ε is a step size. This update ensures w̄ in D(w)
and its fixed point satisfies the KKT condition.

As with θ̄, other optimizations of w̄ are equally valid.
The conditional gradient (analogous to the update in
Wainwright et al. (2005)) simply finds the replicate
with lowest conditional entropy. In our experiments,
we use the log-gradient update; in practice it appeared
to converge better than conditional gradient.

5.3. Choosing the Covering Structure

The tightness of the bound also depends on the struc-
ture of the covering graph, which stems from the
bucket partitioning strategy and elimination order.
These elements are harder to optimize, although some
heuristics exist (Rollon & Dechter, 2010). For our
WMB, we use the simplest scope-based heuristics,
which greedily minimize the number of splits required
(Dechter & Rish, 2003): each factor is added to an
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Figure 2. Results on 10× 10 Ising model with mixed interactions. (a) Mini-bucket is often worse than TRBP except for
high ibound, but (b),(c) weighted mini-bucket is often better even with only a forward pass. (d) Fully optimized WMB
is slightly looser than TRBP for ibound = 1, but quickly surpasses TRBP as ibound increases. See also Fig. 3.

existing mini-bucket if possible, and otherwise placed
in a new mini-bucket. We also add a refill step af-
ter partitioning, which greedily tries to split factors
across multiple mini-buckets (i.e., increase the buck-
ets’ clique) if doing so does not violate the ibound.

6. Experiments

We tested WMB on synthetic networks (Ising models)
and on a number of real-world linkage analysis models
from the UAI’08 competition to show its effectiveness
compared to standard TRBP and mini-bucket.

Ising models. We generated random 10 × 10 Ising
models (binary pairwise grids),

p(x) = exp
[∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj − Φ(θ)
]
,

where xi ∈ {−1, 1} and θi ∼ N (0, 0.1), θij ∼ N (0, σ),
with σ ∈ [0, 2]. (This gives “mixed” interactions; rela-
tive performance on purely-attractive models was sim-
ilar and is omitted for space).

For WMB, we use the column-first order and scope-
based heuristic, allocate θ̄ uniformly across replicates,
and initialize weights and messages uniformly.

Fig. 2 shows several curves comparing bound quality as
σ is varied in [0, 2]. In each plot, TRBP-∞ represents
TRBP when weights are full optimized using condi-
tional gradient (the optimal bound with tree-width 1).
The first panel shows the bound found by näıve mini-
bucket (MBE) for various ibounds. We then show our
proposed WMB bound when either θ̄ or w̄ is modified
during a single forward pass (so that the estimate has
the same computational complexity as mini-bucket),
and when the bound is fully optimized. Fig. 3 shows
a calibrated timing comparison on a single example
(with σ = 1), in which one unit of time equals a full
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Figure 3. Calibrated timing comparison on a single grid.
Colors indicate increasing ibound (see Fig. 2). One unit
of time is a full iteration of TRBP plus a weight step,
or a single forward-backward pass of WMB; trajectories
indicate the current tightest bounds. WMB with w-steps
out-performs θ-steps in this instance; optimizing both θ&w
is usually best. The largest gain is from increasing ibound,
e.g., WMB2-θ&w is better than TRBP-∞ in its first iteration.

iteration of TRBP or a single forward-backward pass
of WMB. We use a gradient step on µij at each itera-
tion of TRBP (step size .1) to find the optimal bound.

The most dominant factor in bound quality was ibound
– for example, WMBi-w-1 (indicating one iteration of
WMB with weight updates and ibound = i) is al-
ready as good as TRBP-∞, the fully-converged TRBP
bound, by i = 2. Perhaps surprisingly, for Ising models
we found that optimizing w̄ consistently gave tighter
bounds than optimizing θ̄. The importance of weights
is intuitive, since changing their sign (to negative) can
actually give a lower bound. However, most implemen-
tations of TRBP (Mooij, 2010; Schmidt, 2007) do not
include weight optimization even for pairwise models,
and it is even more difficult for larger cliques.
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Figure 4. Linkage analysis networks. (a)-(b) We show the error relative to the tightest bound found on 10 problems at
two ibounds, for mini-bucket and four single-pass WMB estimates: uniform (no updates), w or θ only, and both. All four
consistently outperform standard mini-bucket. (c) A typical instance, showing quality as ibound is increased.

Additionally, the most benefit occurred within the
first 1-2 iterations of WMB, suggesting that running
message-passing to convergence may be wasteful. It
appears better to extract a primal WMB bound early,
then increase ibound. This shows the advantage of the
primal bound’s any-time property: the algorithm can
stop prior to convergence and return a valid bound.

Linkage analysis. We also compared our algorithm
to standard mini-bucket on models for pedigree link-
age analysis from the UAI’08 approximate inference
challenge. The models have ∼300-1000 nodes, with
induced width of ∼20-30. We compare MBE to WMB
with only one forward elimination, giving both meth-
ods equal time complexity and varying ibound ∈
[4 . . . 15]. The implementation of MBE follows Rollon
& Dechter (2010), which used advanced heuristics for
bucket partitioning; our WMB continued to use näıve
scope-based heuristics (see section 5.3).

Fig. 4 shows that all versions of WMB significantly
outperform mini-bucket. Even WMB-uniform, which
performs no updates to θ̄ or w̄ (uniform allocation)
outperforms MBE. Unlike the Ising models, here we
find WMB-w is not consistently better than WMB-θ.

7. Conclusion

We presented an algorithm that unifies and extends
mini-bucket and TRBP. Our algorithm inherits signif-
icant benefits from both views: it is able to produce
a bound at any point (often a single iteration is suffi-
cient); it compactly represents and can optimize over a
large class of TRBP bounds; and it can easily improve
its bounds via iterations or increased clique size. Fu-
ture work includes studying the negative weight lower
bound, and exploring better heuristics for selecting
elimination orders and constructing covering graphs.
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