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Abstract

The analysis of the formation and evolution of
networks over time is of fundamental importance
to social science, biology, and many other fields.
While longitudinal network data sets are increas-
ingly being recorded at the granularity of individ-
ual time-stamped events, most studies only focus
on collapsed cross-sectional snapshots of the net-
work. In this paper, we introduce a dynamic ego-
centric framework that models continuous-time
network data using multivariate counting pro-
cesses. For inference, an efficient partial like-
lihood approach is used, allowing our methods
to scale to large networks. We apply our tech-
niques to various citation networks and demon-
strate the predictive power and interpretability of
the learned statistical models.

1. Introduction

Network analysis is of increasing interest to researchers
and practitioners due to the emergence of large-scale so-
cial networks, biological and protein interaction data, cita-
tion graphs, and networks in many other fields. Since most
of these networks are dynamic and evolve over time, there
is increasing motivation to develop longitudinal network
models, i.e., models for networks over time. Researchers
have largely focused to date on analyzing discrete “snap-
shot” or collapsed panel data (e.g.,Hanneke & Xing, 2006;
Fu et al., 2009; Wyatt et al., 2010). While continuous-time
models have been fitted on small networks (Wasserman,
1980; Snijders, 2005), the development and fitting of dy-
namic statistical models for large-scale data sets at a fine
temporal granularity is still relatively unexplored.

Appearing inProceedings of the 28
th International Conference

on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

This paper introduces a general dynamic network modeling
framework that can model time-stamped event data. Our
approach extends work on survival and event history anal-
ysis (Andersen et al., 1993; Butts, 2008) to large-scale net-
work modeling and uses multivariate counting processes
to model network dynamics. A benefit of this statistical
framework is that it can handle arbitrary network and nodal
statistics; for example, we empirically show how incorpo-
rating textual information with network statistics improves
predictive performance.

In this paper, we focus on citation network analysis, which
is an area of interest to machine learning and bibliomet-
rics. Specifically, we consider processes where nodes cre-
ate edges over time to nodes that joined the network earlier,
and we take a restricted “egocentric” perspective that only
models nodal processes for efficiency. We do not explic-
itly discuss more general processes (involving edge-based
dynamics) in this paper, but our framework can be general-
ized. Moreover, we develop an efficient inference scheme
that optimizes a partial likelihood that ignores the precise
event times and only considers the event-to-event ordering,
though we also discuss how a baseline rate of citations per
unit time may be estimated if event timing is of interest.

The specific contributions of this paper are as follows:

1. We propose a statistical egocentric modeling frame-
work for fine-grained longitudinal network data that
allows for arbitrary network and nodal statistics.

2. An efficient inference scheme based on partial like-
lihood optimization is presented, allowing this ap-
proach to scale to large data sets.

3. We provide an empirical analysis of the predictive
power and interpretability of the learned egocentric
models on several real-world citation networks.

In the following sections, we introduce the egocentric net-
work modeling framework and detail the inference algo-
rithms. Then we empirically analyze several citation net-
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works using this framework. Finally, we review related
work and conclude with future research directions.

2. The Egocentric Network Model

In this section, we formulate the general egocentric model-
ing framework and provide examples of network statistics
that can be specifically applied to citation network data.

2.1. General framework

We demonstrate below how models for counting processes
(Andersen & Gill, 1982) may be used in the context of net-
work analysis, where we need to account for the interde-
pendence among individual processes on nodes or edges.
Our egocentric framework aims to model a dynamically
evolving network by placing a counting processNi(t) on
nodei, i = 1, . . . , n, whereNi(t) counts the number of
“events” (defined based on the context) involving theith
node. Recurrent events have been studied extensively in the
statistical literature on survival and event history analysis
(e.g.,Andersen et al., 1993). The basic idea of this frame-
work is to model how the current network history influ-
ences its future development. Combining individual count-
ing processes of all nodes results in a multivariate counting
processN(t) = (N1(t), . . . , Nn(t)). This counting process
is genuinely multivariate – it makes no assumption about
the independence of individual nodal counting processes.

This modeling framework is quite general in applicability;
we apply it here to the context of citation networks. In a
citation network, new papers join the network over time. At
their arrival times, these papers cite others that have already
been in the network. Since new papers make citations to
other papers only once in their lifetimes, the main dynamic
development of this network is the number of citations that
papers receive over time; thus, we takeNi(t) to equal the
cumulative number of citations to paperi at timet.

Since the counting process is nondecreasing in time, it may
be considered asubmartingale; i.e., it satisfies

E [N(t) |past up to times] ≥ N(s) for all t > s.

This is a standard way to model time-to-event data, though
we will not delve deeply into specifics here; we refer the
interested reader to the textbooks ofAalen et al.(2008)
andAndersen et al.(1993). The general idea is that a sub-
martingale may be (uniquely) decomposed as

N(t) =

∫ t

0

λ(s) ds + M(t), (1)

where the first term on the right is the “signal” at timet

and the second term, called a continuous-time martingale,
is random “noise”. Our attention will focus on modeling
λ(t), the so-called intensity function.

To modelλ(t), we shall denote the entire past of the net-
work up to but not including timet by Ht− and assume that
the intensity process for nodei is given by

λi(t|Ht−) = Yi(t)α0(t) exp
(

β⊤si(t)
)

, (2)

where the “at risk” indicator functionYi(t) is defined ac-
cording to the context. For citation networks, we take
Yi(t) = I(t > tarri ) to be 1 if the current timet is greater
than the arrival timetarri of node (paper)i. In Eq (2), α0(t)
represents the baseline hazard function,β is the vector of
coefficients to estimate, andsi(t) = (si1(t), . . . , sip(t)) is
a vector ofp statistics for paperi constructed based onHt− .
These statistics can be time-invariant or time-dependent;
they are discussed further in Section2.2.

The term “egocentric” in this context signifies that the
counting processNi(t) is ascribed to nodes. An alterna-
tive “relational” framework, which instead defines count-
ing processesN(i,j)(t) on node pairs(i, j), is not appro-
priate for citation networks because, in the language of
statistical survival analysis (e.g.,Aalen et al., 2008), rela-
tionship (i, j) is at risk of an event (citation) only at a
single instant in time. Nonetheless, there are contexts in
which both an egocentric approach and a relational ap-
proach would be appropriate, and further discussion of gen-
eral time-varying network modeling ideas is given byButts
(2008) andBrandes et al.(2009). For the remainder of this
paper, we drop the general language of nodes and edges, re-
ferring instead to the specific case of papers and citations.

2.2. Statistics from network history

As described in Section2.1, our modeling framework can
handle arbitrary statistics from the network’s history. Here
we detail the statistics that will be used in our experiments.

Let yij(t) denote the value of the directed edge fromi to j

at timet. In other words,yij(t) equals 1 if bothi andj have
joined the network by timet andi citesj (we assume that
the cited paperj joins the network before the citing paper
i). For each cited paperj already in the network, we con-
sider three preferential attachment (PA) statistics, three tri-
angle statistics (Figure1), and two out-path statistics com-
puted based on the network historyHt− before timet:

1. First-order PA:sj1(t) =
∑N

i=1 yij(t).
2. Second-order PA:sj2(t) =

∑

i6=k yki(t)yij(t).
3. Recency-based first-order PA (whereTw is a specified

time window):sj3(t) =
∑N

i=1 yij(t)I(t−tarri < Tw).
4. “Seller” statistic:sj4(t) =

∑

i6=k yki(t)yij(t)ykj(t).
5. “Broker” statistic:sj5(t) =

∑

i6=k ykj(t)yji(t)yki(t).
6. “Buyer” statistic:sj6(t) =

∑

i6=k yjk(t)yki(t)yji(t).

7. First-order out-degree (OD):sj7(t) =
∑N

i=1 yji(t).
8. Second-order OD:sj8(t) =

∑

i6=k yjk(t)yki(t).
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Figure 1.The only valid triangle configuration in citation net-
works and three statistics defined on it.B joins the network after
A and citesA. Later,C joins the network and citesA andB.

Statistics sj1(t), . . . , sj5(t) are time-dependent while
sj6(t), . . . , sj8(t) are time-invariant in that their values are
unchanged after paperj joins the network.

In the context of modeling the counting process of citations
for a given paperj, the coefficientsβ1, . . . , β8 correspond-
ing to the eight statistics above should be interpreted as the
strength (and direction) of the corresponding effect in the
presence of all other effects. For instance,β1 measures
the “rich get richer” effect,β2 measures the effect due to
being cited by well-cited papers, andβ3 measures a type
of recency effect, i.e., a temporary elevation of citation in-
tensity following a number of recent citations. All of these
effects should be interpreted as though the other effects that
are included in the model have already been accounted for.

In addition to the network effects described above, we can
take the heterogeneity of the nodes into account by exploit-
ing the information contained in the abstracts of papers
(when these abstracts are available). For this purpose, we
use Latent Dirichlet Allocation (LDA), also known as topic
modeling (Blei et al., 2003), as follows. After converting
each abstract into a bag-of-words representation, an LDA
model is learned on the training set, and topic proportionsθ

as defined byBlei et al.(2003) are generated for each train-
ing node. The learned LDA model is also used to estimate
topic proportionsθ for each node in the test set through a
standard fold-in procedure. With the learned topic propor-
tions, we construct a vector of similarity statistics for each
paperj at each arrival timetarri of arriving paperi:

sLDA
j (tarri ) = θi ◦ θj , (3)

where◦ denotes the element-wise product of two vectors.
Our approach here is similar to that taken byChang & Blei
(2009). We are free to choose the number of topics; for the
arXiv-TH data set with abstracts, we utilize 50 topics. Note
that each topic-specific similarity value has a correspond-
ing β coefficient.

3. Inference

Efficient inference for these models can be achieved using
a partial likelihood approach and other computational tech-
niques, which we discuss in the following subsections.

3.1. Full versus partial likelihood

There are two different inference approaches for the ego-
centric network model that differ in the choice of whether
to specify a parametric form for the baseline hazardα0(t)
in Eq (2). A fully parametric approach, specifyingα0(t,γ)
as an exponential, Weibull, or piecewise constant distribu-
tion, might be useful if applications of interest are time-
related, such as predicting the number of citations to a pa-
per in some future time period. Using this approach,γ and
β can be estimated by maximizing the full log-likelihood

ℓ(β) =

m
∑

e=1

[

log α0(te,γ) + β⊤sie
(te)

−

n
∑

i=1

∫ te

te−1

Yi(u)α0(u,γ) exp
{

β⊤si(u)
}

du

]

(4)

(Aalen et al., 2008), wherem is the number of citation
events andie andte denote the paper cited and time of the
eth event. For the purposes of estimating and then validat-
ing β̂, we may split the citation events into a training set
and a test set, respectively, in which casem is the num-
ber of events in the training set. The parametric approach
of Eq (4) has two disadvantages: First, the specified form
may be incorrect, leading to biased estimates; second, the
integral above increases computational complexity, partic-
ularly if some elements ofsi(t) depend continuously ont.

In other applications, such as network effect inference or
citation recommendation for new papers, we are interested
in estimating onlyβ, notα0(t), so an approach that leaves
α0(t) unspecified may be preferable. This is the approach
we take in this paper, consideringα0(t) to be essentially a
nuisance parameter. Theβ parameters may then be esti-
mated by maximizing the partial likelihood ofCox (1972):

L(β) =

m
∏

e=1

exp
(

β⊤sie
(te)

)

n
∑

i=1

Yi(te) exp
(

β⊤si(te)
)

. (5)

Large-sample results such as consistency and asymptotic
normality ofβ̂ estimated based on the partial likelihood are
derived inAndersen & Gill(1982); furthermore, it is worth
mentioning that the partial likelihood is a special case of
a broader class of composite likelihoods (Varin & Vidoni,
2005). Besides avoiding problems resulting from the
misspecification ofα0(t), this partial likelihood approach
only requires the availability of time-dependent statistics at
event times. When the number of nodes whose statistics
are updated between two event times is small, as is the case
in our egocentric citation network model, we can exploit
this fact computationally by updating the denominator of
Eq (5) only when needed, from one event to the next.
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In the above discussion, we have assumed that at most one
event happens at any time, i.e., only one paper is cited
at a specific time. However, in reality, citations occur in
groups: when joining the network, a paper simultaneously
makes citations to many papers. In addition, the publi-
cation times of multiple papers may coincide, either be-
cause they are published simultaneously or because the ob-
servation times are rounded to some large unit. As long
as the ratio of the number of simultaneously cited papers
to the total number of papers currently in the network is
small, we can deal with ties using the Breslow approxima-
tion (Klein & Moeschberger, 2003, section 8.4),

L(β) =
m
∏

e=1

∏

ie∈Ce

exp
(

β⊤sie
(te)

)

[

n
∑

i=1

Yi(te) exp
(

β⊤si(te)
)

]|Ce|
, (6)

whereCe is the set of papers cited at timete.

3.2. Computational issues

A Newton-Raphson algorithm is used to find̂β by max-
imizing the logarithm of the Breslow approximation (6)
and to estimate the covariance matrix ofβ̂ as the inverse
of the Hessian matrix of the last iteration. The algorithm
implements a simple step-halving procedure, halving the
length of the step if necessary untillog L(β) increases.
The iterations continue until every element in∇ log L(β)
is smaller that10−3 in absolute value, or until the increase
in log L(β) is less than10−100, whichever happens first.

The computational complexity for naively evaluating
log L(β) in Eq (6), along with its gradient vector and Hes-
sian matrix, isO(p2mn), wherep is the dimension ofβ,
m is the number of distinct citation event times in the train-
ing set, andn is the number of nodes in the training set.
If we include the solving of ap-dimensional linear system
as required for a Newton-Raphson iteration, each iteration
requiresO(p2mn + p3) computations. However, for our
purposes, the value ofp is much smaller thanm or n, so
thep3 term is negligible relative top2mn.

We present two ways to make inference more efficient.
First, we target the factorn by using a caching data struc-
ture to exploit the sparsity of nodes that are updated be-
tween two event times. Second, we apply the statistical
theory of recurrent event models (Andersen et al., 1993)
aimed at reducing the factorm while maintaining the ac-
curacy of learned parametersβ.

A straightforward calculation of the partial likelihood can
be summarized as follows. First, a data structure of the
initial network is initialized, as well as a matrix where each
row i is a vector of statistics for nodei. Then for each new
citation evente, the following steps are performed:

1. The current statistics matrix is used to calculate two
terms,β⊤sie

(te) andκ(e), where

κ(e) =
n

∑

i=1

Yi(te) exp
{

β⊤si(te)
}

. (7)

2. Edgee is added to the network data structure.
3. The statistics matrix is updated based on the addede.

To obtain the maximum likelihood estimator ofβ, the
above procedure will be repeated many times for different
values ofβ. Since steps (2) and (3) do not depend onβ, one
computational improvement that can be made is to cache
the time series of network updates, as follows. We step
through all event times from the beginning. As each edge is
added to the network, we figure out which nodes and their
corresponding statistics are updated and then cache all of
these updates, i.e., store those elements of the statisticsma-
trix to be updated as well as the list of updated nodes. In our
experiments on models that only include statistics based on
network structure, the number of nodes affected at an event
time is very small. Therefore, despite using more memory,
caching saves a significant amount of computational time
spent on repeating steps (2) and (3) for each new value of
β by simply modifying the matrix of nodal statistics using
the cached updates.

Specifically, the caching method works as follows. The
terms of the sumκ(e) of Eq (7) are only different from
those ofκ(e− 1) for those nodes whose nodal statistics are
updated or who join the network within interval[te−1, te).
LettingUe−1 be the set of nodes whose nodal statistics are
updated during[te−1, te) andCe−1 be the set of nodes who
join the network during[te−1, te), we have

κ(e) = κ(e − 1) +
∑

i∈Ce−1

exp
{

β⊤si(te)
}

+
∑

i∈Ue−1

[

exp
{

β⊤si(te)
}

− exp
{

β⊤si(te−1)
}

]

.

Each summation above involves a small number of terms
relative ton. We cache values such assi(te) for i ∈ Ce−1

andi ∈ Ue−1 in our initial first pass through the whole data
set so that these summations may be calculated quickly, and
the resultingκ(e) summed, for arbitrary values ofβ.

The caching scheme above works well when the statistics
si(t) are defined so as to be essentially local, in the sense
that the appearance of a new paper in the network, with its
list of network-edge-generating citations, will only affect
the values ofsi(t) for those papersi that are actually cited.
However, as discussed in Section2.2, we analyze citation
networks using two separate collections ofsi(t) statistics,
and only one of these collections can be said to possess the
locality property. In the other case involving LDA-based
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Table 1.Characteristics of citation data sets.

Papers Citations Unique Times
APS 463,348 4,708,819 5,134
arXiv-PH 38,557 345,603 3,209
arXiv-TH 29,557 352,807 25,004

matching statistics between pairs of papers, the values of
thesi(te) statistics change for all papersi currently in the
network at the time of evente. Thus, caching will not be
effective for the LDA statistics.

Instead, for the LDA matching statistics we will rely on the
concept of non-informative censoring in survival and event
history analysis (Andersen et al., 1993) to attack the factor
m in O(mn). Assuming that the training data are defined
as the network history from time0 until timeτr, we reason
as follows. Rather than using all event times in[0, τr] to
construct the partial likelihood for estimation, we can per-
form inference on a training window[τl, τr] with a small
number of distinct event times without sacrificing too much
statistical efficiency. The main condition to ensure this fea-
ture is thatτl is determined independently of the event pro-
cess, which certainly holds for our examples since selection
of τl is independent of the citation process. Moreover, all
observations in[0, τl) are still used to construct the network
history Ht− for a givent; the only change to the approx-
imate partial likelihood in Eq (6) is that the limits of the
product shall be from somem0 > 1 to m, rather than1 to
m. We verify this strategy empirically in Section4.3.

4. Experimental Analysis

We apply the egocentric framework to citation networks
and analyze the predictive power and interpretability of our
approach. The following sections detail the data sets, the
models learned, and the experimental setup and results.

4.1. Data sets

Citation networks are the main focus of this paper since
they are of interest to the machine learning community and
are well suited to egocentric modeling. We use data from
the American Physical Society (APS)1 and arXiv2. Table1
summarizes the characteristics of these data sets.

The APS data contains the citation network for articles ap-
pearing in Physical Review Letters, Physical Review, and
Reviews of Modern Physics from 1893 through 2009. Most
of these timestamps for the articles are grouped into months
while recent papers have day-resolution; thus, the ratio be-
tween unique timestamps and papers is low.

1https://publish.aps.org/datasets
2http://snap.stanford.edu/data

The arXiv-PH data contains the citation network of arXiv
high energy physics phenomenology articles spanning
from January 1993 to March 2002. Timestamps are avail-
able on a daily scale. Meanwhile, arXiv-TH is a high en-
ergy physics theory data set of articles spanning from Jan-
uary 1993 to April 2003. Timestamps are recorded on a
continuous-time scale (millisecond resolution). There are
25,004 citation event times corresponding to the number
of papers that make citations when they join the network.
Besides temporal network information, arXiv-TH also has
paper abstracts which will be used to illustrate how paper
metadata can be integrated into the egocentric model.

4.2. Specific models

We consider the following egocentric models:

1. A baseline preferential attachment (PA) egocentric
model with only first-order preferential attachment
statistics1(t). Under the rank metric, this baseline is
equivalent to a nonparametric growth model based on
the PA mechanism (Barabasi & Albert, 1999) where
papers are ranked based on the current number of ci-
tations that they have received so far.

2. A P2PTmodel that includess1, s2, s4, . . . , s8.
3. A P2PTR180 model that includes all the statis-

tics s1, . . . , s8. The difference between P2PT and
P2PTR180 is the inclusion of the recency first-order
PA statistics3(t) with a window of 180 days.

Since abstracts are available for arXiv-TH, the following
models will also be considered:

4. An LDA egocentric model where LDA-based match-
ing topic proportion statisticssLDA

j (tarri ) are used.
5. An LDA+P2PTR180egocentric model where all net-

work statistics and LDA statistics are considered.

4.3. Experiments

We evaluate the predictive power of these models through
rolling prediction experiments. We split each data set
chronologically into three phases: a statistics-building
phase, a training phase, and a test phase. The statistics-
building phase is used to construct the network history and
to build up the network statistics. The training phase is
used to construct the partial likelihood and estimate the

Table 2.Number of unique citation event times in the statistics-
building, training, and test phases.

Building Training Test
APS 4,934 100 100
arXiv-PH 2,209 500 500
arXiv-TH 19,004 1000 5000

https://publish.aps.org/datasets
http://snap.stanford.edu/data
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Figure 2.Likelihoods of test paper citations (shown as averages over paper batches) for each data set.
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Figure 3.Ranks of test paper citations (shown as averages over paper batches) for each data set.

model coefficients. The test phase is used to evaluate
the predictive capability of the learned model. Note that
statistics-building is ongoing even through the training and
test phases. The phases are split along citation event times.
The sizes of each phase are presented in the Table2.

The statistics-building phase is relatively long to mitigate
truncation effects at the beginning of network formation as
well as the effect of severely grouped event times, which
biases parameter estimates. However, these training and
test windows still cover a substantial period of time (e.g.
for APS, the last 200 unique times covers 2.5 years). Note
that performance is relatively invariant to the size of the
training windows. Using windows of size 2000 and 5000
for arXiv-TH, we achieved essentially the same results.

The evaluation metrics that we consider are held-out par-
tial likelihoods and held-out normalized ranks. In the
same fashion as described in Section3.1, a held-out partial
(log)likelihood is computed for each paper in the test set by
taking the average of the partial likelihoods for each cita-
tion event. We compute a “rank” for each citation event by
sorting the likelihoods of each possible citation in decreas-
ing order and determining the position of each true citation
in that sorted list. We normalize this rank by dividing by
the number of possible citations, and the paper’s rank is the
average of the normalized ranks of each observed citation.
A lower rank indicates better predictive performance.

In Figure2, the held-out likelihoods of the PA, P2PT, and
P2PTR180 models are shown. To avoid clutter, we show

the average held-out partial likelihoods of batches of pa-
pers in the test phase, chronologically ordered. The batch
sizes are 3000 for APS, 500 for PH, and 500 for TH. These
results show that the P2PT and P2PTR180 egocentric mod-
els generally outperform the PA baseline. Furthermore, for
arXiv-TH, we include the LDA and LDA+P2PTR180 mod-
els and find that adding the LDA statistics into the egocen-
tric framework significantly boosts performance.

Figure3 shows the held-out ranks. As with the likelihood
plots, we report the average rank over batches of papers in
the test phase. Note that random guessing yields a normal-
ized rank of 0.5, and so all of the models are performing
substantially better than random. Moreover, these ranks
demonstrate that the egocentric models with more network
statistics typically outperform the PA baseline. The ranks
also confirm that adding LDA statistics increases predic-
tive performance. In Figure3, LDA+P2PTR180 gives a
16% relative rank improvement over LDA alone, suggest-
ing that a mixture of network and nodal statistics is helpful.
A nonparametric paired Wilcoxon test on the ranks of each
test paper obtained by LDA and LDA+P2PTR180 yields a
p-value of6×10−12, suggesting that the difference in ranks
is statistically significant.

Figure 4 shows the recall as a function of cut-point, for
arXiv-TH. Recall (accumulated over all test events) is de-
fined as the percentage of the true citations that are found
in the sorted likelihood list from positions 1 toK, whereK
is the cut-point. As with the held-out likelihoods and ranks,
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Figure 4.Recall of top-K recommendation list on arXiv-TH.

we find that P2PT and P2PTR180 outperform the baseline
PA, and the inclusion of the LDA statistics improves recall.

Another strength of the egocentric model is its in-
terpretability. We interpret the coefficients of the
LDA+P2PTR180 model that are estimated on the arXiv-
TH data (see Table3). Note that we only interpret the sign
of each coefficient in the presence of all other effects. For
example, the positive value of theβ1 coefficient indicates
the following: for two papers which have all other identi-
cal statistics, the one with a higher preferential attachment
statistic is more likely to be cited in the future. In addition,
the recency PA coefficientβ3 is also positive, which sug-
gests that a paper with a higher number of citations within
6 months is more likely to be cited than a similar paper with
less recent citations. In other words, there is evidence of a
recency citation effect, or a temporary elevation of citation
intensity following a number of recent citations.

We also found an interesting citation pattern related to net-
work statistics on triangles. The negative value for theβ4

coefficient suggests that, for two papersA andD in Fig-
ure5(a) (with all other statistics identical), if paperA has
a higher seller statistic, it is less likely to be cited in the
future. Intuitively, this makes sense, since the lack of this
triangle allowsA to have more diverse citation pathways in
the future. Similarly, the buyer coefficientβ6 is also nega-
tive, suggesting that for two papersC andE in Figure5(b),
the paperC with a higher buyer statistic is less likely to be
cited. In other words, there is evidence of a diversity effect;
a paper with diverse citing and cited patterns is more likely
to be cited in the future.

5. Related Work

The analysis of citation networks has a lengthy his-
tory within the bibliometric community, finding such
analysis to be useful in uncovering historical scien-
tific trends (Price, 1965), discovering author interac-
tions (Börner et al., 2004), and determining the impact
factors of journals (Garfield, 1972). Within the ma-

Table 3.Estimated coefficients for network statistics in the
LDA+P2PTR180 model. All of these estimates are statistically
significant at the levelα = 0.0001.

Statistics Coefficients (β)
s1 (PA) 0.01362
s2 (2nd PA) 0.00012
s3 (PA-180) 0.02052
s4 (Seller) -0.00126
s5 (Broker) -0.00066
s6 (Buyer) -0.00387
s7 (1st OD) 0.00090
s8 (2nd OD) 0.02052

A
Seller

B

C

Broker

Buyer

D
B

C

(a) Diverse Seller Effect

A
Seller

B

C

Broker

Buyer

A
B

E
(b) Diverse Buyer Effect

Figure 5.Preferential citation patterns on triangles. In5(a), paper
D with a diverse cited pattern is more likely to attract future cita-
tions than paperA. In 5(b), paperE with a diverse citing pattern
is more likely to be cited than paperC.

chine learning community, there has been a focus to-
wards automated citation recommendation. For example,
Strohman et al.(2007) and He et al. (2011) develop ap-
proaches for recommending paper citations using a variety
of engineered features. Probabilistic models that incorpo-
rate textual content and other metadata have also been in-
vestigated (Dietz et al., 2007; Nallapati et al., 2008). One
such model is the Relational Topic Model (Chang & Blei,
2009), which incorporates text by defining the probability
of a link between two nodes to be proportional to a simi-
larity score between their topic proportions. A key differ-
ence between these methods and our approach is that these
methods generally do not consider the temporal aspect of
the network. Moreover, while our paper has not primar-
ily focused on crafting specific features for citation model-
ing, our egocentric approach can incorporate such features
within a statistical framework.

More generally, there has been increasing interest in
modeling longitudinal network data, as surveyed by
Goldenberg et al.(2009). Dynamic exponential ran-
dom graph models have been used to model snapshot
data (Hanneke & Xing, 2006; Wyatt et al., 2010). There
also exist dynamic models which operate in latent space
in order to group similar nodes together (Sarkar & Moore,
2005; Fu et al., 2009). These models differ from our ego-
centric approach in that they operate on snapshot data and
make Markovian assumptions, while our approach oper-
ates on fine-grained event data and conditions on the en-
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tire network history. Meanwhile, continuous-time Markov
processes have been applied to the analysis of longitudinal
network data (Snijders, 2005). However, these studies have
typically focused on very small networks; moreover, they
also make Markovian assumptions.Huang & Lin (2009)
treat each edge between two nodes as a time series and uses
an autoregressive integrated moving average model for link
prediction; however, this approach is not suitable for cita-
tion networks since a citation link only appears once and
remains fixed once it appears.

The work closest to our own is that ofButts(2008), who de-
velops a relational event framework based on survival anal-
ysis theory. We can view our approach as extending this
work to large-scale longitudinal network modeling, where
we develop a general egocentric model that is applicable to
citation networks.

6. Discussion and Conclusion

We have introduced a statistical egocentric framework for
modeling longitudinal network data and have developed an
efficient inference approach for such models. Empirical
analysis on real-world citation network data suggests that
the egocentric approach has utility in terms of both predic-
tion and interpretability.

Though our approach only exploits the ordering of events,
one may explicitly consider the timing of events by es-
timating the baseline hazardα0(t) of Eq (2). For in-
stance, after computinĝβ for LDA+P2PTR180 on arXiv-
TH, we were able to estimate the cumulative baseline haz-
ard A0(τl, τr) =

∫ τr

τl

α0(s)ds via the so-called Breslow
estimator (Aalen et al., 2008, section 4.1.2) and found that
it had roughly constant slope. This constant slope (despite
no assumption of a parametric form) is consistent with a
constant baseline hazard, suggesting that a parametric ap-
proach might avoid the disadvantages mentioned in Sec-
tion 3.1. Thus, one may use Eq (2) in conjunction with the
estimatedα0(t) to construct an intensity process for each
individual node, if time-specific predictions are desired.

There are many additional avenues for future work. In
the space of citation networks, one can incorporate ad-
vanced statistics based on authors, journals, and other
metadata; furthermore, the joint learning of LDA and net-
work model parameters can potentially yield improved per-
formance. While we have focused on the egocentric per-
spective, counting processes may be placed on graph edges
as well; thus, our framework can be generalized to other
types of networks, such as biological and social networks.
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