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Abstract

We propose a comprehensive survey of tree
kernels through the lens of the mapping ker-
nels framework. We argue that most existing
tree kernels, as well as many more that are
presented for the first time in this paper, fall
into a typology of kernels whose seemingly
intricate computation can be efficiently fac-
torized to yield polynomial time algorithms.
Despite this fact, we argue that a naive im-
plementation of such kernels remains pro-
hibitively expensive to compute. We propose
an approach whereby some computations for
smaller trees are cached, which speeds up
considerably the computation of all these tree
kernels. We provide experimental evidence of
this fact as well as preliminary results on the
performance of these kernels.

1. Introduction

For about a decade now, kernel methods (Hofmann
et al., 2008) have been recognized as one of the
most efficient and generic approaches to deal with
structured data. Kernels on images (Harchaoui &
Bach, 2007), probability densities (Martins et al.,
2009), graphs (Shervashidze & Borgwardt, 2009), se-
quences (Sonnenburg et al., 2007) to quote a few re-
cent references have all been the subject of extensive
research.

The computation of large Gram matrices is known to
be one of the bottlenecks of kernel methods. When
dealing with simple vectors of reasonable size, this
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problem only materializes with very large databases.
For very complex structures such as texts, dense
graphs or images, computational limits are hit much
earlier. Hence, defining a kernel that can leverage
the wealth of information provided by such structures
while being still computationally tractable remains a
major challenge. Between the two ends of this spec-
trum lie structures such as sequences or trees, which,
although challenging from a combinatorial perspective,
can be handled with relative efficiency through Haus-
sler’s (1999) convolution kernels framework. Using
such ideas, Collins & Duffy (2001) proposed a kernel
guided by the simple principle that trees are similar
when they share many substructures. A brute force
enumeration whereby all substructures of a given tree
are parsed can be avoided through clever factoriza-
tions (Kashima et al., 2003) but it is widely admitted
that these kernels remain too expensive to be used on
large scale databases.

We show in this paper that the wealth of data avail-
able in all these substructures need not be sacrificed
to obtain fast tree kernels. In order to do so, we use
the framework of mapping kernels (Shin & Kuboyama,
2008) which was proposed recently as a generalization
of Haussler’s work. Our contribution in this paper is
two-fold. We propose first an exhaustive typology of
tree kernels that can be efficiently factorized. We fol-
low by showing that the computation of kernels that
fall in this typology can be dramatically sped-up by
caching some intermediate computations.

This paper is organized as follows. Section 2 details the
comprehensive typology of tree kernels that we high-
light using mapping kernels. Section 3 describes the
algorithm which is paired with this typology and which
is shown to in Section 4 to yield significant speed-ups.
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2. Mapping Trees onto Substructures

2.1. Notations: Ordered Trees and Forests

We consider in this paper directed labeled graphs.
Each of these graphs is defined by a set of vertices
V and directed edges E ⊂ V2, with a label taken in a
set L associated to each vertex. A directed path is
a set of vertices (x1, · · · , xp) such that either all edges
(xi, xi+1) or (xi+1, xi) belong to E . A labeled rooted
tree is a connected graph such that it is acyclic as an
undirected graph and each vertex has at most one in-
coming edge. A partial order on the vertices of the
tree, called the generation order, can be defined as fol-
lows: x > y when there exists a directed path from x
to y. In such a case, x (resp. y) is called an ancestor of
y (resp. a descendant of x). When the edge (x, y) ∈ E ,
x is called the parent of y and y the child of x. An or-
dered tree X is a rooted tree in which all children of
a given vertex are ordered according to another partial
order ≻. This order among siblings can be extended
as follows. If two ancestors x′ and y′ of two vertices
x and y share the same parent, and x′ is greater than
y′ according to the sibling order, namely x′ ≻ y′, then
x ≻ y. Under this extended order, all descendants of
a given vertex x′ will be older than the descendants of
any of its younger siblings y′. We call this extended
sibling ordering the family order. An ordered forest
is a family of ordered trees (X1, . . . , Xn). The order of
the forest extends to the family order by defining that
x ≻ y for all i < j, x ∈ Xi, y ∈ Xj . A substructure
of a forest is a subgraph of that forest that inherits
both generation and family orders. The size |X | of a
forest X is equal to the cardinal of its vertex set. Note
that we only consider labeled and ordered {trees,
forests, substructures} in this paper.

2.2. Fundamental Approaches

We highlight two fundamental approaches to build tree
kernels in this section, with interesting analogies with
the spectrum (Leslie et al., 2002) and local alignment
kernels (Vert et al., 2004) for strings.

Substructures Spectrum In this approach, two
trees are considered similar when they share substruc-
tures. For example, the parse tree kernel proposed
by Collins & Duffy (2001) counts shared corooted sub-
trees; the elastic tree kernel (Kashima et al., 2003)
counts agreement subtrees (these terms are defined in
Section 2.4.1). More formally, let X and Y be two
trees, and define a family T of substructures. The set

MT
X,Y = {(X ′, Y ′) | X ′ ⊂ X,Y ′ ⊂ Y,

X ′, Y ′ ∈ T , X ′ ∼= Y ′},

is called the mapping set corresponding to T , where
X ′ ∼= Y ′ means that the substructures X ′ and Y ′ are
isomorphic, that is, there exists a bijection between
the vertices of X ′ and Y ′ that preserves both gener-
ation and family orders. Obviously, X ′ ∼= Y ′ implies
that |X ′| = |Y ′|. When every two vertices of a vertex
pair in this bijection (xi, yi)1≤i≤|X′| share the same la-
bel, X ′ and Y ′ are said to be congruent and we write
X ′ ≡ Y ′. Substructure spectrum kernels define the
similarity between two trees X and Y based upon the
number of congruent substructures they share, e.g.

K(X,Y ) =
∑

(X′,Y ′)∈MT
X,Y

|X′|∏

i=1

λδL(xi, yi),

where λ is a decay factor and δL(x, y) is Kronecker’s
symbol for the labels associated with vertices x and y.

Tree Edit Distances. Täı (1979) defined an edit-
distance between two trees X and Y in order to mea-
sure their (dis)similarity as follows: an edit script σ
that converts X into Y is a finite sequence of edit op-
erations, where each edit operation can either be the

1. deletion of a vertex x from X , written as 〈x → •〉,
2. insertion of a vertex y of Y into X , 〈• → y〉,
3. substitution of a vertex y of Y for x ofX : 〈x → y〉.

To each operation 〈a → b〉, is associated a cost γ(〈a →
b〉) which is symmetric, i.e. γ(〈a → b〉) = γ(〈b → a〉).
The cost γ(σ) of a script σ is the sum of the costs of all
edit operations in σ. Täı defines the distance between
X and Y as the minimum over the costs of all scripts
that convert X into Y . Building upon this idea, Shin
& Kuboyama (2008) show that the costs of all possible
scripts that convert X into Y can be considered,

k(X,Y ) =
∑

σ:X→Y

e−λγ(σ).

To compute this kernel, Shin & Kuboyama show that
the alignment of a script plays a crucial role. The
alignment of a script σ that convertsX into Y is the set
of all substitutions {〈xi → yi〉 | i = 1, . . . , n} described
in σ, namely all edit-operations excluding insertions
and deletions. The alignment of σ can be used to factor
its edit-cost as

e−γ(σ) = g(X) · g(Y ) ·
n∏

i=1

e−γ(〈xi→yi〉)

e−γ(〈xi→•〉)e−γ(〈•→yi〉)
,

(1)

where g(X) =
∏

x∈X e−γ(〈x→•〉). One can prove that
there exist two substructuresX ′ ⊂ X and Y ′ ⊂ Y that
are isomorphic under the alignment of an edit script σ
if and only if σ transforms X into Y .
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Figure 1. Illustration of an edit script that converts X into
Y : the script proceeds first by deleting vertices (filled cir-
cles), then substitutes the vertices labeled xi by vertices
labeled yi and finally inserts additional vertices (hollow
circles). The set of substitutions maps the substructure
X ′ composed of the connected vertices x1, · · · , x7 unto Y ′

formed by y1, · · · , y7.

Theorem 1 (Täı (1979)) Given two substructures
X ′ ⊂ X and Y ′ ⊂ Y and given a mapping µ from
the vertex set of X ′ to that of Y ′, µ is the alignment
of an edit script that converts X into Y if and only if
µ is an isomorphism between X ′ and Y ′.

Hence, by normalizing the kernel k described in Eq. (1)

by g to define K(X,Y ) = k(X,Y )
g(X)·g(Y ) , Theorem 1 proves

K(X,Y ) =
∑

(X′,Y ′)∈MAll

X,Y

n∏

i=1

e−γ(〈xi→yi〉)

e−γ(〈xi→•〉)e−γ(〈•→yi〉)
,

where the sum over all edit-scripts has been replaced
by a sum over all isomorphic substructures of X,Y

MAll

X,Y = {(X ′, Y ′) | X ′ ⊂ X,Y ′ ⊂ Y,X ′ ∼= Y ′}.

2.3. Mapping Kernels

Shin & Kuboyama (2008) have introduced the map-
ping kernel template to define kernels between struc-
tured objects. Mapping kernels are kernels of the form

K(X,Y) =
∑

(x,y)∈MX,Y

k(x,y). (2)

This template defines kernels over large structures
that can be described through smaller structures enu-
merated in a set X . The kernel is defined by the
mapping set MX,Y ⊂ X 2 paired with a base kernel
k : X × X → R.

Theorem 2 The kernel K given in Eq. (2) is positive
definite (p.d.) for all p.d. base kernels k if and only
if the mapping MX,Y is transitive, that is,

(x,y) ∈ MX,Y, (y, z) ∈ MY,Z ⇒ (x, z) ∈ MX,Z.

Both kernels introduced in Section 2.2 can be cast as
mapping kernels. In fact, Shin & Kuboyama (2010)
report that 18 of 19 tree kernels found in the literature
can be described as mapping kernels, and Theorem 2
provides a systematic way to prove that they are p.d.

2.4. Designing New Kernels

Eq. (2) provides a generic approach to build kernels but
certainly not to compute them. Yet, mappings MX,Y

and base kernels k only have an interest if the kernels
they define are computationally tractable. Having this
goal in mind, we introduce first a typology of families
of substructures T to define the mapping set MT

X,Y .
We then study a class of base kernels k which ensure
that the summation over all isomorphic substructures
of X and Y can be factorized efficiently. To simplify
the presentation, we consider that X,Y will now de-
note forests, and not necessarily single trees.

2.4.1. Typology of Substructures

A substructure can be first characterized by its shape.
A substructure can either be constrained to be a path,
a tree or not constrained at all and be a forest. These
shapes are ranked by increasing complexity.

It is also possible to constraint substructures in a for-
est so that they either replicate exactly the parent-
child relations of the original forest, share more loosely
nearest-common-ancestor relations, or have no con-
straints at all in which case they are simply called
elastic as seen in the typology below,

Contiguous If a parent and child vertices in a substruc-
ture are always in a parent-child relation in
the parent tree, the substructure is said to
be contiguous.

Agreement If a structure is not contiguous, and if the
nearest-common-ancestor of two vertices
in a substructure is always the nearest-
common-ancestor in the original structure,
the substructure is said to be an agreement
substructure.

Elastic If a structure is not contiguous or agree-
ment, it is called elastic.

These two characterizations provide a grid of 3 × 3
substructures that is indexed by two letters. The first
letter stands for the Contiguous,Agreement or Elastic
characterization of the substructure while the second
letter is either F, T or P. For example, EF stands for
elastic forests substructures. Let us follow with a few
remarks:

• EF structures cover all substructures, as intro-
duced in Section 2.
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• A path always satisfies the agreement condition.

• An agreement forest always has a single root
within a tree.

• Some of these types have been mentioned in the
kernel literature: AT by Kashima et al. (2003), EF
by Shin & Kuboyama (2008) and EP by Culotta
& Sorensen (2004).

• The substructures considered in the parse tree
kernel of Collins & Duffy (2001), namely co-rooted
subtrees, are not contained in this typology. For
sake of completeness we also consider them under
the abbreviation CoT.

2.4.2. Base Kernels

Mapping kernels for trees are computationally
tractable when they can be efficiently factorized. The
algorithms that make it possible to compute the elastic
tree kernel (Kashima et al., 2003) and Täı’s distribu-
tion kernel are inherently recursive. They both have
in commonly the application of a technique proposed
by Täı (1979) to derive recursive formulas to compute
tree edit-distances. Both kernels in Section 2.2 use
base kernels that are products of simple kernels on
vertices. Let (X ′, Y ′) be an isomorphic pair of sub-
structures, such that (xi, yi) for i = 1, . . . , |X ′| = |Y ′|
is the isomorphism that associates X ′ and Y ′. Given a
kernel ℓ defined over vertices, the corresponding prod-
uct kernel factorizes as

k(X ′, Y ′) =

|X′|∏

i=1

ℓ(xi, yi).

We illustrate the basic technique to derive recursive
formulas by considering first substructures T = EF as
an example. Some additional notations are given in
Table 1 and Figure 2.

Table 1. Notations

•X The root of the leftmost (oldest) subtree of X.
◦X = X \ {•X}.
NX The leftmost (oldest) subtree of X.
△X = X \ NX.

X[x] The complete subtree {y ∈ X | y ≤ x}.
X[x, y) = {z ∈ X | z < y, z ≺ x} ∪X[x].

x̂ The parent of a vertex x.

For two forests X and Y , we define

M1 = {(X ′, Y ′) ∈ MEF

X,Y | •X ∈ X ′, •Y ′ ∈ Y ′}
M2 = MEF

X,Y \M1

To obtain KEF(X,Y ), we consider the sums over M1

Figure 2. Illustration of •X, ◦X, NX, △X,X[x] and X[x, x̄)

and M2 separately. For M2, it is easy to see

∑

(X′,Y ′)∈M2

k(X ′, Y ′) =

KEF(
◦X,Y ) +KEF(X, ◦Y )−KEF(

◦X, ◦Y ).

For the calculation over M1, we decompose X ′ ∈ M1

into X ′ = {•X} ∪ b(X ′) ∪ r(X ′), where b(X ′) = {x ∈
X ′ | x < •X} and r(X ′) = {x ∈ X ′ | x ≺ •X}. Then,
we have

∑

(X′,Y ′)∈M1

k(X ′, Y ′)

=
∑

(X′,Y ′)∈M1

ℓ(•X, •Y )k(b(X ′), b(Y ′))k(r(X ′), r(Y ′))

= ℓ(•X, •Y )KEF(
◦NX, ◦NY )KEF(

△X, △Y ).

This yields the recursive formula

KEF(X,Y ) = ℓ(•X, •Y )KEF(
◦NX, ◦NY )KEF(

◦△X, ◦△Y )

+KEF(
◦X,Y ) +KEF(X, ◦Y )−KEF(

◦X, ◦Y ).

Applying the very same techniques to all other sub-
structure types, we obtain the long list of formulas
shown in Table 2. K1, K2 and K3 are auxiliary ker-
nels used to compute some of the kernels we consider.

Taking a closer look at Table 2, we observe that these
recursive formulas can be classified into two groups:
Those which contain the operator ◦, namely ◦X or ◦Y ,
and the rest. Indeed, only formulas for substructures
of type EF, ET and CF contain these operators. This
seemingly minor detail has an important impact on
their computational complexity. The computational
complexity for formulas that contain the ◦ operator
scales cubicly in the size of these trees, whereas it is
quadratic for those that do not use it. Hence, we call
these groups C(ubic) and Q(uadratic).
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Table 2. Recursive formulas
Tree Kernel Recursive Formula

KCT(X, Y ) = k(•X, •Y )
(

1 + K2(
◦NX, ◦NY )

)

+ KCT(
NX, ◦NY ) + KCT(

◦NX, NY ) − KCT(
◦NX, ◦NY )

+KCT(X, △Y ) + KCT(
△X,Y ) − KCT(

△X, △Y )

KCF(X, Y ) = k(•X, •Y )
(

1 + K2(
◦NX, ◦NY )

)(

1 + KCF(
△X, △Y )

)

+ KCF(X, ◦Y ) + KCF(
◦X,Y ) − KCF(

◦X, ◦Y )

K2(X, Y ) = k(•X, •Y )(1 + K2(
◦NX, ◦NY ))(1 + K2(

△X, △Y )) + K2(X, △Y ) + K2(
△X,Y ) − K2(

△X, △Y )

KCP(X, Y ) = k(•X, •Y )
(

1 +
∑

x∈children(•X)

∑

x∈children(•X) KCPR(X[x], Y [y])
)

+KCP(
NX, ◦NY ) + KCP(

◦NX, NY ) − KCP(
◦NX, ◦NY )

+KCP(X, △Y ) + KCP(
△X, Y ) − KCP(

△X, △Y )

KAT(X, Y ) = k(•X, •Y )
(

1 + K1(
◦NX, ◦NY )

)

+ KAT(
NX, ◦NY ) + KAT(

◦NX, NY ) − KAT(
◦NX, ◦NY )

+KAT(X, △Y ) + KAT(
△X, Y ) − KAT(

△X, △Y )

K1(X, Y ) = k(•X, •Y )
(

1 + K1(
◦NX, ◦NY )

)(

1 + K1(
△X, △Y )

)

+
(

1 + K1(
△X, △Y )

)(

KAT(
NX, ◦NY ) + KAT(

◦NX, NY ) − KAT(
◦NX, ◦NY )

)

+K1(X, △Y ) + K1(
△X,Y ) − K1(

△X, △Y )

KET(X, Y ) = k(•X, •Y )
(

1 + KEF(
◦NX, ◦NY )

)

+ KET(
NX, ◦NY ) + KET(

◦NX, NY ) − KET(
◦NX, ◦NY )

+KET(X, △Y ) + KET(
△X,Y ) − KET(

△X, △Y )

KEF(X, Y ) = k(•X, •Y )
(

1 + KEF(
◦NX, ◦NY )

)(

1 + KEF(
△X, △Y )

)

+ KEF(X, ◦Y ) + KEF(
◦X, Y ) − KEF(

◦X, ◦Y )

KEP(X, Y ) = k(•X, •Y )
(

1 + KEP(
◦NX, ◦NY )

)

+ KEP(
NX, ◦NY ) + KEP(

◦NX, NY ) − KEP(
◦NX, ◦NY )

+KEP(X, △Y ) + KEP(
△X,Y ) − KEP(

△X, △Y )

KCoT(X, Y ) = k(•X, •Y )
(

1 + K3(
◦NX, ◦NY )

)

+ KCoT(
NX, ◦NY ) + KCoT(

◦NX, NY ) − KCoT(
◦NX, ◦NY )

+KCoT(X, △Y ) + KCoT(
△X, Y ) − KCoT(

△X, △Y )

K3(X, Y ) = k(•X, •Y )
(

1 + K3(
◦NX, ◦NY )

)

, if △X = ∅ and △Y = ∅.

k(•X, •Y )
(

1 + K3(
◦NX, ◦NY )

)

K3(
△X, △Y ), if △X 6= ∅ or △Y 6= ∅.

3. Extracting Substructures

Despite the existence of recursive formulas, the com-
putation of all tree kernels listed in Table 2 is known
to be time-consuming. As shown in Section 3.1, the
complexity of the dynamic programming algorithms
which can be derived from these recursive formulas
scale in O(n4) for kernels of the group C and O(n2)
for group Q, where n denotes the size of the compared
trees. For kernels in the group C, techniques such as
the one proposed by Demaine et al. (2007) in a Täı
distance context can be applied, but their complexity
still scales in O(n3).

In this section, we formulate the hypothesis that the
larger the dataset of trees, the more substructures they
will share. In that sense, the recursions described
in Table 2 would go much faster if a cache of kernel
values for frequent substructures was available. This
would avoid duplicated computations and expensive
recursive function calls. We implement this approach
through an algorithm that extracts efficiently all con-
gruent substructures in a dataset.

3.1. Preliminary Result

For a tree X , we write Q(X) and C(X) for the sets
of substructures of X that are visited during the it-
erative evaluations of formulas of group Q and group
C respectively. The following lemma is given without
proof but will be useful to prove Theorem 3 below,

Lemma 1 For arbitrary x ≤ y,

1. ◦X [x, y) = X [•◦X [x, y), y), unless ◦X [x, y) = ∅.
2. △X [x, y) = X [•△X [x, y), y), unless △X [x, y) = ∅,
3. NX [x, y) = X [x, x) = X [x]

Theorem 3

C(X) = {X [x, y) | x ∈ X, y ∈ X, x ≤ y} ∪ {∅}
Q(X) = {X [x] | x ∈ X} ∪ {X [x, x̂) | x ∈ X} ∪ {∅}

Proof. (Sketch) To prove the inclusion ⊂, we show
that the set of the right hand side is closed under the
operators ◦, △ and N for C(X); ◦N, △ and N for Q(X).
To prove ⊃, we show any structure in C(X) or Q(X)
is reachable from X by iteratively applying the corre-
sponding operators. 2

Since |C(X)| = |X |2 + 1 and |Q(X)| = 2|X | hold,
the time complexities of the algorithm needed to cal-
culate KT (X,Y ) using directly recursive formulas are
O(|X |2|Y |2) and O(|X ||Y |) for Group C and Q, re-
spectively.

3.2. Algorithm

Let E denote a dataset consisting of one or more trees.
We define Q̃(E) and C̃(E) as sets of congruence classes.

Q̃(E) =
⋃

X∈E

Q(X)/ ≡ and C̃(E) =
⋃

X∈E

C(X)/ ≡ .
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Figure 3. Extraction table

The algorithm we introduce here is designed to to cal-
culate Q̃(E) and C̃(E) using E . For illustration pur-
poses, we first focus on the simpler case Q̃(E), and
then show how to extend the algorithm to compute
C̃(E). The algorithm consists of two phases: the parse
phase and the extraction phase.

3.2.1. Parse Phase

The algorithm maintains a table of subtrees as follows.

1. Every complete subtree X [x] for some x ∈ X ∈ E
has an entry in the table.

2. Any two entries of the table are not congruent
with each other.

3. If an entry is the youngest (rightmost) sibling ver-
tex in some X ∈ E , an extraction tree rooted at
the entry is associated. Each vertex of the extrac-
tion tree references one of the entries of the table,
and every path from a leaf to the root yields a
sibling subtree sequence (X [x1], . . . , X [xn]), where
(x1, x2, . . . , xn) is the entire sequence of children
of some x ∈ X ∈ E .

For convenience, we call this table an extraction table.
The left chart of Figure 3 depicts a snapshot of the ex-
traction table, when the algorithm has completed the
parsing of two trees A(B C(D E F)) and A(G C(D E

F)). Since these two trees include 8 complete subtrees
up to congruence, the extraction table includes 8 en-
tries. The sibling subtree sequence (D E F) appears
in the input trees, and hence the extraction tree rooted
at entry F has two vertices that reference the entries
for E and D. Furthermore, since the two sibling subtree
sequences (B C(D E F)) and (G C(D E F)) appear in
the input trees, the entry for C(D E F) has two child
vertices that reference the entries for B and G in the
extraction tree rooted at the entry.

Next, we assume that the algorithm is parsing the
tree H(I(J(K) G C(D E F)) L(M N) O). The algo-
rithm reads the characters in the representing string
sequentially from head to tail. When the algorithm

reads a parenthesis ) that immediately follows F, the
algorithm recognizes the subtree C(D E F). Since the
algorithm can find the same subtree in the extraction
table, it moves to the next character in the string with-
out updating the extraction table. When reading the
next parenthesis ), the algorithm recognizes the sub-
tree I(J(K) G C(D E F)). Since the algorithm cannot
find an entry for I(J(K) G C(D E F)), it generates a
new entry for I(J(K) G C(D E F)), and adds it to the
extraction table.

At the same time, the algorithm recognizes a sibling
subtree sequence (J(K) G C(D E F)), and examines
whether the sequence already exists in the extraction
tree rooted at the vertex for C(D E F). As a result, it
will find out that the path (G C(D E F)) is the longest
match, and hence, generate a new vertex referencing
the entry for J(K) to place it as a child of the vertex
referencing G in the extraction tree. The right chart of
Figure 3 depicts the snapshot of this operation. The
completed extraction table and the associated extrac-
tion trees are the outputs of the parse phase.

3.2.2. Extraction Phase

In the extraction phase, the algorithm scans every ex-
traction tree obtained, and collects all of the contigu-
ous paths ending at the root. By replacing the ver-
tices of the collected paths with their referenced sub-
trees, the algorithm obtains a set of subtree sequences.
For example, from the extraction tree rooted at C(D E

F), the algorithm extracts four substructures (B C(D

E F)), (J(K) G C(D E F)), (G C(D E F)) and C(D

E F). The union of these sets of substructures is the
final output of the algorithm.

3.3. Validity of the Algorithm

We first prove that the output of the algorithm in-
cludes Q̃(E). By Theorem 3, an element of Q(X) is
either X [x] or X [x, x̂). It is clear that X [x] appears in
the extraction table. On the other hand, when we let
(x1, . . . , xn) be the entire sequece of children of x̂, the
sibling subtree sequence (X [x1], . . . , X [xn]) appears as
a path in the extraction tree rooted at the entry for
X [xn]. Since we have X [x, x̂) = (X [xi], . . . , X [xn]) for
some i ∈ [1, n], X [x, x̂) is extracted from the extrac-
tion tree in the extraction phase.

To prove that Q̃(E) includes the output of the algo-
rithm, we only need to notice that (X [xi], . . . , X [xn])
in the output is a partial path of (X [x1], . . . , X [xn]),
which is a path from a leaf to the root in some ex-
traction tree. By definition, (X [x1], . . . , X [xn]) repre-
sents some sibling subtree sequence of x ∈ X ∈ E , and
hence, X [xi, x) = (X [xi], . . . , X [xn]) holds.
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Table 3. Notation for complexity evaluation

Symbol Definition

N total number of vertices in E
δ average number of complete subtrees in E

that are mutually congruent.
d average degree (number of children) for

trees in E .
D average degree for extraction trees.

3.4. Computational Complexity

We provide a rough estimation of the average compu-
tational complexity of the algorithm presented so far.
Table 3 describes the notations used in this section.

In the parse phase, each time that the algorithm has
to recognize X [x] for x ∈ X ∈ E , the algorithm will
have to scan the extraction table. If the extraction
table is implemented as a binary search tree, the num-
ber of congruence tests required for this table scan is
log2(N/δ) on average. Moreover, since the correspond-
ing entry is known for every child of x, the congruence
test can be reduced to a series of identity tests between
entries. Hence, the number of steps for the table scan
is d log2(N/δ) on average. Also, it is straightforward
to see that the number of steps necessary to find the
largest matching path to the sibling subtree sequence
of x in the extraction tree is at most dD. In the ex-
traction phase, since 1+D+D2+ · · ·+Dd−1 ≤ dDd−1

the latter numbers is an upperbound on the number of
operations needed to extract a single extraction tree.

On the other hand, the inequality Dd−1 ≤ δ can be
derived as follows. Assume that an entry in the ex-
traction table corresponds to X [x]. The extraction
tree rooted at this entry has Dd−1 leaves on average.
hence, there exist at least Dd−1 subtrees congruent to
X [x] in E . Applying this inequality, we can estimate
the average number of operations of the algorithm by
Nd(log2(N/δ) + d−1

√
δ + 1).

Note that we can naturally assume that d is not af-
fected by N . Hence, if we can further assume that δ
converges asymptotically to a constant, the time com-
plexity of the algorithm scales as O(N logN). On the
other hand, if we assume that δ is asymptotically linear
w.r.t. N , the time complexity becomes O(Nd/d−1). It
is easy to see that the space complexity of the algo-
rithm can be upperbounded by O(Nd).

3.5. Extension to Group C

If used on kernels from group C, the algorithm will add
more paths to the extraction trees in the parse phase.
To illustrate this, let y ≤ x, and define a sequence of

vertices τ(y → x) by the following recursive formulas:

τ(y → x) = ∅ if y = x,

τ(y → x) = (yi, . . . , yn) · τ(ŷ → x) if y < x,

where · denotes the simple concatenation, (y1, . . . , yn)
is the entire sequence of children of ŷ where y = yi.

Whenever the algorithm recognizes X [x], it regis-
ters to the corresponding extraction tree all paths
(X [z1], . . . , X [zm], X [ȳ1], . . . , X [ȳℓ]) such that ȳ1 ≤ x,
τ(ȳ1 → x) = (ȳ1, . . . , ȳℓ) and (z1, . . . , zm) is the
entire sequence of children of ȳ1. In the case of
Group Q, the algorithm registers only the path for
ȳ1 = x. Indeed, this additional registration of paths
increases the computational complexity of the algo-
rithm. When h denotes the average height of trees in
the dataset, the time and space complexities become
O(Nd(log(N/δ) + h2 · d−1

√
δ + h2)) and O(Ndh2).

4. Experimental Results

We have implemented the algorithm described in Sec-
tion 3.2 and the substructure spectrum tree kernels
discussed in Section 2.2 for types T defined in Sec-
tion 2.4.1. Our original source code in Scala was
compiled as a jar file and will be shared on the au-
thors’ webpage. We plant to re-implement this pro-
totype using a faster language for improved speed.
The dataset used in our experiments includes 442
trees of glycan structures from the KEGG/GLYCAN
database (Hashimoto et al., 2006) whose size and
height average to 13.5 and 7.4.

4.1. Runtime

Figure 4 provides the computational times required
to compute the kernel KEF(X,Y ) over the considered
database. The Top-Down mode takes a brute force
approach and evaluates recursive formulas with recur-
sive function calls. On the other hand, Bottom-Up and
Extract modes take advantage of our extraction algo-
rithm. The Bottom-Up uses it independently to each
pair of trees in the dataset, while the Extract mode
digs first 2994 substructures using the entire dataset.
The curves in Figure 4 can be interpolated quadrat-
ically as t = 17.2n2, t = 11.2n2 and t = 0.48n2, re-
spectively. Hence, the program runs 36 and 23 times
faster in the Extract mode than in the Top-Down and
Bottom-Up modes.The runtime for our algorithm to
extract the 2994 substructures was 951 msec.

4.2. Performance

We run experiments to test the predictive performance
of these kernels. We split the dataset into a training
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Figure 4. Comparison of Runtime

and test fold of 220 and 221 trees respectively. For
each kernel, we select the decay factor λ and the regu-
larization parameter C of the SVM that give the best
mean AUC over a 5 fold cross validation on the train-
ing fold. These parameters are then used when testing
the kernel on the test fold. No kernel seems to per-
form significantly worse than all others, as shown in
Figure 5. The kernel that considers substructures of
type EP, namely paths that ignores the family order
in forests, is the one that performed the best based
on both AUC and F-scores. Further experiments are
needed to compare these kernels more accurately, but
we argue that our platform is an efficient way to do so.
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