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Abstract

Linear support vector machines (svms) have
become popular for solving classification
tasks due to their fast and simple online ap-
plication to large scale data sets. However,
many problems are not linearly separable.
For these problems kernel-based svms are of-
ten used, but unlike their linear variant they
suffer from various drawbacks in terms of
computational and memory efficiency. Their
response can be represented only as a func-
tion of the set of support vectors, which has
been experimentally shown to grow linearly
with the size of the training set. In this pa-
per we propose a novel locally linear svm
classifier with smooth decision boundary and
bounded curvature. We show how the func-
tions defining the classifier can be approx-
imated using local codings and show how
this model can be optimized in an online
fashion by performing stochastic gradient de-
scent with the same convergence guarantees
as standard gradient descent method for lin-
ear svm. Our method achieves comparable
performance to the state-of-the-art whilst be-
ing significantly faster than competing kernel
svms. We generalise this model to locally fi-
nite dimensional kernel svm.

1. Introduction

The binary classification task is one of the main
problems in machine learning. Given a set of train-
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ing sample vectors xk and corresponding labels yk ∈
{−1, 1} the task is to estimate the label y′ of a
previously unseen vector x′. Several algorithms for
this problem have been proposed (Breiman, 2001;
Freund & Schapire, 1999; Shakhnarovich et al., 2006),
but for most practical applications max-margin clas-
sifiers such as support vector machines (svm) seem to
dominate other approaches.

The original formulation of svms was introduced in the
early days of machine learning as a linear binary classi-
fier, that maximizes the margin between positive and
negative samples (Vapnik & Lerner, 1963) and could
only be applied to the linearly separable data. This
approach was later generalized to the nonlinear kernel
max margin classifier (Guyon et al., 1993) by taking
advantage of the representer theorem, which states,
that for every positive definite kernel there exist a fea-
ture space in which a kernel function in the original
space is equivalent to a standard scalar product in this
feature space. This was later extended to soft margin
svm (Cortes & Vapnik, 1995), which penalizes each
sample, that is on the wrong side or not far enough
from the decision boundary with a hinge loss cost. The
optimisation problem is equivalent to a quadratic pro-
gram (qp), that optimises a quadratic cost function
subject to linear constraints. This optimisation pro-
cedure could only be applied to small sized data sets
due to its high computational and memory costs. The
practical application of svm began with the introduc-
tion of decomposition methods such as sequential min-
imal optimization (smo) (Platt, 1998; Chang & Lin,
2001) or svmlight (Joachims, 1999) applied to the dual
representation of the problem. These methods could
handle medium sized data sets, but the convergence
times grew super-linearly with the size of the training
data limiting their use on larger data sets. It has been
recently experimentally shown (Bordes et al., 2009;
Shalev-Shwartz et al., 2007), that for linear svms sim-
ple stochastic gradient descent approaches in the pri-
mal significantly outperform complex optimisation
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methods. These methods usually converge after one or
only a few passes through the data in an online fashion
and were applicable to very large data sets.

However, most real problems are not linearly sep-
arable. The main question is, whether there exists
a similar stochastic gradient approach for nonlinear
kernel svms. One way to tackle this problem is to
approximate a typically infinite dimensional kernel
with a finite dimensional one (Maji & Berg, 2009;
Vedaldi & Zisserman, 2010). However, this method
could be applied only to the class of additive kernels
such as the intersection kernel. (Balcan et al., 2004)
proposed a method based on gradient descent on the
randomized projections of the kernel. (Bordes et al.,
2005) proposed a method called la-svm, that pro-
poses the set of support vectors and performs stochas-
tic gradient descent to learn their optimal weights.
They showed the equivalence of their method to smo
and proved convergence to the true qp solution. Even
though this algorithm runs much faster than all previ-
ous methods, it could not be applied to as large data
sets as stochastic gradient descent for linear svms. This
is because the solution of the kernel method can be
represented only as a function of support vectors and
experimentally the number of support vectors grew lin-
early with the size of the training set (Bordes et al.,
2005). Thus the complexity of this algorithm depends
quadratically on the size of the training set.

Another issue with these kernel methods is, that the
most popular kernels such as rbf-kernel or intersec-
tion kernel are often applied to a problem without any
justification or intuition about whether it is the right
kernel to apply. Real data usually lies on the lower di-
mensional manifold of the input space either due to
the nature of the input data or various preprocessing
of the data like normalization of histograms or subsets
of histograms (Dalal & Triggs, 2005). In this case the
general intuition about properties of a certain kernel
without any knowledge about the underlying manifold
may be very misleading.

In this paper we propose a novel locally linear svm
classifier with smooth decision boundary and bounded
curvature. We show how the functions defining the
classifier can be approximated using any local cod-
ing scheme (Roweis & Saul, 2000; Gemert et al., 2008;
Zhou et al., 2009; Gao et al., 2010; Yu et al., 2009;
Wang et al., 2010) and show how this model can be
learned either by solving the corresponding qp pro-
gram or in an online fashion by performing stochastic
gradient descent with the same convergence guarantees
as standard gradient descent method for linear svm.
The method can be seen as a finite kernel method,

that ties together an efficient discriminative classifiers
with a generative manifold learning methods. Exper-
iments show that this method gets close to state-of-
the-art results for challenging classification problems
while being significantly faster than any competing al-
gorithm. The complexity grows linearly with the size
of the data set allowing the algorithm to be applied to
much larger data sets. We generalise the model to the
locally finite dimensional kernel svm classifier with any
finite dimensional or finite dimensional approxima-
tion (Maji & Berg, 2009; Vedaldi & Zisserman, 2010)
kernel.

An outline of the paper is as follows. In section 2
we explain local codings for manifold learning. In sec-
tion 3 we describe the properties of locally linear classi-
fiers, approximate them using local codings, formulate
the optimisation problem and propose qp-based and
stochastic gradient descent method method to solve
it. In section 4 we compare our classifier to other ap-
proaches in terms of performance and speed and in the
last section 5 we conclude by listing some possibilities
for future work.

2. Local Codings for Manifold Learning

Many manifold learning methods (Roweis & Saul,
2000; Gemert et al., 2008; Zhou et al., 2009;
Gao et al., 2010; Yu et al., 2009; Wang et al., 2010),
also called local codings, approximate any point x on
the manifold as a linear combination of surrounding
anchor points as:

x ≈
∑

v∈C

γv(x)v, (1)

where C is the set of anchor points v and γv(x)
is the vector of coefficients, called local coordinates,
constrained by

∑
v∈C γv(x) = 1, guaranteeing invari-

ance to Euclidian transformations of the data. Gener-
ally, two types of approaches for the evaluation of the
coefficients γ(x) have been proposed. (Gemert et al.,
2008; Zhou et al., 2009) evaluate these local coordi-
nates based on the distance of x from each anchor
point using any distance measure, on the other hand
methods of (Roweis & Saul, 2000; Gao et al., 2010;
Yu et al., 2009; Wang et al., 2010) formulate the prob-
lem as the minimization of reprojection error using
various regularization terms, inducing properties such
as sparsity or locality. The set of anchor points is either
obtained using standard vector quantization meth-
ods (Gemert et al., 2008; Zhou et al., 2009) or by min-
imizing the sum of the reprojection errors over the
training set (Yu et al., 2009; Wang et al., 2010).

The most important property (Yu et al., 2009) of the
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transformation into any local coding is, that any Lip-
schitz function f(x) defined on a lower dimensional
manifold can be approximated by a linear combina-
tion of function values f(v) of the set of anchor points
v ∈ C as:

f(x) ≈
∑

v∈C

γv(x)f(v) (2)

within the bounds derived in (Yu et al., 2009). The
guarantee of the quality of the approximation holds
for any normalised linear coding.

Local codings are unsupervised and fully generative
procedures, that do not take class labels into account.
This implies a few advantages and disadvantages of
the method. On one hand, local codings can be used
to learn a manifold in semi-supervised classification
approaches. In some of the branches of machine learn-
ing, for example in computer vision, obtaining a large
amount of labelled data is costly, whilst obtaining any
amount of unlabelled data is less so. Furthermore, lo-
cal codings can be applied to learn manifolds from
joint training and test data for transductive prob-
lems (Gammerman et al., 1998). On the other hand
for unbalanced data sets unsupervised manifold learn-
ing methods, that ignore class labels, may be biased
towards the manifold of the dominant class.

3. Locally Linear Classifiers

A standard linear svm binary classifier takes the form:

H(x) = wT x + b =
n∑

i=1

wixi + b, (3)

where n is the dimensionality of the feature vector x.
The optimal weight vector w and bias b are obtained
by maximising the soft margin, which penalises each
sample by the hinge loss:

argmin
w,b

λ

2
||w||2 +

1
|S|

∑

k∈S

max(0, 1− yk(wT xk + b)),

(4)
where S is the set of training samples, xk the k-th
feature vector and yk the corresponding label. It is
equivalent to a qp problem with quadratic cost func-
tion subject to linear constraints as:

argminw,b
λ
2 ||w||2 + 1

|S|
∑

k∈S ξk (5)

s.t. ∀k ∈ S : ξk ≥ 0; ξk ≥ 1− yk(wT xk + b).

Linear svm classifiers are sufficient for many
tasks (Dalal & Triggs, 2005), however not all
problems are even approximately linearly separa-
ble (Vedaldi et al., 2009). In most of the cases the

data of certain class lies on several disjoint lower
dimensional manifolds and thus linear classifiers
are inapplicable. However, all classification methods
in general including non-linear ones try to learn
the decision boundary between noisy instances of
classes, which is smooth and has bounded curvature.
Intuitively a decision surface that is too flexible would
tend to over fit the data. In other words all methods
assume, that in a sufficiently small region the decision
boundary is approximately linear and the data is
locally linearly separable. To encode local linearity
of the svm classifier by allowing the weight vector w
and bias b to vary depending in the location of the
point x in the feature space as:

H(x) = w(x)T x + b(x) =
n∑

i=1

wi(x)xi + b(x). (6)

Data points xi ∈ x typically lie in a lower dimensional
manifold of the feature space. Usually they form sev-
eral disjoint clusters e.g. in visual animal recognition
each cluster of the data may correspond to a different
species and this can not be captured by linear classi-
fiers. Smoothness and constrained curvature of the de-
cision boundary implies that the functions w(x) and
b(x) are Lipschitz in the feature space x. Thus we can
approximate the weight functions wi(x) and bias func-
tion b(x) using any local coding as:

H(x) =
n∑

i=1

∑

v∈C

γv(x)wi(v)xi +
∑

v∈C

γv(x)b(v)

=
∑

v∈C

γv(x)

(
n∑

i=1

wi(v)xi + b(v)

)
. (7)

Learning the classifier H(x) involves finding the opti-
mal wi(v) and b(v) for each anchor point v. Let the
number of anchor points be denoted by m = |C|. Let
W be the m × n matrix where each row is equal to
wi(v) of the corresponding anchor point v and let b
be the vector of b(v) for each anchor point. Then the
response H(x) of the classifier can be written as:

H(x) = γ(x)T Wx + γ(x)T b. (8)

This transformation can be seen as a finite kernel
transforming a n-dimensional problem into a mn-
dimensional one. Thus the natural choice for the regu-
larisation term is ||W||2 =

∑n
i=1

∑m
j=1 W 2

ij . Using the
standard hinge loss the optimal parameters W and b
can be obtained by minimising the cost function:

arg min
W,b

λ

2
||W||2 +

1
|S|

∑

k∈S

max(0, 1− ykHW,b(xk)), (9)
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Figure 1. Best viewed in colour. Locally linear svm classifier for banana function data set. Red and green points correspond
to positive and negative samples, black stars correspond to the anchor points and blue lines are obtained decision boundary.
Even though the problem is obviously not linearly separable, locally in sufficiently small regions the decision boundary is
nearly linear and thus the data can be separated reasonably well using local linear classifier.

where HW,b(xk) = (γ(xk)T Wxk + γ(xk)T b), S is
the set of training samples, xk the feature vector and
yk ∈ {−1, 1} is the correct label of the k-th sample.
We will call the classifier obtained by this optimisation
procedure locally linear svm (ll-svm). This formula-
tion is very similar to standard linear svm formulation
over nm dimensions except there are several biases.
This optimisation problem can be converted to a qp
problem with quadratic cost function subject to linear
constraints similarly to standard svm as:

arg minW,b
λ

2
||W||2 +

1
|S|

∑

k∈S

ξk (10)

s.t.∀k ∈ S : ξk ≥ 0
ξk ≥ 1− yk(γ(xk)T Wxk + γ(xk)T b).

Solving this qp problem can be rather expensive for
large data sets. Even though decomposition meth-
ods such as smo (Platt, 1998; Chang & Lin, 2001)
or svmlight (Joachims, 1999) can be applied to the
dual representation of the problem, it has been ex-
perimentally shown that for real applications they are
outperformed by stochastic gradient descent meth-
ods. We adapt the SVMSGD2 method proposed
in (Bordes et al., 2009) to tackle the problem. Each
iteration of SVMSGD2 consists of picking random
sample xt and corresponding label yt and updating
the current solution of the W and b if the hinge loss
cost 1− yt(γ(xt)T Wxt + γ(xt)T b) is positive as:

Wt+1 = Wt +
1

λ(t + t0)
yt(xtγ(xt)T ) (11)

bt+1 = bt +
1

λ(t + t0)
ytγ(xt), (12)

where Wt and bt is the solution after t iterations,
xtγ(xt)T is the outer product and 1

λ(t+t0)
is the opti-

mal learning rate (Shalev-Shwartz et al., 2007) with a
heuristically chosen positive constant t0 (Bordes et al.,
2009), that ensures the first iterations do not pro-
duce too large steps. Because local codings either
force (Roweis & Saul, 2000; Wang et al., 2010) or in-
duce (Gao et al., 2010; Yu et al., 2009) sparsity, the
update step is done only for a few columns with non-
zero coefficients of γ(x).

Regularisation update is done every skip iterations to
speed up the process similarly to (Bordes et al., 2009)
as:

W′
t+1 = Wt+1(1− skip

t + t0
). (13)

Because the proposed model is equivalent to a sparse
mapping into the higher dimensional space, it has the
same theoretical guarantees as standard linear svm
and for given number of anchor points m is slower
than linear svm only by a constant factor independent
on the size of the training set. In case the stochastic
gradient method does not converge in one pass and
local coordinates were expensive to evaluate, they can
be evaluated once and kept in the memory.

This binary classifier can be extended to multi-class
one either by following standard one vs. all strategy
or using the formulation of (Crammer & Singer, 2002).

3.1. Relation and comparison to other models

Conceptually similar local linear classifier has been al-
ready proposed by (Zhang et al., 2006). Their knn-
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Algorithm 1 stochastic gradient descent for ll-svm.
Input: λ, t0, W0, b0, T , skip, C
Output: W,b
t = 0, count = skip, W = W0, b = b0

while t ≤ T do
γt = LocalCoding(xt, C)
Ht = 1− yt(γT

t Wxt + γT
t b)

if Ht > 0 then
W = W + 1

λ(t+t0)
yt(xtγ

T
t )

b = b + 1
λ(t+t0)

ytγt

end if
count = count− 1
if count ≤ 0 then

W = W(1− skip
t+t0

)
count = skip

end if
t = t + 1

end while

svm linear svm classifier was optimized for each test
sample separately as a linear svm using k nearest
neighbours of the given test sample. Unlike our model,
their classifier has no closed form solution resulting in
the significantly slower evaluation, and requires keep-
ing all the training samples in memory in order to
quickly find nearest neighbours, which may not be suit-
able for too large data sets. Our classifier can be also
seen as a bilinear svm where one input vector depends
nonlinearly on another one. A different form of bilin-
ear svm has been proposed in (Farhadi et al., 2009)
where one of the input vectors is randomly initialized
and iteratively trained as a latent variable vector alter-
nating with the optimisation of weight matrix W. ll-
svm classifier can be also seen as a finite kernel svm.
The transformation function associated with the ker-
nel transforms the classification problem from n to nm
dimensions and any optimisation method can be ap-
plied in this new feature space. Another interpretation
of the model is that the classifier is the weighted sum
of linear svms for each anchor point where the individ-
ual linear svms are tied together during the training
process with one hinge loss cost function.

Our classifier is more general than standard linear
svm. Any linear svm over the original feature values
can be expressed due to the property

∑
v∈C γv(x) = 1

by a matrix W with each row equal to w of the linear
classifier and bias b vector with each value equal to
the bias of the linear classifier as:

H(x) = γ(x)T Wx + γ(x)T b (14)
= γ(x)T (wT ,wT , ..)x + γ(x)T (b, b, ..)
= wT x + b.

ll-svm classifier is also more general than the lin-
ear svm over local coordinates γ(x) as applied
in (Yu et al., 2009), because the vector of weights of
any linear svm classifier over these variables can be
represented using W = 0 as a linear combination of
the set of biases:

H(x) = γ(x)T Wx + γ(x)T b = bT γ(x). (15)

3.2. Extension to finite dimensional kernels

In many practical cases learning the highly non-linear
decision boundary of the classifier would require a high
number of anchor points. This could lead to over-
fitting of the data or significant slow-down of the
method. To overcome this problem we can trade-off
the number of anchor points against the expressivity of
the classifier. Several practically useful kernels, for ex-
ample intersection kernel used for bag-of-words mod-
els (Vedaldi et al., 2009), can be approximated by fi-
nite kernels (Maji & Berg, 2009; Vedaldi & Zisserman,
2010) and resulting svm optimised using stochas-
tic gradient descent methods (Bordes et al., 2009;
Shalev-Shwartz et al., 2007). Motivated by this fact,
we extend the local classifier to the svms with any fi-
nite dimensional kernel. Let the kernel operation be de-
fined as or approximated by K(x1,x2) = Φ(x1)Φ̇(x2).
Then the classifier will take the form:

H(x) = γ(x)T WΦ(x) + γ(x)T b. (16)

where parameters W and b are obtained by solving:

arg minW,b
λ

2
||W||2 +

1
|S|

∑

k∈S

ξk (17)

s.t.∀k ∈ S : ξk ≥ 0
ξk ≥ 1− yk(γ(xk)T WΦ(xk) + γ(xk)T b)

and the same stochastic gradient descent method to
the one in the section 3 could be applied. Local coor-
dinates can be calculated in either the original space
or the feature space, this depends on where we assume
more meaningful manifold structure.

4. Experiments

We tested ll-svm algorithm on three multi label clas-
sification data sets of digits and letters - mnist, usps
and letter. We compared the performance to several
binary and multi label classifiers in terms of accuracy
and speed. Classifiers were applied directly to the raw
data without calculating any complex features in or-
der to get a fair comparison of classifiers. Multi-class
experiments were done using standard one vs. all strat-
egy.
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mnist data set contains 40000 training and 10000 test
gray-scale images of the resolution 28 x 28 normal-
ized into 784 dimensional vector. Every training sam-
ple has a label corresponding to one of the 10 dig-
its ′0′ −′ 9′. The manifold was trained using k-means
clustering with 100 anchor points. Coefficients of the
local coding were obtained using inverse Euclidian dis-
tance based weighting (Gemert et al., 2008) solved for
8 nearest neighbours. The reconstruction error min-
imising codings (Roweis & Saul, 2000; Yu et al., 2009)
did not lead to a boost of performance.

The evaluation time given local coding is O(kn), where
k is the number of nearest neighbours. The calculation
of k nearest neighbours given their distances from an-
chor points takes O(km) which is significantly faster.
Thus, the bottle-neck is the calculation of distances
from anchor points which runs in O(mn) with approx-
imately the same constant as the svm evaluation. To
speed it up, we calculated the distance of every 2 × 2
dimension and if it was already higher than the final
distance of the k-th nearest neighbour, we rejected the
anchor point. This led to an 2× speedup. A compar-
ison of performance and speed to the state-of-the-art
methods is given in table 1. The dependency of per-
formance on the number of anchor points is depicted
in figure 2. The comparisons to other methods show,
that ll-svm can be seen as a good trade-off between
qualitatively best kernel methods and very fast linear
svms.

usps data set consists of 7291 training and 2007 test
gray-scale images of the resolution 16 x 16 stored as
256 dimensional vector. Each label corresponds to the
one of the 10 digits ′0′−′ 9′. The letter data set con-
sists of 16000 training and 4000 testing images repre-
sented as a relatively short 16 dimensional vector. The
labels correspond to the one of the 26 letters ′A′−′Z ′.
Manifolds for these data sets were learnt using the
same parameters as for mnist data set. Comparisons
to the state-of-the-art methods in these two data sets
in terms of accuracy and speed is given in table 2.
The comparisons on these smaller data sets show that
ll-svm requires more data to compete with the state-
of-the-art methods.

The algorithm has also been tested on the Caltech-
101 data set (Fei-Fei et al., 2004), that contains 102
object classes. The multi label classifier was trained
using 15 training samples per class. The performance
of both ll-svm and locally additive kernel svm with
the approximation of the intersection kernel has been
evaluated. Both classifiers were applied to the his-
tograms of grey and colour PHOW (Bosch et al.,
2007) descriptors (both 600 clusters), and self-

Figure 2. Dependency of the performance of ll-svm on
number of anchor points on mnist data set. Standard lin-
ear svm is equivalent to the ll-svm with one anchor point.
The performance is saturated at around 100 anchor points
due to insufficiently large amount of training data.

similarity (Shechtman & Irani, 2007) feature (300
clusters) on the spatial pyramid (Lazebnik et al.,
2006) 1 × 1, 2 × 2 and 4 × 4. The final classifier was
obtained by averaging the classifiers for all histograms.
Only the histograms over the whole image were used
to learn the manifold and obtain the local coordinates,
resulting in the significant speed-up. The manifold was
learnt using k-means clustering with only 20 clusters
due to insufficient amount of training data. Local co-
ordinates were computed using inverse Euclidian dis-
tance weighting on 5 nearest neighbours.

5. Conclusion

In this paper we propose a novel locally linear svm
classifier using nonlinear manifold learning techniques.
Using the concept of local linearity of functions defin-
ing decision boundary and properties of manifold
learning methods using local codings, we formulate the
problem and show how this classifier can be learned
either by solving the corresponding qp program or in
an online fashion by performing stochastic gradient de-
scent with the same convergence guarantees as stan-
dard gradient descent method for linear svm. Exper-
iments show that this method gets close to state-of-
the-art results for challenging classification problems
whilst being significantly faster than any competing al-
gorithms. The complexity grows linearly with the size
of the data set and thus the algorithm can be applied
to much larger data sets. This may become a major
issue as many new large scale image and natural lan-
guage processing data sets gathered from internet are
emerging.
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Locally additive svm (30 passes) 70.1% 18200 s 190 ms
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