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Abstract
This paper considers the problem of clustering a
partially observed unweighted graph – i.e. one
where for some node pairs we know there is an
edge between them, for some others we know
there is no edge, and for the remaining we do not
know whether or not there is an edge. We want
to organize the nodes into disjoint clusters so that
there is relatively dense (observed) connectivity
within clusters, and sparse across clusters.
We take a novel yet natural approach to this
problem, by focusing on finding the clustering
that minimizes the number of ”disagreements” -
i.e. the sum of the number of (observed) miss-
ing edges within clusters, and (observed) present
edges across clusters. Our algorithm uses convex
optimization; its basis is a reduction of disagree-
ment minimization to the problem of recovering
an (unknown) low-rank matrix and an (unknown)
sparse matrix from their partially observed sum.
We show that our algorithm succeeds under cer-
tain natural assumptions on the optimal cluster-
ing and its disagreements. Our results signif-
icantly strengthen existing matrix splitting re-
sults for the special case of our clustering prob-
lem. Our results directly enhance solutions to the
problem of Correlation Clustering (Bansal et al.,
2002) with partial observations.
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1. Introduction
This paper is about the following task: given partial ob-
servation of an undirected unweighted graph, partition the
nodes into disjoint clusters so that there are dense connec-
tions within clusters, and sparse connections across clus-
ters. By partial observation, we mean that for some node
pairs we know if there is an edge or not, and for other node
pairs we do not know – these pairs are unobserved. This
problem arises in several fields across science and engi-
neering. For example, in sponsored search, each cluster is
a submarket that represents a specific group of advertisers
that do most of their spending on a group of query phrases
– see e.g. (Inc, 2009) for such a project at Yahoo. In VLSI
and design automation, it is useful in minimizing signaling
between components, layout etc. – see e.g. (Kernighan &
Lin, 1970) and references thereof. In social networks, clus-
ters represent groups of mutual friends; finding clusters en-
ables better recommendations, link prediction, etc (Mishra
et al., 2007). In the analysis of document databases, cluster-
ing the citation graph is often an essential and informative
first step (Ester et al., 1995). In this paper, we will focus
not on specific application domains, but rather on the basic
graph clustering problem itself.

As with any clustering problem, this needs a precise math-
ematical definition. We are not aware of any existing
work with provable performance guarantees for partially
observed graphs. Even most existing approaches to clus-
tering fully observed graphs, which we review in section
1.1 below, either require an additional input (e.g. the num-
ber of clusters k required for spectral or k-means clustering
approaches), or do not guarantee the performance of the
clustering. Indeed, the specialization of our results to the
fully observed case extends the known guarantees there.

Our Formulation: We focus on a natural formulation, one
that does not require any other extraneous input besides
the graph itself. It is based on minimizing disagreements,
which we now define. Consider any candidate clustering;
this will have (a) observed node pairs that are in different
clusters, but have an edge between them, and (b) observed
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node pairs that are in the same cluster, but do not have an
edge between them. The total number of node pairs of
types (a) and (b) is the number of disagreements between
the clustering and the given graph. We focus on the prob-
lem of finding the optimal clustering – one that minimizes
the number of disagreements. Note that we do not pre-
specify the number of clusters. For the special case of fully
observed graphs, this formulation is exactly the same as
the problem of “Correlation Clustering”, first proposed by
(Bansal et al., 2002). They showed that exact minimization
of the above objective is NP-complete in the worst case –
we survey and compare this and other related work in sec-
tion 1.1. As we will see, our approach and results are very
different.

Our Approach: We aim to achieve the combinatorial
disagreement minimization objective using matrix splitting
via convex optimization. In particular, as we show in
section 2 below, one can represent the adjacency matrix of
the given graph as the sum of an unknown low-rank matrix
(corresponding to“ideal” clusters) and a sparse matrix
(corresponding to disagreements from this ”ideal” in the
given graph). Our algorithm either returns a clustering,
which is guaranteed to be disagreement minimizing,
or returns a “failure” – it never returns a sub-optimal
clustering. Our analysis provides both deterministic and
probabilistic guarantees for when our algorithm succeeds.
Our analysis uses the special structure of our problem to
provide much stronger guarantees than are current results
on general matrix splitting (Chandrasekaran et al., 2009;
Candes et al., 2009; Hsu et al., 2010).

1.1. Related Work

Our problem can be interpreted in the general clustering
context as one in which the presence of an edge between
two points indicates a ”similarity”, and the lack of an edge
means no similarity. The general field of clustering is of
course vast, and a detailed survey of all methods therein is
beyond our scope here. We focus instead on the two sets of
papers most relevant to the problem here, namely the work
on Correlation Clustering, and the other approaches to the
specific problem of graph clustering.

Correlation Clustering: First formulated in (Bansal et al.,
2002), correlation clustering looks at the following prob-
lem: given a complete graph where every edge is labelled
“+” or “-”, cluster the nodes to minimize the total of the
number of “-” edges within clusters and “+” edges across
clusters. As mentioned, for a completely observed graph,
our problem is mathematically precisely the same as corre-
lation clustering; in particular a “+” in correlation cluster-
ing corresponds to an edge in graph clustering, and a “-” to
the lack of an edge. Disagreements are defined in the same
way. Thus, this paper can equivalently be considered an
algorithm, and guarantees, for correlation clustering un-

der partial observations. (Bansal et al., 2002) show that
exact minimization is NP-complete, and also provide (a)

constant-factor approximation algorithm for the problem of
minimizing the number of disagreements, and (b) a PTAS
for maximizing agreements. Their algorithms are combina-
torial in nature. Subsequently, there has been much work
on devising alternative approximation algorithms for both
the weighted and unweighted cases, and for both agree-
ment and disagreement objectives (Emmanuel & Immor-
lica, 2003; Demaine et al., 2005; Swamy, 2004; Charikar
et al., 2003; Emmanuel & Fiat, 2003; Becker, 2005). Ap-
proximations based on LP relaxation (Becker, 2005) and
SDP relaxation (Swamy, 2004), followed by rounding,
have also been developed. We emphasize that while we do
convex relaxation as well, we do not do rounding; rather,
our convex program itself yields an optimal clustering. We
emphasize that ours is the first attempt at correlation clus-
tering with partial observations.

Graph Clustering: The problem of graph clustering is
well studied and very rich literature on the subject exists
(see e.g. (Everitt, 1980; Jain & Dubes, 1988) and refer-
ences thereof). One set of approaches seek to optimize cri-
teria such as k-median, minimum sum or minimum diam-
eter (Bern & Eppstein, 1996); typically these result in NP-
hard problems with few global guarantees. Another option
is a top-down hierarchical approach, i.e., recursively bisect-
ing the graph into smaller and smaller clusters. Various al-
gorithms in this category differ in the criterion used to de-
termine where to split in each iteration. Notable examples
of such criteria include small cut (Condon & Karp, 2001),
maximal flow (Flake et al., 2004), low conductance (Shi
& Malik, 2000), eigenvector of the Laplacian (aka spec-
tral clustering) (Ng et al., 2002), and many others. Due to
the iterative nature of these algorithms, global theoretical
guarantees are hard to obtain.

As we mentioned before, we are not aware of any work
on graph clustering with partial observations and provable
guarantees.

2. Main Contributions
Our algorithm is based on convex optimization, and ei-
ther (a) outputs a clustering that is guaranteed to be the
one that minimizes the number of observed disagreements,
or (b) declares “failure” – in which case one could poten-
tially try some other approximate methods. In particular,
it never produces a suboptimal clustering. We now briefly
present the main idea, then describe the algorithm, and fi-
nally present our main results – analytical characterizations
of when the algorithm succeeds.

Setup: We are given a partially observed graph, whose ad-
jacency matrix is A – which has aij = 1 if there is an edge



Clustering Partially Observed Graphs via Convex Optimization

Figure 1. The adjacency matrix of a graph before (a) and
after (b) proper reordering (i.e. clustering) of the nodes.
The figure (b) is indicative of the matrix as a superposition
of a sparse matrix and a low-rank one.

between nodes i and j, aij = 0 if there is no edge, and
aij =? if we do not know. Let Ωobs be the set of observed
entries, i.e. the set of elements of A that are known to be
0 or 1. We want to find the optimal clustering, i.e. the one
that has the minimum number of disagreements in Ωobs.

Idea: Consider first the fully observed case, i.e. every
aij = 0 or 1. Suppose also that the graph is already ideally
clustered – i.e. there is a partition of the nodes such that
there are no edges between partitions, and each partition is
a clique. In this case, the matrix A + I is now a low-rank

matrix, with the rank being equal to the number of clus-
ters. This can be seen by noticing that if we re-ordered the
rows and columns so that partitions appear together, the re-
sult would be a block-diagonal matrix, with each block be-
ing an all-ones sub-matrix – and thus rank one. Of course,
this re-ordering does not change the rank of the matrix, and
hence A+ I is (exactly) low-rank.
Consider now any given graph, still fully observed. In light
of the above, we are looking for a decomposition of its
I +A into a low-rank part K (of block-diagonal all-ones,
one block for each cluster) and a remaining B (the dis-
agreements) – such that the number of entries in B is as
small as possible; i.e. B is sparse. Finally, the problem we
look at is recovery of the best K when we do not observe
all entries. The idea is depicted in Figure 1.

Convex Optimization Formulation: We propose to do the
matrix splitting using convex optimization, an approach re-
cently taken in (Chandrasekaran et al., 2009; Candes et al.,
2009) (however, we establish much stronger results for our
special problem). Our approach consists of dropping any
additional structural requirements, and just looking for a
decomposition of the given A + I as the sum of a sparse
matrix B and a low-rank matrix K. In particular, we use
the following convex program

min
B,K

η ||B||1 + (1− η) ||K||∗ (1)

s.t. PΩobs(B+K) = PΩobs(I+A)

Here, for any matrix M , the term PΩobs(M) keeps all ele-
ments of M in Ωobs unchanged, and sets all other elements
to 0; the constraints thus state that the sparse and low-rank
matrix should in sum be consistent with the observed en-
tries. ||B||1 =

�
i,j |bij | is the �1 norm of the entries of the

matrix, which is well-known to be a convex surrogate for
the number of non-zero entries ||B||0. The second term is
||K||∗ =

�
s σs(K) is ”nuclear norm”: the sum of singular

values of K. This has been shown recently to be the convex
surrogate1 for the rank function (Recht et al., 2009). Thus
our objective function is a convex surrogate for the (natu-
ral) combinatorial objective η ||B||0+(1−η)rank(K). (1)
is, in fact, a semi-definite program SDP (Chandrasekaran
et al., 2009).

Definitition: Validity: The convex program (1) is said to
produce a valid output if the low-rank matrix part K of
the optimum corresponds to a graph of disjoint cliques; i.e.
its rows and columns can be re-ordered to yield a block-
diagonal matrix with all-one matrices for each block.

Validity of a given K can easily be checked, either via ele-
mentary re-ordering operations, or via a singular value de-
composition2. Our first simple, but crucial, insight is that
whenever the convex program (1) yields a valid solution, it
is the disagreement minimizer. This is true in-spite of the
fact that we have clearly dropped several constraints of the
original problem (e.g. we do not enforce the entries of K
to be between 0 and 1, etc.).

Theorem 1 For any η > 0, if the optimum of (1) is valid,

then it is the clustering that minimizes the number of ob-

served disagreements.

Algorithm: Our algorithm takes the adjacency matrix of
the network A and outputs either the optimal clustering or
declares failure. Using the result of Theorem 1, if the clus-
tering is valid, then we are guaranteed that the result is a
disagreement minimizer clustering.

Algorithm 1 Optimal-Cluster(A)
for η ∈ (0, 1) do

Solve (1)
if Solution K is valid then

Output the clustering w.r.t K and EXIT.
end if

end for
Declare Failure.

We recommend using the fast implementation algorithms
developed in (Lin et al., 2009), which is specially tailored

1In particular, it is the �1 norm of the singular value vector,
while rank is the �0 norm of the same.

2An SVD of a valid K will yield singular vectors with disjoint
supports. The supports correspond to the clusters.
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for matrix splitting. Setting the parameter η can be done
either via a simple line search from 0 to 1, binary search,
or any other option. Whenever it results in a valid K, we
have found the optimal clustering.

Analysis: The main analytical contribution of this pa-
per is conditions under which the above algorithm will
find the clustering that minimizes the number of dis-
agreements among the observed entries. We provide
both deterministic/worst-case guarantees, and average case
guarantees for a natural randomness assumption. Let K∗

be the low-rank matrix corresponding to the optimal clus-
tering (as described above). Let B∗ = PΩobs(A + I −K)
be the matrix of observed disagreements for this clustering.
Note that the support of B∗ is contained in Ωobs. Let Kmin

be the size of the smallest cluster in K∗.

Deterministic guarantees: We first provide deterministic
conditions under which (1) will find K∗. For any node
i, let C(i) be the cluster in K∗ that node i belongs to.
For any cluster c �= C(i), define di,c = |{j ∈ c | aij =
? or aij = 1}| and for c = C(i), define di,c = |{j ∈
c | aij =? or aij = 0}|. In words, for both cases, di,c is the
total number of disagreements and unobserved entries be-
tween i and c. We now define a quantity Dmax as follows

Dmax = max
i,c

di,c
min{|c|, C(i)}

Essentially, Dmax is the largest fraction of “bad entries”
(i.e. disagreements or unobserved) between a node and
a cluster. Thus for the same Dmax, a node is allowed to
have more bad entries to a larger cluster, but constrained
to have a smaller to a smaller cluster. It is intuitively clear
that a large Dmax will cause problems, as a node will have
so many disagreements (with respect to the corresponding
cluster size) that it will be impossible to resolve. We now
state our main theorem for the deterministic case.

Theorem 2 If
nDmax
Kmin

< 1
4 , then the optimal clustering

(K∗,B∗) is the unique solution of (1) for any

η ∈



 1

1 + 1
2Kmin

, 1− Kmin�
1 + 3

4nDmax

�
Kmin − 1



 .

Remarks on Theorem 2: Essentially, Theorem 2 allows
for the number of disagreements and unobserved edges at a
node to be as large as a third of the number of “good” edges
(i.e. edges to its own cluster in the optimal clustering).
This means that there is a lot of evidence “against” the opti-
mal clustering, and missing evidence, making it that much
harder to find. Theorem 2 allows a node to have many dis-
agreements and unobserved edges overall; it just requires
these to be distributed proportional to the cluster sizes.
In many applications, the size of the typical cluster may

be much smaller than the size of the graph. Theorem 2
implies that the smallest cluster Kmin > 4

√
n for any non-

trivial problem (i.e. one where every cluster has at least
one node with at least one disagreement or unobserved
edge). Our method can thus handle as many as Θ(

√
n)

clusters; this can be compared to existing approaches to
graph clustering, which often partition nodes into two or a
constant number of clusters. The guarantees of this theo-
rem are orderwise stronger than what would result from a
direct application of the deterministic guarantees in (Chan-
drasekaran et al., 2009; Hsu et al., 2010). Indeed, the re-
sults in (Hsu et al., 2010) implies correct recovery as long
as Dmax ≤ cK

2
min
n2 for some constant c. (This result sub-

sumes those in (Chandrasekaran et al., 2009).) Theorem 2
only requires Dmax < Kmin

4n , which is an order improve-
ment if Kmin grows slower than n.

Probabilistic Guarantees: We now provide much stronger
guarantees for the case where both the locations of the
observations, and the locations of the observed disagree-
ments, are drawn uniformly at random. Specifically, con-
sider a graph that is generated as follows: start with an ini-
tial “ideally clustered” graph with no disagreements – i.e.
each cluster is completely connected (i.e. a full clique), and
different clusters are completely disconnected (i.e. have no
edges between them). Then for some 0 < τ < 1 and for
each of the

�n
2

�
possible node pairs, flip the entry in this

location with probability τ from 0 to 1 or 1 to 0, as the case
may be – thus causing them to be disagreements. There
are thus, on average, τ

�n
2

�
disagreements in the resulting

graph. The actual number is close to this with high prob-
ability, by standard concentration arguments. Further, this
graph is observed at locations chosen uniformly at random.
Specifically, for each node pair (i, j) there is a probability
p0 that (i, j) ∈ Ωobs, and this choice is made independently
of any other node pair, or of the graph. Note that now it
may be possible that the optimal clustering is not the origi-
nal ideal clustering we started with; the following theorem
says that we will still find the optimal clustering with high
probability.

Theorem 3 For any constant c > 0, there exist constants

Cd, Ck, such that, with probability at least 1 − cn−10
, the

optimal clustering (K∗, B∗) is the unique solution of (1)

with η = 1
1+

√
np0

provided that

τ ≤ Cd and Kmin ≥ Ck

�
n(log n)4/p0.

Remarks on Theorem 3: This shows that our algorithm
will succeed in the overwhelming majority of instances
where as large as a constant fraction of all observations
are disagreements. In particular the number of disagree-
ments can be an order of magnitude larger than the number
of “good” edges (i.e. those that agree with the clustering).
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This remains true even if we observe a vanishingly small
fraction of the total number of node pairs – p0 above is al-
lowed to be a function of n. Smaller p0 however requires
Kmin to be correspondingly larger. The reason underlying
these stronger results is that bounded matrices with random
supports are very spectrally diffuse, and thus find it hard to
“hide” a clique, which is highly structured. When p0 is a
constant, our theorem and the probabilistic guarantees in
(Candes et al., 2009) can both handle the same value of
corrupted fraction τ . However, our theorem goes beyond
(Candes et al., 2009) as we allow p0 to be a vanishing func-
tion of n.

Remarks on Outliers: Our algorithm has the capability to
handle outliers (i.e., isolated nodes outside the true clus-
ters with at most Dmax|c| edges to each true cluster c) by
classifying all their edges as disagreements - and hence au-
tomatically revealing each outlier as a single-node cluster.
In the output of our algorithm, the low rank part K will
have all zeroes in columns corresponding to outliers – all
their edges will appear in the disagreement matrix B.

3. Proof of Theorem 1
In this section, we prove Theorem 1; in particular, that if (1)
produces a valid low-rank matrix, i.e. one that corresponds
to a clustering of the nodes, then this is the disagreement
minimizing clustering. Consider the following non-convex
optimization problem

min
B,K

η ||B||1 + (1− η) ||K||∗ (2)

s.t. PΩobs(B+K) = PΩobs(I+A)

K is valid

and let (B,K) be any feasible solution. Since K represents
a valid clustering, it is positive semidefinite and has all ones
along its diagonal. Therefore, any valid K obeys �K�∗ =
trace(K) = n. On the other hand, because both K − I
and A are adjacency matrices, the entries of B = I+A−
K must be equal to −1, 1 or 0 (i.e. it is a disagreement
matrix). Hence �B�1 = �B�0 when K is valid. We thus
conclude that the above optimization problem is equivalent
to minimizing ||B||0 s.t. the constraints in (2) hold. This is
exactly the minimization of the number of disagreements
on the observed edges. Now notice that (1) is a relaxed
version (2). Therefore, if the optimum of (1) is valid and
feasible to (2), then it is also optimal to (2).

4. Proof Outline for Theorem 2 and 3
We now overview the main steps in the proof of Theorem
2 and 3; the following sections provide details. Recall that
we would like to show that K∗ and B∗ corresponding to
the optimal clustering is the unique optimum of our convex
program (1). This involves the following steps:

Step 1: Write down sub-gradient based first-order suffi-
cient conditions that need to be satisfied for K∗,B∗ to be
the unique optimum of (1). In our case, this involves show-
ing the existence of a matrix Q – the dual certificate – that
satisfies certain properties. This step is technically involved
– requiring us to delve into the intricacies of sub-gradients
since our convex function is not smooth – but otherwise
standard. Luckily for us, this has been done by (Chan-
drasekaran et al., 2009; Candes et al., 2009).

Step 2: Using the assumptions made on the optimal clus-
tering and its disagreements (K∗,B∗), construct a candi-
date dual certificate Q that meets the requirements – and
thus certifies K∗,B∗ as being the unique optimum. This
is where the “art” of the proof lies: different assumptions
on the K∗,B∗ (e.g. we look at deterministic and random
assumptions) and different ways to construct this Q will
result in different performance guarantees.

The crucial second step is where we go beyond the existing
literature on matrix splitting (Chandrasekaran et al., 2009;
Candes et al., 2009). In particular, our sparse and low-rank
matrices have a lot of additional structure, and we use some
of this in new ways to generate dual certificates. This leads
to much more powerful performance guarantees than those
that could be obtained via a direct application of existing
sparse and low-rank matrix splitting results.

4.1. Preliminaries

Definitions related to K∗: By symmetry, the SVD of
K∗ is of the form UΣUT . We define the sub-space
T =

�
UXT +YUT : X,Y ∈ Rn×p

�
to be the span

of all matrices that share either the same column space or
the same row space as K∗. For any matrix M ∈ Rn×n,
we can define its orthogonal projection to the space T as
PT (M) = UUTM+MUUT −UUTMUUT . We also
define the projection onto T ⊥, the complement orthogonal
space of T , as PT ⊥ (M) = M− PT (M).

Definitions related to B∗: For any matrix M define its
support set as supp(M) = {(i, j) : mi,j �= 0}. Let Ω =
{B ∈ Rn×n : supp(B) ⊆ supp(B∗)} be the space of ma-
trices with support sets that are a subset of the support set
of B∗. Let PΩ (N) ∈ Rn×n be the orthogonal projec-
tion of the matrix N onto the space Ω, i.e., PΩ (N) is ob-
tained from N by setting all entries not in the set supp(B∗)
to zero. Let Ω⊥ be the orthogonal space to Ω – it is the
space of all matrices whose entries in the set supp(B∗) are
zero. The projection PΩ⊥ is defined accordingly. Finally,
let sgn (B∗) be the matrix whose entries are +1 for every
positive entry in B∗, -1 for every negative entry, and 0 for
all the zero entries.

Definitions related to partial observations: Let Ωobs be
the space of matrices with support sets that are a subset of
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Figure 2. Simulation results for fully observed 1000-node
graph with all clusters of the same size. For different clus-
ter sizes Kmin and different number of disagreements per
node b, we plot the probability of success.

the set of observed entries, and Γ = Ω⊥ ∩Ωobs is the set of
matrices with support within the set of observed entries but
outside the set of disgreements. Accordingly, define PΩobs ,
PΩ⊥

obs
, PΓ and PΓ⊥ similar to that of PΩ and PΩ⊥ .

Norms: �M� and �M�F represent the spectral and Frobe-
nius norm of the matrix M respectively and �M�∞ =
maxi,j |mi,j |.

5. Worst Case Analysis
In this section, we prove Theorem 2. We first state the de-
terminisic first-order conditions required for B∗ and K∗ to
be the unique optimum of our convex program (1).

Lemma 1 (Deterministic Sufficient Optimality)
(Chandrasekaran et al., 2009) B∗

and K∗
are unique

solutions to (1) provided that T ∩ Γ⊥ = {0} and there

exists a matrix Q such that

(a). PΩ⊥
obs

(Q) = 0; (b). PT (Q) = (1− η)UUT ;
(c). PΩ(Q) = η sgn(B∗); (d). �PT ⊥(Q)� < 1− η;
(e). �PΩ⊥(Q)�∞ < η.

The first condition, T ∩ Γ⊥ = {0}, is satisfied under the
assumption of the theorem; the proof follows from showing
�PT (PΓ⊥(N)) �∞ < �N�∞. Next, we need to construct
a suitable dual certificate Q that satisfies condition (a)-(e).
We use the alternating projection method (see (Candes &
Recht, 2009)) to construct Q. The novelty of our analysis
is that by taking advantage of the rich structures of the ma-
trices B∗ and K∗, such as symmetricity, block-diagonal,
etc, we improve the existing guarantees (Chandrasekaran
et al., 2009; Candes et al., 2009) to a much larger class of
matrices.

Figure 3. Simulation results for fully observed 1000-node
graph with cluster of non-uniform sizes. The graph has
clusters of at least size k. For different minimum cluster
size Kmin and number of disgreement per node b, we plot
the probability of success.

Dual Certificate Construction: For M ∈ Γ⊥ and N ∈ T ,
consider the infinite sums

SM=M−PT (M)+PΓ⊥PT (M)−PT PΓ⊥PT (M)+···
VN= N−PΓ⊥ (N)+PT PΓ⊥ (N)−PΓ⊥PT PΓ⊥ (N)+···

Provided that these two sums converge, let Q = (1 −
η)VUUT + ηSsgn(B∗). It is easy to check that the equality
conditions in Lemma 1 are satisfied. It remains to show that
(i) the sums converge and (ii) the inequality conditions in
Lemma 1 are satisfied. The proof again requires suitable
bounds on �PT (PΓ⊥(N)) �∞, as well as on �PΓ⊥M�,
which crucially depend on the assumptions imposed on
K∗ and B∗; see supplementary materials. Combining the
above discussion establishes the theorem.

6. Average Case Analysis
In this section, we prove Theorem 3. We first state the prob-
abilistic first-order conditions required for B∗ and K∗ to
be the unique optimum of (1) with high probability. By
with high probability we mean with probability at least
1− cn−10 for some constant c > 0.

Lemma 2 (Probabilistic Sufficient Optimality) (Candes

et al., 2009) Under the assumptions of Theorem 3, K∗

and B∗
are unique solutions to (1) with high proability

provided that there exists Q = WB +WK
such that

(S1)
��PT (WB)

��
F
≤ 1

2n2 . (L1)
��PT ⊥(WK)

�� < 1
4 .

(S2)
��PT ⊥(WB)

�� < 1
4 . (L2)

��PT(WK)−UUT
��
F

(S3) PΩ(WB) = η
1−η sgn(B∗) ≤ 1

2n2 .

(S4) PΩ⊥
obs

(WB) = 0. (L3) PΓ⊥(WK) = 0.

(S5)
��PΓ(WB)

��
∞ < 1

4
η

1−η . (L4)
��PΓ(WK)

��
∞<

1
4

η
1−η .

Dual Certificate construction: We used the so-called
Golfing Scheme ((Candes et al., 2009; Gross, 2009)) to
construct (WB,WK). Our application of Golfing Scheme
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Figure 4. Simulation results for partially observed 400-node
network with minimum cluster size fixed at Kmin = 60.
Disagreements are placed on each (potential) edge with
probability τ , and each edge is observed with probability
p0. The figure shows the probability of success in recov-
ering the ideal cluster under different τ and p0. Brighter
colors show higher success.

is different from (Candes et al., 2009), and the proof utilizes
additional structure in our problem, which leads to stronger
guarantees. In particular, we go beyond existing results by
allowing the fraction of observed entries to be vanishing.

With slight abuse of notation, we use Ωobs, Γ, and Ω to
denote both the spaces of matrices, as well as the sets of
indices these matrices are supported on. By definition, Γ
(as a set of indices) contains each entry index with prob-
ability p0(1 − τ). Observe that Γ may be considered to
be generated by ∪1≤k≤k0Γi, where each Γi contains each
entry with probability q independent of all others, where q
and k0 are suitably chosen. For 1 ≤ k ≤ k0, define the
operator RΓk by

RΓk(M)=
n�

i=1

mi,ieie
T
i +q−1

�

1≤i<j≤n

δ(k)ij mi,j

�
eie

T
j + eje

T
i

�
,

where, δ(k)ij = 1 if (i, j) ∈ Γk and 0 otherwise, and ei is the
i-th standard basis – i.e., the n× 1 column vector with 1 in
its i-th entry and 0 elsewhere. WB and WK are defined as

WB = WB
k0

+
η

1− η
sgn(B∗), WK = WK

k0
,

where, (WK
k0
,WB

k0
) is defined recursively by setting

WB
0 = WK

0 = 0 and for all k = 1, 2, . . . , k0,

WB
k = WB

k−1 −RΓkPT

�
η

1− η
PT (sgn(B

∗)) +WB
k−1

�

WK
k = WK

k−1 +RΓkPT
�
UUT −WK

k−1

�
.

It is straightforward to verify that the equality constraints
in Lemma 2 are satisfied. Moreover, WK satisfies the

Figure 5. Simulation results for partially observed 400-node
network with fixed probability τ = 0.04 of placing a dis-
greement, and different Kmin and p0.

inequality constraints. The proof is nearly identical to
that of Y L in section 7.3 in (Candes et al., 2009). It re-
mains to prove that WB also satisfies the corresponding
inequalities in Lemma 2. As in the worst case analy-
sis, the proof involves upper-bounding the norms of ma-
trices after certain (random) linear tranformations, such as
�PT PΓkPT (M)�, �PΓk(M)�, �PT PΓkPT (M)�∞, and
�PT PΩ(sgn(B∗))�∞. These bounds are proven again us-
ing the assumptions imposed on B∗, K∗, and Ωobs.

7. Experimental Results
We explore the performance of our algorithm as a various
graph parameters of interest via simulation. We see that the
performance matches well with the theory.

We first verify our deterministic guarantees for fully ob-
served graphs and consider two cases: (1) all clusters have
the same size equal to Kmin, and the number of disagree-
ments involving each node is fixed at b across all nodes;
(2) b is again fixed, but clusters may have different sizes
no smaller than Kmin. For each pair (b,Kmin), a graph is
picked randomly from all graphs with the desired property,
and we use our algorithm to find K∗ and B∗. The opti-
mization problem (1) is solved using the fast algorithm in
(Lin et al., 2009) with η set via line search with step size
0.01. We check if the solution is a valid clustering and is
equal to the underlying ideal cluster. The experiment is re-
peated for 10 times and we plot the probability of success
in Fig. 2 and 3. One can see that the margin of the num-
ber of disagreements is higher in the second case, as these
graphs have typically larger clusters than in the first case.

We next consider partially observed graphs. A test case
is constructed by generating a 400-node graph with equal
cluster size Kmin, and then placing a disagreement on each
(potiential) edge with probability τ , independent of all oth-
ers. Each edge is observed with probability p0. In the first
set of experiments, we fix Kmin = 60 and vary (p0, τ). The
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probability of success is ploted in Fig. 6. The second set of
experiments have fixed τ = 0.04 and different (p0,Kmin),
with results ploted in Fig. 6. One can see that our algo-
rithm succeeds with p0 as small as 10% and the average
number of disagreements per node being on the same order
of the cluster size. We expect that the fraction of observed
entries can be even smaller for larger networks, where the
concentration effect is more significant.
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