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Abstract

We study the problem of selecting a subset of
k random variables from a large set, in order to
obtain the best linear prediction of another vari-
able of interest. This problem can be viewed in
the context of both feature selection and sparse
approximation. We analyze the performance
of widely used greedy heuristics, using insights
from the maximization of submodular functions
and spectral analysis. We introduce thesubmod-
ularity ratio as a key quantity to help understand
why greedy algorithms perform well even when
the variables are highly correlated. Using our
techniques, we obtain the strongest known ap-
proximation guarantees for this problem, both in
terms of the submodularity ratio and the small-
est k-sparse eigenvalue of the covariance ma-
trix. We also analyze greedy algorithms for the
dictionary selection problem, and significantly
improve the previously known guarantees. Our
theoretical analysis is complemented by experi-
ments on real-world and synthetic data sets; the
experiments show that the submodularity ratio is
a stronger predictor of the performance of greedy
algorithms than other spectral parameters.

1. Introduction

We analyze algorithms for the following importantSubset
Selectionproblem: select a subset ofk variables from a
given set of observation variables which, taken together,
“best” predict another variable of interest. This problem
has a wide range of applications ranging from feature se-
lection, sparse learning and dictionary selection in machine
learning, to sparse approximation and compressed sensing
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in signal processing. From a machine learning perspective,
the variables could be features or observable attributes ofa
phenomenon, and we wish to predict the phenomenon us-
ing only a small subset from the high-dimensional feature
space. In signal processing, the variables could correspond
to a collection of dictionary vectors, and the goal is to par-
simoniously represent another (output) vector. For many
practitioners, the prediction model of choice is linear re-
gression, and the goal is to obtain a linear model using a
small subset of variables, to minimize the mean square pre-
diction error or, equivalently, maximize the squared multi-
ple correlationR2 (Johnson & Wichern, 2002).

Thus, we formulate the Subset Selection problem for re-
gression as follows: Given the (normalized) covariances
betweenn variablesXi (which can in principle be ob-
served) and a variableZ (which is to be predicted), select a
subset ofk ≪ n of the variablesXi and a linear prediction
function ofZ from the selectedXi that maximizes theR2

fit. (A formal definition is given in Section 2.) The covari-
ances are usually obtained empirically from detailed past
observations of the variable values.

The above formulation is known (Das & Kempe, 2008) to
be equivalent to the problem ofsparse approximationover
dictionary vectors: the input consists of a dictionary of
n feature vectorsxi ∈ R

m, along with a target vector
z ∈ R

m, and the goal is to select at mostk vectors whose
linear combination best approximatesz. The pairwise co-
variances of the previous formulation are then exactly the
inner products of the dictionary vectors.1

Our problem formulation appears somewhat similar to
the problem of sparse recovery (Zhang, 2008; 2009;
Zhao & Yu, 2006; Candès et al., 2005); however, note that
in sparse recovery, it is generally assumed that the predic-
tion vector is truly (almost)k-sparse, and the aim is to re-
cover the exact coefficients of this truly sparse solution. For

1 For this reason, the dimensionm of the feature vectors only
affects the problem indirectly, via the accuracy of the estimated
covariance matrix.
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many situations, the actual solution might indeed be dense;
the reason for running subset selection is then to reduce
cost and model complexity.

This problem isNP-hard (Natarajan, 1995), so no effi-
cient algorithms are known to solve it optimally. Two
approaches are frequently used for approximating such
problems: greedy algorithms (Miller, 2002; Tropp, 2004;
Gilbert et al., 2003; Zhang, 2008) and convex relaxation
schemes (Tibshirani, 1996; Candès et al., 2005; Tropp,
2006). For our formulation, a disadvantage of convex re-
laxation techniques is that they do not provide explicit con-
trol over the target sparsity levelk of the solution; addi-
tional effort is needed to tune the regularization parameter.

A simpler and more intuitive approach, widely used in
practice for subset selection problems (for example, it is
implemented in all commercial statistics packages), is to
use greedy algorithms, which iteratively add or remove
variables based on simple measures of fit withZ. Two of
the most well-known and widely used greedy algorithms
are the subject of our analysis: Forward Regression (Miller,
2002) and Orthogonal Matching Pursuit (OMP) (Tropp,
2004). (These algorithms are defined in Section 2).

Previous theoretical bounds on such greedy algorithms
have been unable to explain why they perform well in prac-
tice for most subset selection problem instances. Most
previous results for greedy subset selection algorithms
(Gilbert et al., 2003; Tropp, 2004; Das & Kempe, 2008)
have been based on coherence of the input data, i.e., the
maximum correlationµ between any pair of variables.
Small coherence is an extremely strong condition, and the
bounds (which usually prove a1 − O(µk) approximation)
break down when the coherence isω(1/k). On the other
hand, most bounds for greedy and convex relaxation algo-
rithms for sparse recovery are based on a weaker sparse-
eigenvalue or Restricted Isometry Property (RIP) condi-
tion (Zhang, 2009; 2008; Lozano et al., 2009; Zhou, 2009;
Candès et al., 2005). However, these results apply to a dif-
ferent objective: minimizing the difference between the ac-
tual and estimated coefficients of a sparse vector. Simply
extending these results to the subset selection problem adds
a dependence on the largestk-sparse eigenvalue and only
leads to weak additive bounds.

More importantly, all the above results rely on spectral con-
ditions that fail to explain an observation of many exper-
iments (including ours in Section 5): greedy algorithms
often perform very well, even for near-singular input ma-
trices. Our results begin to explain these observations by
proving that the performance of many greedy algorithms
does not really depend on how singular the covariance ma-
trix is, but rather on how far theR2 measure deviates from
submodularity on the given input. We formalize this in-
tuition by defining a measure of “approximate submodu-

larity” which we termsubmodularity ratio. We prove that
whenever the submodularity ratio is bounded away from 0,
theR2 objective is “reasonably close” to submodular, and
Forward Regression gives a constant-factor approximation.
This significantly generalizes our previous result (2008),
where we had identified a strong condition termed “absence
of conditional suppressors” which ensures that theR2 ob-
jective is actually submodular.

An analysis based on the submodularity ratio does relate
with traditional spectral bounds, in that this ratio is always
lower-bounded by the smallestk-sparse eigenvalue of the
covariance matrix (though it can be much larger when the
predictor variable is not badly aligned with the eigenspace
of small eigenvalues). In particular, we also obtain multi-
plicative approximation guarantees for Forward Regression
and Orthogonal Matching Pursuit, whenever the smallest
k-sparse eigenvalue is bounded away from0, significantly
strengthening past known bounds on their performance.

An added benefit of our framework is that we obtain tighter
theoretical performance bounds for greedy algorithms for
dictionary selection (Krause & Cevher, 2010). In thedic-
tionary selection problem(which is formally defined in
Section 2), we are givens target vectors, and a candidate
setV of feature vectors. The goal is to select a setD ⊂ V
of at mostd feature vectors, which will serve as adictio-
nary in the following sense. For each of the target vectors,
the bestk < d vectors fromD will be selected and used
to achieve a goodR2 fit; the goal is to maximize the av-
erageR2 fit for all of these vectors. This problem of find-
ing a dictionary of basis functions for sparse representation
of signals has several applications in machine learning and
signal processing. Krause and Cevher (2010) showed that
greedy algorithms for dictionary selection perform well in
many instances, and proved additive approximation bounds
for two specific algorithms,SDSMA andSDSOMP. Our ap-
proximate submodularity framework lets us obtain stronger
multiplicative guarantees without much extra effort.

Our theoretical analysis is complemented by experiments
comparing the performance of the greedy algorithms and
a baseline convex-relaxation algorithm for subset selection
on two real-world data sets and a synthetic data set. More
importantly, we evaluate the submodularity ratio of these
data sets and compare it with other spectral parameters:
while the input covariance matrices are close to singular,
the submodularity ratio actually turns out to be significantly
larger. Thus, our theoretical results can begin to explain
why, in many instances, greedy algorithms perform well in
spite of the fact that the data may have high correlations.
Our main contributions can be summarized as follows:

1. We introduce the notion of submodularity ratio, as a
much more accurate predictor of the performance of
greedy algorithms than previously used parameters.
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2. We obtain the strongest known theoretical perfor-
mance guarantees for greedy algorithms for subset se-
lection. In particular, we show (in Section 3) that the
Forward Regression and OMP algorithms are within a
1 − e−γ factor and1 − e−(γ·λmin) factor of optimal,
respectively (where theγ andλ terms are appropriate
submodularity and sparse-eigenvalue parameters).

3. We obtain the strongest known theoretical guarantees
for algorithms for dictionary selection, improving on
the results of (Krause & Cevher, 2010). In particular,
we show (in Section 4) that theSDSMA algorithm is
within a factor γ

λmax

(1 − 1
e ) of optimal.

2. Preliminaries

The goal in subset selection is to estimate apredictor vari-
ableZ using linear regression on a small subset from the
set of observation variablesV = {X1, . . . , Xn}. We
useVar(Xi) andCov(Xi, Xj) to denote the variance and
covariance of the random variables. By appropriate nor-
malization, we can assume that all the random variables
have mean 0 and variance 1. The matrix of covariances
between theXi and Xj is denoted byC, with entries
ci,j = Cov(Xi, Xj). Similarly, we useb to denote the
covariances betweenZ and theXi, with entriesbi =
Cov(Z, Xi). Formally, theSubset Selectionproblem can
now be stated as follows:

Definition 2.1 (Subset Selection)Given pairwise covari-
ances among all variables, as well as a parameterk, find a
setS ⊂ V of at mostk variablesXi and a linear predictor
Z ′ =

∑

i∈S αiXi of Z, maximizing thesquared multiple

correlationR2
Z,S :=

Var(Z)−E[(Z−Z′)2]
Var(Z) (Diekhoff, 2002;

Johnson & Wichern, 2002).

R2 is a widely used measure for the goodness of a statistical
fit; it captures the fraction of the variance ofZ explained by
variables inS. Because we assumedZ to be normalized to
have variance 1, it simplifies toR2

Z,S = 1−E
[

(Z − Z ′)2
]

.

For a setS, we useCS to denote the submatrix ofC with
row and column setS, andbS to denote the vector with
only entriesbi for i ∈ S. For notational convenience,
we frequently do not distinguish between the index setS
and the variables{Xi | i ∈ S}. Given the subsetS of
variables used for prediction, the optimal regression coef-
ficients are well known to beαS = (αi)i∈S = C−1

S · bS

(see, e.g., (Johnson & Wichern, 2002)), and henceR2
Z,S =

b
T
SC−1

S bS . Thus, the subset selection problem can be
phrased as follows: GivenC, b, andk, select a setS of
at mostk variables to maximizeR2

Z,S = b
T
S (C−1

S )bS .2

2We assume throughout thatCS is non-singular. For some of
our results, an extension to singular matrices is possible using the
Moore-Penrose pseudoinverse.

The dictionary selection problem generalizes subset selec-
tion by considerings predictor variablesZ1, Z2, . . . , Zs.
The goal is to select a dictionaryD of d observation vari-
ables, to optimize the averageR2 fit for the Zj using at
mostk vectors fromD for each. Formally, the Dictionary
Selection problem is defined as follows:

Definition 2.2 (Dictionary Selection) Given all pairwise
covariances among theZj andXi, and parametersd and
k, find a setD of at mostd variables from{X1, . . . , Xn}
maximizingF (D) =

∑s
j=1 maxSj⊂D,|Sj|=k R2

Zj ,Sj
.

Many of our results are phrased in terms of eigenvalues
of the covariance matrixC and its submatrices. Since
covariance matrices are positive semidefinite, their eigen-
values are real and non-negative (Johnson & Wichern,
2002). For any positive semidefiniten × n matrix A,
we denote its eigenvalues byλmin(A) = λ1(A) ≤
λ2(A) ≤ . . . ≤ λn(A) = λmax(A). We use
λmin(C, k) = minS:|S|=k λmin(CS) to refer to the small-
est eigenvalue of anyk × k submatrix ofC (i.e., the
smallestk-sparse eigenvalue), and similarlyλmax(C, k) =
maxS:|S|=k λmax(CS). 3 We also useκ(C, k) to de-
note the largest condition number (the ratio of the largest
and smallest eigenvalue) of anyk × k submatrix ofC.
This quantity is strongly related to the Restricted Isome-
try Property in (Candès et al., 2005). We also useµ(C) =
maxi6=j |ci,j | to denote thecoherence, i.e., the maximum
absolute pairwise correlation between theXi variables. We
denoteRes(Z, S) = Z −

∑

i∈S αiXi as theresidual(see
(Diekhoff, 2002)) of Z, i.e., the part of the variableZ that
is not correlated with theXi for all i ∈ S.

2.1. Submodularity Ratio

We introduce the notion of submodularity ratio for a gen-
eral set function, which captures “how close” to submodu-
lar the function is. We first define it for arbitrary set func-
tions, and then show the specialization for theR2 objective.

Definition 2.3 (Submodularity Ratio) Let f be a non-
negative set function. Thesubmodularity ratioof f with
respect to a setU and a parameterk ≥ 1 is γU,k(f) =

minL⊆U,S:|S|≤k,S∩L=∅

P

x∈S f(L∪{x})−f(L)

f(L∪S)−f(L) . Thus, it cap-
tures how much moref can increase by adding any sub-
setS of sizek to L, compared to the combined benefits of
adding its individual elements toL.

If f is specifically theR2 objective defined on the
variables Xi, then we omit f and simply write

γU,k = minL⊆U,S:|S|≤k,S∩L=∅

P

i∈S(R2

Z,L∪{Xi}
−R2

Z,L)

R2

Z,S∪L−R2

Z,L
=

3Computingλmin(C, k) is NP-hard. In the full version of this
paper (2011), we describe how to efficiently approximate theval-
ues for some scenarios.
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minL⊆U,S:|S|≤k,S∩L=∅
(bL

S)T
b

L
S

(bL
S )T (CL

S )−1bL
S

, where CL

and b
L are the normalized covariance matrix

and covariance vector corresponding to the set
{Res(X1, L), Res(X2, L), . . . , Res(Xn, L)}.

It can be easily shown thatf is submodular if and only
if γU,k ≥ 1, for all U andk. For the purpose of subset
selection, it is significant that the submodularity ratio can
be bounded in terms of the smallest sparse eigenvalue, as
shown by the following non-trivial lemma. (the proof is
available in the full version of this paper (2011)).

Lemma 2.4 γU,k ≥ λmin(C, k + |U |) ≥ λmin(C).

For all our analysis in this paper, we will use|U | = k, and
henceγU,k ≥ λmin(C, 2k). Thus, the smallest2k-sparse
eigenvalue is a lower bound on this submodularity ratio; as
we show later, it is often a weak lower bound.

3. Algorithms Analysis

We now present theoretical performance bounds for For-
ward Regression and Orthogonal Matching Pursuit. We
also analyze the Oblivious algorithm, which is one of the
simplest greedy algorithms for subset selection. Through-
out this section, we use OPT= maxS:|S|=k R2

Z,S to de-
note the optimumR2 value achievable by any set of sizek.
All proofs that are omitted due to space constraints can be
found in the full version of this paper on arXiv (2011).

3.1. Forward Regression

We first provide approximation bounds for Forward Re-
gression, which is the standard algorithm used by many
researchers in medical, social and economic domains.

Definition 3.1 (Forward Regression)The Forward Re-
gression(also calledForward Selection) algorithm for sub-
set selection selects a setS of sizek iteratively as fol-
lows: 1) Initialize S0 = ∅. 2) In each iterationi + 1,
select the variableXm maximizingR2

Z,Si∪{Xm}, and set
Si+1 = Si ∪ {Xm}. 3) OutputSk.

Our main result is the following theorem. (The first in-
equality of our theorem can be shown to hold even if we
replaceR2

Z,S with an arbitrary monotone set function.)

Theorem 3.2 The setSFR selected by Forward Regression
has the following approximation guarantees:R2

Z,SFR ≥

(1 − e−γSFR,k) · OPT ≥ (1 − e−λmin(C,2k)) · OPT ≥
(1 − e−λmin(C,k)) · Θ((1

2 )1/λmin(C,k)) · OPT.

Before proving the theorem, we first begin with a general
lemma that bounds the amount by which theR2 value of a
set and the sum ofR2 values of its elements can differ.

Lemma 3.3 1
λmax(C)

∑n
i=1 R2

Z,Xi
≤ R2

Z,{X1,...,Xn} ≤
1

γ∅,n

∑n
i=1 R2

Z,Xi
≤ 1

λmin(C)

∑n
i=1 R2

Z,Xi
.

Proof. Let the eigenvalues ofC−1 be λ′
1 ≤ λ′

2 ≤
. . . ≤ λ′

n, with corresponding orthonormal eigenvectors
e1, e2, . . . , en. We writeb in the basis{e1, e2, . . . , en}
as b =

∑

i βiei. Then,R2
Z,{X1,...,Xn} = b

T C−1
b =

∑

i β2
i λ′

i. Becauseλ′
1 ≤ λ′

i for all i, we getλ′
1

∑

i β2
i ≤

R2
Z,{X1,...,Xn}, and

∑

i β2
i = b

T
b =

∑

i R2
Z,Xi

, because
the length of the vectorb is independent of the basis it is
written in. Also, by definition of the submodularity ratio,

R2
Z,{X1,...,Xn} ≤

P

i β2

i

γ∅,n
. Finally, becauseλ′

1 = 1
λmax(C) ,

and using Lemma 2.4, we obtain the result.

The next lemma relates the optimalR2 value usingk ele-
ments to the optimalR2 usingk′ < k elements.

Lemma 3.4 For eachk, let S∗
k ∈ argmax|S|≤k R2

Z,S be
an optimal subset of at mostk variables.

Then, for anyk′ = Θ(k) such that 1
λmin(C,k) < k′ <

k, we have thatR2
Z,S∗

k′
≥ R2

Z,S∗
k
· Θ((k′

k )1/λmin(C,k)),

for large enoughk. In particular, R2
Z,S∗

k/2

≥ R2
Z,S∗

k
·

Θ((1
2 )1/λmin(C,k)), for large enoughk.

Using the above lemmas, we now prove the main theorem.

Proof of Theorem 3.2. We begin by proving the first in-
equality. LetS∗

k be the variables in the optimum solution.
Let SG

i be the set of variables chosen by Forward Regres-
sion in the firsti iterations, andSi = S∗

k \ SG
i . By mono-

tonicity ofR2 and the fact thatSi ∪SG
i ⊇ S∗

k , we have that
R2

Z,Si∪SG
i
≥ OPT.

For eachXj ∈ Si, let X ′
j = Res(Xj , S

G
i ) be the residual

of Xj conditioned onSG
i , and writeS′

i = {X ′
j | Xj ∈ S}.

We will show that at least one of theX ′
i is a good candi-

date in iterationi + 1 of Forward Regression. First, the
joint contribution of S′

i must be fairly large:R2
Z,S′

i
=

R2
Z,Res(Si,SG

i )
≥ OPT− R2

Z,SG
i

. Using Definition 2.3,
∑

X′
j∈S′

i
R2

Z,X′
j
≥ γSG

i ,|Si| · R
2
Z,S′

i
≥ γSFR,k · R2

Z,S′
i
, since

SG
i ⊆ SFR and |Si| ≤ k. Let ℓ maximizeR2

Z,X′
ℓ
, i.e.,

ℓ = argmax(j:X′
j∈S′

i)
R2

Z,X′
j
. Then we get thatR2

Z,X′
ℓ
≥

γSFR,k

|S′
i|

· R2
Z,S′

i
≥

γSFR,k

k · R2
Z,S′

i
.

DefineA(i) = R2
Z,SG

i
− R2

Z,Si−1

G

to be the gain obtained

from the variable chosen by Forward Regression in itera-
tion i. ThenR2

Z,SFR =
∑k

i=1 A(i). Since theX ′
ℓ above was

a candidate to be chosen in iterationi+1, and Forward Re-
gression chose a variableXm such thatR2

Z,Res(Xm,SG
i )

≥
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R2
Z,Res(X,SG

i )
for all X /∈ SG

i , we obtain that

A(i + 1) ≥
γSFR,k

k · R2
Z,S′

i
≥

γSFR,k

k (OPT− R2
Z,SG

i
)

≥
γSFR,k

k (OPT−
∑i

j=1 A(j)).

Since the above inequality holds for each iterationi =
1, 2, . . . , k, a simple inductive proof establishes the bound
OPT−

∑k
i=1 A(i) ≤ OPT· (1 −

γSFR,k

k )k. Hence,

R2
Z,SFR =

∑k
i=1 A(i) ≥ OPT− OPT(1 −

γSFR,k

k )k

≥ OPT· (1 − e−γSFR,k).

The second inequality follows directly from Lemma 2.4,
and the fact that|SFR| = k.

By applying the above result afterk/2 iterations, we obtain
R2

Z,SG
k/2

≥ (1−e−λmin(C,k)) ·R2
Z,S∗

k/2

. Now, using Lemma

3.4 and monotonicity ofR2, we getR2
Z,SG

k
≥ R2

Z,SG
k/2

≥

(1 − e−λmin(C,k)) ·Θ((1
2 )1/λmin(C,k)) · R2

Z,S∗
k
, proving the

third inequality.

3.2. Orthogonal Matching Pursuit

The second greedy subset selection algorithm that we an-
alyze is Orthogonal Matching Pursuit (OMP), frequently
used in signal processing domains.

Definition 3.5 (Orthogonal Matching Pursuit (OMP))
TheOMP algorithm selects a setS of sizek iteratively as
follows: 1) InitializeS0 = ∅. 2) In each iterationi + 1, se-
lect the variableXm maximizing|Cov(Res(Z, Si), Xm)|,
and setSi+1 = Si ∪ {Xm}. 3) OutputSk.

By applying similar techniques as in the previous section,
we can also obtain approximation bounds for OMP.

Theorem 3.6 The set SOMP selected by Orthogonal
Matching Pursuit has the following approximation guar-
antees:R2

Z,SOMP ≥ (1 − e−(γSOMP,k·λmin(C,2k))) · OPT ≥

(1 − e−λmin(C,2k)2) · OPT ≥ (1 − e−λmin(C,k)2) ·
Θ((1

2 )1/λmin(C,k)) · OPT.

For analyzing OMP, we first obtain the following lemma
that lower-bounds the variance of the residual of a variable.
This lemma, along with an analysis similar to the proof of
Theorem 3.2, is then used to prove Theorem 3.6.

Lemma 3.7 LetA be the(n+1)×(n+1) covariance ma-
trix of the normalized variablesZ, X1, X2, . . . , Xn. Then
Var(Res(Z, {X1, . . . , Xn})) ≥ λmin(A)

3.3. Oblivious Algorithm

As a baseline, we also consider a greedy algorithm which
completely ignoresC and simply selects thek variables
individually most correlated withZ.

Definition 3.8 (Oblivious) The Oblivious algorithm for
subset selection is as follows: Select thek variablesXi

with the largestbi values.

Lemma 3.3 immediately implies the following simple
bound for the Oblivious algorithm.

Theorem 3.9 The set SOBL selected by the Oblivious
algorithm has the following approximation guarantees:
R2

Z,SOBL ≥
γ∅,k

λmax(C,k) · OPT≥ λmin(C,k)
λmax(C,k) · OPT.

4. Dictionary Selection Bounds

To demonstrate the wider applicability of the approximate
submodularity framework, we next obtain a tighter analy-
sis for two greedy algorithms for the dictionary selection
problem, introduced in (Krause & Cevher, 2010).

The SDSMA algorithm generalizes the Oblivious greedy
algorithm to the problem of dictionary selection. It re-
places theR2

Zj ,Sj
term in Definition 2.2 with its mod-

ular approximationf(Zj , Sj) =
∑

i∈Sj
R2

Zj ,Xi
. Thus,

it greedily tries to maximize the function̂F (D) =
∑s

j=1 maxSj⊂D,|Sj|=k f(Zj , Sj), over setsD of size at
mostd; the inner maximum can be computed efficiently
using the Oblivious algorithm.

Definition 4.1 (SDSMA) TheSDSMA algorithm selects a
dictionaryD of sized iteratively as follows: 1) Initialize
D0 = ∅. 2) In each iterationi + 1, select the variableXm

maximizingF̂ (Di ∪{Xm}), and setDi+1 = Di ∪{Xm}.
3) OutputDd.

Using Lemma 3.3, we can obtain the following multiplica-
tive approximation guarantee forSDSMA:

Theorem 4.2 Let DMA be the dictionary selected by the
SDSMA algorithm, andD∗ the optimum dictionary of size
|D| ≤ d, with respect to the objectiveF (D) from Defini-
tion 2.2. Then,F (DMA) ≥

γ∅,k

λmax(C,k) (1 − 1
e ) · F (D∗) ≥

λmin(C,k)
λmax(C,k) (1 − 1

e ) · F (D∗).

Proof. Let D̂ be a dictionary of sized maximizingF̂ (D).
Becausef is monotone and modular,̂F is a monotone,
submodular function. Hence, using the submodularity re-
sults of (Nemhauser et al., 1978) and the optimality of
D̂ for F̂ , F̂ (DMA ) ≥ F̂ (D̂)(1 − 1

e ) ≥ F̂ (D∗)(1 −
1
e ). Now, by applying Lemma 3.3 for eachZj , it is
easy to show that̂F (D∗) ≥ γ∅,k · F (D∗), and simi-
larly F̂ (DMA ) ≤ λmax(C, k) · F (DMA ). Thus we get
F (DMA ) ≥

γ∅,k

λmax(C,k) (1 − 1
e )F (D∗).

The second part now follows from Lemma 2.4.

Note that these bounds significantly improve the previous
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additive approximation guarantee from (Krause & Cevher,
2010):F (DMA ) ≥ (1 − 1

e )F (D∗) − (2 − 1
e )k · µ(C). In

particular, whenµ(C) > Θ(1/k), i.e., even just one pair
of variables has moderate correlation, the approximation
guarantee in (Krause & Cevher, 2010) becomes trivial.

We also obtain a multiplicative approximation guarantee
for the greedySDSOMP algorithm, which improves on the
additive bound obtained by Krause and Cevher. However,
due to space constraints, the analysis is relegated to the full
version of this paper (2011).

5. Experiments

In this section, we evaluate Forward Regression (FR) and
OMP empirically, on two real-world and one synthetic
data set. We plot the performance of the two algorithms
against an optimal solution (OPT) computed using exhaus-
tive search, the Oblivious greedy algorithm (OBL), and
the L1-regularization/Lasso (L1) algorithm (using the im-
plementation of (Koh et al., 2008)). Along with the ob-
served performance, we also plot the theoretical perfor-
mance bound for Forward Regression using the submodu-
larity ratio (FRγ), and that using the smallest sparse eigen-
value (FRλ), which we had derived in Theorem 3.2. Addi-
tionally, we also compute and plot the various spectral pa-
rameters from which lower bounds can be derived. Specif-
ically, these are (1) the submodularity ratio:γSFR,k, where
SFR is the subset selected by Forward Regression, (2) the
smallest sparse eigenvaluesλmin(C, k) and λmin(C, 2k).
(In some cases, computingλmin(C, 2k) was not feasible.)
(3) the sparse inverse condition numberκ(C, k)−1, and (4)
the smallest eigenvalueλmin(C) = λmin(C, n) of the en-
tire covariance matrix.

The aim of our experiments is twofold: First, we wish to
evaluate which among the submodular and spectral param-
eters are good predictors of the performance of greedy al-
gorithms in practice. Second, we wish to highlight how the
theoretical bounds for subset selection algorithms reflecton
their actual performance. Our analytical results predict that
Forward Regression should outperform OMP, which in turn
outperforms Oblivious. For Lasso, it is not known whether
strong multiplicative bounds, like the ones we proved for
Forward Regression or OMP, can be obtained.

5.1. Data Sets

Because several of the spectral parameters (as well as the
optimum solution) areNP-hard to compute, we restrict our
experiments to data sets withn ≤ 30 features, from which
k ≤ 8 are to be selected. We stress that the greedy algo-
rithms themselves are very efficient.

Each data set containsm > n samples, from which we
compute the empirical covariance matrix (analogous to the

Gram matrix in sparse approximation) between all observa-
tion variables and the predictor variable; we then normalize
it to obtainC andb. We evaluate the performance of all al-
gorithms in terms of theirR2 fit; thus, we implicitly treat
C andb as the ground truth, and also do not separate the
data sets into training and test cases.

Our data sets are theBoston Housing Data, a data set of
World Bank Development Indicators, and a synthetic data
set generated from a distribution similar to the one used by
Zhang (2008). TheBoston Housing Data(available from
the UCI Machine Learning Repository) is a small data set
frequently used to evaluate ML algorithms. It comprises
n = 15 features (such as crime rate, property tax rates, etc.)
andm = 516 observations. Our goal is to predict housing
prices from these features. TheWorld Bank Data(available
fromhttp://databank.worldbank.org) contains
an extensive list of socio-economic and health indicators
of development, for many countries and over several years.
We choose a subset ofn = 29 indicators for the years 2005
and 2006, such that the values for all of them = 65 coun-
tries are known for each indicator. (The data set does not
contain all indicators for each country.) We choose to pre-
dict the average life expectancy for those countries.

We also generate a synthetic dataset from a known distri-
bution similar to (Zhang, 2008): There aren = 29 fea-
tures, andm = 100 data points are generated from a joint
Gaussian distribution with moderately high correlations of
0.6. The target vector is obtained by generating coefficients
uniformly from 0 to 10 along each dimension, and adding
noise with varianceσ2 = 0.1. Notice that the target vector
is not truly sparse. The plots we show are the averageR2

values for 20 independent runs of the experiment.

5.2. Results

We run the various subset selection algorithms for values of
k from 2 through8, and plot the correspondingR2 values.
Figures 1, 3 and 5 show the results for the three data sets.

The main insight is that on all data sets, greedy algo-
rithms perform exceedingly well compared to OPT. FR
performs optimally or near-optimally, and OMP is only
slightly worse in some cases. They are closely followed by
Lasso, and then OBL. Interestingly, the order of observed
performance of the greedy algorithms matches that of the
strength of the theoretical bounds we derived for them.

In terms of the theoretical bounds for Forward Regression,
in all cases, we see that our bound based on the submodu-
larity ratio (FRγ) is much stronger than that based on spec-
tral parameters (FRλ), which highlights the strength of our
submodularity-based analysis. While there is still a sub-
stantial gap between FRγ and the observed performance of
FR, Section 5.3 shows how this gap can be narrowed.
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Figure 1: Boston Hous-
ing R2
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Figure 2: Boston Hous-
ing parameters
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Figure 3: World Bank
R2
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Figure 4: World Bank
parameters
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Figure 5: Synthetic
DataR2
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Figure 6: Synthetic
Data parameters

Figures 2, 4 and 6 show the different spectral quantities for
the data sets, for varying values ofk. Both of the real-
world data sets are nearly singular, as evidenced by the
smallλmin(C) values. In fact, the near singularities mani-
fest themselves for small values ofk already; in particular,
sinceλmin(C, 2) is already small, we observe that there are
pairs of highly correlated observations variables in the data
sets. Thus, the bounds on approximation we would obtain
by considering merelyλmin(C, k) orλmin(C, 2k) would be
quite weak (as observed by the plots for FRλ in the previ-
ous set of graphs). Notice, however, that these parameters
are still quite a bit stronger than the inverse condition num-
berκ(C, k)−1: this quantity — which is closely related to
the RIP property that is frequently used in sparse recovery
analysis — takes on much smaller values, and thus would
lead to an even weaker bound.

The discrepancy between the small values of the eigenval-
ues and the good performance of all algorithms shows that
eigenvalue-based bounds can frequently be loose. Signif-
icantly better bounds are obtained from the submodularity

ratio γSFR,k (as seen in the previous plots for FRγ), which
takes on values above 0.2, and significantly larger in some
cases. While not entirely sufficient to explain the perfor-
mance of the greedy algorithms, it shows that the near-
singularities ofC do not align unfavorably withb, and thus
do not provide an opportunity for strong supermodular be-
havior that adversely affects greedy algorithms.

The synthetic data set we generated is somewhat further
from singular, withλmin(C) ≈ 0.11. However, the same
patterns persist: the simple eigenvalue based bounds, while
somewhat larger for smallk, still do not fully predict the
performance of greedy algorithms, whereas the submodu-
larity ratio here is close to 1 for all values ofk. This shows
that the near-singularities do not at all provide the possibil-
ity of strongly supermodular benefits of sets of variables.
Indeed, the plot ofR2 values on the synthetic data is con-
cave, an indicator of submodular behavior of the function.

The above observations suggest that bounds based on the
submodularity ratio are better predictors of the perfor-
mance of greedy algorithms, followed by bounds based on
the sparse eigenvalues, and finally those based on the con-
dition number or RIP property.

5.3. Narrowing the gap between theory and practice

Our theoretical bounds, though much stronger than pre-
vious results, still do not fully predict the observed near-
optimal performance of Forward Regression and OMP on
the real-world datasets. In particular, for Forward Re-
gression, even though the submodularity ratio is less than
0.4 for most cases, implying a theoretical guarantee of
roughly 1 − e−0.4 ≈ 33%, the algorithm still achieves
near-optimal performance. While gaps between worst-case
bounds and practical performance are commonplace in al-
gorithmic analysis, they also suggest that there is scope for
further improving the analysis.

Indeed, a more careful analysis of the proof of Theorem 3.2
and our definition of the submodularity ratio reveals that
we do not really need to calculate the submodularity ratio
over all setsS of sizek while analyzing the greedy steps
of Forward Regression. We can ignore setsS whose sub-
modularity ratio is low, but whose marginal contribution to
the currentR2 is only a small fraction (say, at mostǫ). This
is because the proof of Theorem 3.2 shows that if a partic-
ular greedy iteration uses such a set for its analysis, then
the current solution must already be within a factor1

1+ǫ of
the optimal solution. By carefully pruning such sets (using
ǫ = 0.2) while calculating the submodularity ratio, we see
that the resulting values ofγSFR,k are much higher (more
than0.8), thus significantly reducing the gap between the
theoretical bounds and experimental results. Table 1 shows
the values ofγSFR,k obtained using this method.
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The results suggest an interesting direction for future work:
namely, to characterize for which sets the submodular be-
havior ofR2 really matters.

Table 1: Improved estimates for submodularity ratio
Data Set k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Boston 0.9 0.91 1.02 1.21 1.36 1.54 1.74
World Bank 0.8 0.81 0.81 0.81 0.94 1.19 1.40

6. Discussion and Concluding Remarks

In this paper, we analyze greedy algorithms using the
notion of submodularity ratio, which captures how close
to submodular an objective function (in our case theR2

measure of statistical fit) is. Using submodular anal-
ysis, coupled with spectral techniques, we prove the
strongest known approximation guarantees for commonly
used greedy algorithms for subset selection and dictionary
selection. Our bounds help explain why greedy algorithms
perform well in practice even in the presence of strongly
correlated data, and are substantiated by experiments on
real-world and synthetic datasets. The experiments show
that the submodularity ratio is a much stronger predictor of
the performance of greedy algorithms than previously used
spectral parameters. We believe that our techniques for an-
alyzing greedy algorithms using a notion of “approximate
submodularity” are not specific to subset selection and dic-
tionary selection, and could also be used to analyze other
problems in compressed sensing and sparse recovery.
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