
Learning Deep Energy Models

Jiquan Ngiam jngiam@cs.stanford.edu
Zhenghao Chen zhenghao@cs.stanford.edu
Pang Wei Koh pangwei@cs.stanford.edu
Andrew Y. Ng ang@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

Deep generative models with multiple hidden
layers have been shown to be able to learn
meaningful and compact representations of
data. In this work we propose deep energy
models, which use deep feedforward neural
networks to model the energy landscapes that
define probabilistic models. We are able to
efficiently train all layers of our model simul-
taneously, allowing the lower layers of the
model to adapt to the training of the higher
layers, and thereby producing better genera-
tive models. We evaluate the generative per-
formance of our models on natural images
and demonstrate that this joint training of
multiple layers yields qualitative and quan-
titative improvements over greedy layerwise
training. We further generalize our models
beyond the commonly used sigmoidal neural
networks and show how a deep extension of
the product of Student-t distributions model
achieves good generative performance. Fi-
nally, we introduce a discriminative extension
of our model and demonstrate that it outper-
forms other fully-connected models on object
recognition on the NORB dataset.

1. Introduction

Deep networks are able to learn rich and complex mod-
els of data, making them well suited as generative mod-
els of images and other natural data (Bengio, 2007).
However, having multiple layers of stochastic hidden
units makes inference and learning challenging.

To overcome this problem, we propose using deep en-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

(a) DBN (b) DBM (c) DEM

Figure 1. Comparison of (a) deep belief networks (DBNs),
(b) deep Boltzmann machines (DBMs) and (c) deep energy
models (DEMs). DBNs have undirected connections at the
top two layers which form a RBM and directed connections
to the lower layers. DBMs have undirected connections
through all layers. DEMs can viewed as having determin-
istic hidden units for the lower layers and stochastic hidden
units at the top hidden layer. Here, dotted arrows repre-
sent deterministic relationships.

ergy models. This model can be viewed as having
a feedforward neural network that deterministically
transforms the input and subsequently models the out-
put of the feedforward network with a layer of stochas-
tic hidden units. Intuitively, the feedforward neural
network extracts features from the input which are
more easily modeled with a single stochastic layer.
This formulation allows us to efficiently train all lay-
ers of the network jointly, leading to better generative
models.

Our work builds on Hinton et al. (2006b), which in-
troduced the contrastive backpropagation algorithm,
and also the work of Mnih & Hinton (2005), who first
showed how to stack a product of Student-t model.
We defer to Section 3 for a further discussion of these
connections.

1.1. Related Work

We first review two popular deep generative models,
deep belief networks (DBNs) and deep Boltzmann ma-



Learning Deep Energy Models

chines (DBMs). In their seminal work, Hinton et al.
(2006a) demonstrated how to train deep belief net-
works with multiple layers of hidden units efficiently.
A deep belief network is a graphical model with undi-
rected connections at the top hidden layers and di-
rected connections in the lower layers (Fig. 1a). Their
learning algorithm uses greedy layerwise training by
stacking restricted Boltzmann machines (RBMs), each
of which models the posterior distribution of the pre-
vious layer. Hinton et al. (2006a) showed that a vari-
ational bound on the data likelihood can always be
improved by adding sufficiently large layers. We note
that it is possible, but computationally expensive, to
train all layers of the DBN jointly using a contrastive
wake-sleep algorithm.

A closely related model, deep Boltzmann machines,
was recently proposed by Salakhutdinov & Hinton
(2009); Salakhutdinov & Larochelle (2010). In con-
trast to DBNs, DBMs have undirected connections
between all layers of the network (Fig. 1b). A sim-
ilar layerwise training algorithm using RBMs is used
to initialize the DBM and all layers are jointly trained
thereafter. In recent developments, Salakhutdinov &
Larochelle (2010) demonstrate a new method of train-
ing DBMs more efficiently using approximate infer-
ence.

DBNs and DBMs share the property of having multi-
ple stochastic hidden layers; this makes inference and
learning difficult as computing the conditional poste-
rior over the hidden units is intractable. In contrast,
inference and learning are more tractable in models
with only a single stochastic hidden layer (e.g., an
RBM, which exploits the conditional independence of
the hidden variables given the visible variables). Our
model builds upon the benefits of having only a single
layer of stochastic hidden units for efficient training
and inference.

2. Deep Energy Models

We first motivate deep energy models (DEMs) by con-
sidering models which combine multiple deterministic
hidden layers with a single stochastic hidden layer.
These models deterministically transform the input
into a new representation using a feedforward neural
network, before modeling the output of this feedfor-
ward network with a single layer of stochastic hidden
units (Fig. 1c). Using deterministic hidden units in-
stead of stochastic hidden units allows us to perform
efficient learning and inference (conditioned on a vis-
ible state). This joint learning significantly improves
generative performance and also changes the represen-
tations learned at each level.

We consider models which are parameterized by an
energy function F (v) such that the probability of a
(continuous) data vector v is p(v) = 1

Z exp(−F (v)),
where Z is the partition function.

Let us denote by gθ(v) the feedforward output of a
neural network gθ. Analogous to RBMs, the undi-
rected connections between gθ(v) and the set of binary
stochastic hidden units h (Fig. 1c) define an energy
function

E(v,h) = 1
σ2 vTv + hTWgθ(v)− cTh− bTv. (1)

Integrating out the binary hidden units gives us the
free energy on v

F (v) = log
∑
h

p(v,h)

= 1
σ2 vTv −

∑
i

log(1 + ew
T
i gθ(v)+ci)− bTv. (2)

This model can be viewed as using a feedforward neu-
ral network to model the energy landscape that de-
fines the probability distribution. Furthermore, by
adding more layers to the feedforward neural network,
we can potentially increase the representational power
of the model, allowing it to model the input distribu-
tion more accurately. Notice that the conditional pos-
teriors of the hidden variables are still easy to compute
exactly: p(hi|v) = sigmoid(wi

Tgθ(v)+ci). In particu-
lar, if we assume that gθ is a sigmoidal neural network,
then the exact conditional posterior of the network cor-
responds exactly to the form for approximate inference
in a DBN.

More generally, this formulation provides an alterna-
tive method for training feedforward neural networks
of arbitrary activation functions. Unsupervised train-
ing methods for neural networks have primarily used
reconstruction as a learning objective (Bengio, 2007).
In particular, stacked autoencoder models are trained
layerwise by learning an autoencoder that reconstructs
the previous layer. Training all layers jointly is also
possible by treating the deep network as a single au-
toencoder; this consists of an encoder that computes
a “hidden” representation and a decoder that recon-
structs the data.

Unlike the autoencoder approach, we are able to train
a deep feedforward neural network to optimize for the
data likelihood directly. Furthermore, training using a
reconstruction objective requires the learning of both
an encoder and an explicit decoder. In comparison,
our model has no requirements for an explicit decoder
(decoding is done implicitly through inference). This
potentially allows the model to discover representa-
tions that are highly invariant, as having invariant



Learning Deep Energy Models

features (e.g. to transformations of the input) might
make the decoding ambiguous and could therefore be
harder to achieve under the constraint of having to
reconstruct the input.

2.1. Learning

We train our models by maximizing the log-likelihood
of a training set (e.g. samples of natural image
patches) using stochastic gradient ascent. Specifically,
we learn the parameters of the feedforward network
gθ, variance parameter σ, weights W and biases c.
The derivative of the log-likelihood of the model over
a training set D is given by:

4θ = EM

[
∂F (v)

∂θ

]
−ED

[
∂F (v)

∂θ

]
(3)

where the first term represents an expectation of the
partial derivative over the model distribution and the
second an expectation over the data.

While the second term is straightforward to compute,
the first term is usually difficult since it is often in-
tractable to integrate over the model distribution.
Thus, we approximate the first term using samples
from the model distribution. More explicitly, we con-
struct persistent Markov chains with “fast weights”
(Tieleman & Hinton, 2009) from which we sample a
new visible state after every parameter update step
(Tieleman, 2008); this corresponds to a stochastic ap-
proximation for maximum likelihood training.

To sample from the model distribution, we employ
the Hybrid Monte Carlo (HMC) sampler (Neal, 1993).
HMC provides an efficient method to draw samples
from the model distribution by performing a physical
simulation of an energy-conserving system to generate
proposal moves. In detail, we add “kinetic energy”
variables, p for each visible variable in our model,
while the model’s energy function specifies a poten-
tial energy over the visible variables. Each HMC step
involves sampling p1 and carrying out a physics-based
simulation using “leap-frog” discretization. The final
state of the simulation is accepted or rejected based
on the Metropolis-Hastings algorithm.

This method of using the HMC sampler to estimate
the gradient of the data log-likelihood is known as
contrastive backpropagation (Teh et al., 2003; Hinton
et al., 2004; 2006b).

2.2. Greedy layerwise with a deep objective

In this section, we introduce a variant of the standard
greedy layerwise training approach that effectively al-

1We sample p ∼ N(0, I) as we used whitened data in
our experiments.

lows pretraining of our model. Conventionally, greedy
layerwise training proceeds by training additional lay-
ers to model the posteriors of the layer before. For
DBNs, this was achieved by training an RBM to model
the posteriors of the hidden units in the previous layer.
We suggest an alternative approach: train the next
layer to optimize for the data likelihood, but freeze the
parameters of the earlier layers. Hence, even though
only the parameters of the current layer are being mod-
ified during training, the learning objective is the data
likelihood of the entire deep model.

This training procedure works well with the learning
method outlined in Section 2.1; the same learning al-
gorithm can be applied in a greedy layerwise fashion
without significant change. Concretely, we consider
greedy layerwise training for models where the feedfor-
ward network gθ is parameterized by a network with
sigmoidal activation functions. After training a net-
work with l layers, we can “fold” the top hidden layer
into the model by letting g̃θ(v) = p(h|v), since the
posteriors of the hidden units is computed in the same
form as the other layers in the network. A next layer
can then be trained using g̃θ as the feedforward net-
work.

2.3. Joint training for multiple layers

After greedy layerwise training, it is also easy to jointly
train all layers of the model (at comparable computa-
tional cost). One simply unfreezes the weights of the
previous layers while optimizing for the same objec-
tive function. This is in contrast to DBNs and DBMs
where training all layers jointly usually involves an ad-
ditional cost since it requires sampling all the hidden
layers of the network. Our deep energy models do not
require sampling the hidden units of intermediate lay-
ers since we use deterministic hidden units.

In practice, we find that mixing greedy layerwise steps
together with joint training steps performed well in
terms of the model convergence and quality of the re-
sulting model. Concretely, for three layer networks, we
suggest training the second layer with greedy layerwise
training followed by joint training before stacking the
third layer. We found that this training protocol re-
sults in DEM models that converge to better solutions.

3. General Deep Energy Models

While networks based on binary hidden units show
promising results on natural images, using nonlineari-
ties other than the sigmoid function in the feedforward
neural network can potentially result in better gener-
ative models. In this section, we will describe the gen-
eral form of DEMs and show how models such as the



Learning Deep Energy Models

product of Student-t (PoT) distributions and covari-
ance RBMs (cRBMs) can be viewed as special cases
of DEMs and be extended to have multiple layers of
nonlinearities.

Let us revisit the energy function of our deep energy
models and view it in a more general context:

F (v) = 1
σ2 vTv +H(v)− bTv (4)

The original deep energy models can be viewed as hav-
ing H(v) = −

∑
i log(1 + exp(wi

Tgθ(v) + ci)), where
gθ(v) is the output of a feedforward neural network.
By relaxing this form and allowing functions other
than soft-rectification, one can recover models such
as the PoT model which corresponds to a choice of
HPoT (v) =

∑
i αi log(1 + (wi

Tv)2).

As an another example, the cRBM corresponds to
HcRBM (v) = −

∑
i log(1+exp(

∑
f Pif (Cf

Tv)2 + ci)),
which can also be viewed as a two layer network where
one first computes the squared responses of linear fil-
ters followed by a soft-rectification. Each of these
choices of H(v) give an F (v) that is asymptotically
dominated by the quadratic term vTv, and therefore
represents a normalizable probability distribution.

Recent work in extending these models have focused
on linear combinations of different models. The mean-
covariance RBM (mcRBM), for example, linearly com-
bines the cRBM and RBM to jointly model both the
mean and covariance of the inputs. Others have also
tried stacking a DBN (Ranzato & Hinton, 2010; Dahl
et al., 2010) over the learned features. These models
and their extensions have been successfully applied to
various modalities such as natural images and audio
(Dahl et al., 2010), showing good results in denoising
images (Welling et al., 2003) and in generating large
realistic samples (Ranzato et al., 2010). However, fur-
ther improving these models has not been straightfor-
ward.

We propose building deep versions of these models as
an alternative to linear summations of existing mod-
els. The PoT and cRBM models can be viewed as
models of the energy landscape using shallow feed-
forward networks with specific choices of activation
functions. To create more expressive models, we can
build deep networks in which each layer is essentially
a replica of the PoT or cRBM models. In particu-
lar, we can parameterize the neural network gθ(v) to
have specific activation functions, e.g., log(1 + z2) for
a “Stacked PoT” (SPoT) model. In this way, a sin-
gle layer SPoT model is equivalent to the PoT model.
While we present the SPoT model as a specific instan-
tiation of DEMs, we note that Mnih & Hinton (2005)
had previously showed that learning a two layer SPoT

model was possible on a small synthetic dataset.

The SPoT models can be learned using the same
method presented in Section 2.1. The greedy layerwise
training procedure (Section 2.2) remains the same, ex-
cept that each new layer might no longer have the
interpretation of being the posteriors of the hidden
units.

4. Evaluation of Generative Models

We evaluate our generative models and training
schemes by visually inspecting samples from the mod-
els, and by estimating the log-likelihood of the test
data under each model. For the latter, we use a feed-
forward pass through the network to compute the un-
normalized probability for the test data, and estimate
the partition function Z with annealed importance
sampling (AIS) (Neal, 1998; Salakhutdinov & Murray,
2008).

In our implementation of AIS, we successively draw
samples from a sequence of “progressively harder” dis-
tributions P0, P1, . . . , PK , with PK being our target
distribution and P0 a Gaussian baseline that we can
easily sample from. We construct the interpolating
distributions P1, . . . , PK−1 by setting

Fk(v) = (1− βk)F0(v) + βkFk(v), (5)

using HMC to draw samples from the canonical, un-
normalized distribution p̃k(v) = e−Fk(v).2

5. Experiments on Natural Images

We trained our models on 200, 000 randomly sam-
pled natural images patches (16x16) (van Hateren &
van der Schaaf, 1998), and randomly sampled another
10,000 image patches from a held-out set to use as a
test set. PCA-whitening was used to reduce each ex-
ample to a 142 dimension vector.

For these experiments, we considered the standard
DEM network with sigmoidal units (Sigmoid-DEM)
and the SPoT models. The models were trained with
greedy-layerwise mixed with joint optimization. We
denote models that were trained with greedy layer-
wise stacking as M1, M2 and M3. Similarly, the mod-
els that were trained with jointly are denoted as M12
and M123. To distinguish between training methods,
we further denote the models based on their training

2In our experiments, we fit the baseline Gaus-
sian P0 to 10, 000 samples from the model and let
K = 28, 000, with β1, . . . , β3000 uniformly spaced in
[0, 0.5], β3001, . . . , β12000 in [0.5, 0.9], β12001, . . . , β20000 in
[0.9, 0.98], and β20001 . . . , β28000 in [0.98, 1.0]. Z is then
estimated by taking the average of 3000 AIS runs.



Learning Deep Energy Models

Table 1. Generative performance of models on natural im-
age patches. Joint training of the models significantly im-
proves the performance of the models. AIS was used to

estimate the partition function Ẑ of each model; the stan-
dard deviations of these estimates are provided (left value

shows (Ẑ − 3σ̂), right shows (Ẑ + 3σ̂)).

Model
AIS Log-likelihood

Test log(Ẑ± 3σ̂)
SPoT M1 -8.7 -196.9, -196.9
SPoT M1-M2 2.2 -681.4, -681.4
SPoT M1-M2-M12 7.2 -1056.5, -1056.4
SPoT M1-M2-M3 1.13 -2257.2, -2257.2
SPoT M1-M2-M12-M3 5.3 -3618.4, -3618.4

Sigmoid-DEM M1 -49.2 339.3, 339.4
Sigmoid-DEM M1-M2 -57.5 322.6, 322.6
Sigmoid-DEM M1-M2-M12 -2.3 372.3, 372.9

mcRBM -5.5 378.7, 378.7

Figure 2. This graph shows the test log-likelihood
of the SPoT model over iterations. The first layer
model quickly plateaus and adding the second layer
improves performance slightly. Joint training re-
sulted in a further improvement. A similar result
holds for the Sigmoid-DEM networks.

Figure 3. Visualization of second layer in a SPoT M1-M2-
M12 model. Each sorted column shows the most strongly
connected first layer units to a particular second layer unit.
We find units that pool together similar first layer features.
Some units are selective for particular frequencies while
others are selective for orientation and position.

sequence; for instance, a model denoted by M1-M2-
M12-M3 refers to a model that was trained greedy-
layerwise for two layers, followed by joint training of
the two layers and finally greedy-layerwise stacking of
a third layer on top. We trained all models with the
same learning parameters.3

Table 1 shows the average test log-likelihoods of each
model at convergence. We omit the results for three-
layered models with joint training (e.g. M1-M2-M3-
M123), as AIS returned variable and unreliable esti-

3We used stochastic gradient ascent with mini-batches
of 200 examples, a learning rate of 0.001 and momentum
that was slowly increased from 0.5 to 0.9. When running
the HMC sampler, we dynamically adapt the step-size of
the “leap-frog” discretization to maintain a rejection rate
of 10% and used 20 “leap-frog” steps for each HMC step.

mates for these highly multimodal models. Fig. 2
shows how SPoT model training progresses stably over
iterations. From this graph, we can see that joint
training of the first two layers can result in a sig-
nificant improvement in performance over a purely
greedy-layerwise strategy, even when the latter is run
for a large number of iterations. Furthermore, training
a two layer SPoT model jointly results in a better gen-
erative model than simply adding a third layer with
greedy layerwise training.

Compared to the mcRBM (Ranzato & Hinton, 2010),
the one layer SPoT model (M1) does worse but the
deeper models outperform the mcRBM. This shows
that adding additional layers can be more beneficial
than simply adding mean units to a covariance model.4

To understand the effects of the second layer in the
M12 model, we visualized the most strongly connected
first layer units to the second layer (Fig. 3). We found
a diverse set of second layer including units that were
selective and invariant. Some units were selective to
location and orientation but not frequency, while there
were also others which were only selective to frequency.

We also sampled from the models to compare them as
suggested by Ranzato et al. (2010). The visual quality
of the samples improved with the deeper models, show-
ing more structured samples that appear qualitatively
closer to natural image patches (Fig. 4).

4The SPoT M1 model is similar to a cRBM (which is a
mcRBM without the mean units), in the sense that both
can be viewed as models of the covariance structure with
hidden units from different distributions.



Learning Deep Energy Models

(a) SPoT M1 (b) Data Samples

(c) SPoT M1-M2 (d) SPoT M1-M2-M12

(e) SPoT M1-M2-M12-M3 (f) SPoT
M1-M2-M12-M3-M123

Figure 4. Samples from the generative models. After
training the model, we ran the HMC sampler for 500 burn-
in iterations with random initialization to obtain samples
from the model distribution. The sample quality closely
follows the log-likelihood estimates from Table 1.

6. Discriminative Deep Energy Models

One application of learning a generative model of data
is to find features that are useful for tasks such as im-
age classification (Hinton et al., 2006a; Ranzato & Hin-
ton, 2010; Larochelle & Bengio, 2008). In this section,
we present an discriminative extension of our model
that is trained using a hybrid generative-discriminative
learning scheme. Specifically, we use the activations of
every layer in gθ as features which are used to learn
a linear classifier for some associated labels y, with
weights U . These features specify a joint energy be-
tween the inputs v and labels y:

E(v,y) =
1

σ2
vTv +H(v)− bTv − dTy −

∑
l

aTl Uly

(6)

where al are the activations of the lth layer of gθ and
y is a one-hot vector of image labels. Analogously,
this energy function defines a probability distribution
p(v,y) ∝ exp(−E(v,y)) over v and y.

We are able to train this model generatively by
integrating out y when sampling v: F (v) =
− log(

∑
y expE(v,y)), analogous to implicit mixtures of

RBMs (Nair & Hinton, 2008).

We train the model using a hybrid generative-
discriminative objective:

arg max
θ

((1− α)`(y|x; θ) + α`(y, x; θ)) (7)

where `(y|x; θ) is the log-likelihood of the labels given
the data (discriminative cost) and `(y, x; θ) is the log-
likelihood of the joint distribution of the labels and
data (generative cost).

The gradient for the generative cost is computed in
a similar fashion to Equation 3. For the discrimina-
tive cost, we are able to compute the gradients exactly
since the model corresponds to a (short-circuited) feed-
forward neural network with softmax classification.

7. Experiments on Object Recognition

In this section, we evaluate our models on object recog-
nition. We used the normalized-uniform set of NORB
(LeCun et al., 2004) which has 24,300 training and
24,300 testing examples of 5 object categories (cars,
planes, people, animals and trucks). Each example
contained two 96x96 images corresponding to a stereo-
scopic view of the object. We downsampled each image
to 32x32 and used PCA-whitening to further reduce
each example to a 176 dimensional vector.

We trained the generative SPoT models with 600 hid-
den units on each layer. Similar to the results in Sec-
tion 5, we found that the deep models out perform
the shallow models the samples generated from the
model (Fig. 5) also closely resemble the objects from
the dataset. We also trained the hybrid discriminative-
generative models on NORB, cross validating on a sub-
set of the training data to find the optimal α parameter
that weights the discriminative-generative costs.5

For the hybrid discriminative-generative SPoT model,
we obtained a test accuracy of 93.8% with α = 0.25.
In comparison, the fully discriminative SPoT model
overfits and only achieves a test accuracy of 85.7%.
This shows that regularizing the model to be a gener-
ative model significantly helps the model to generalize

5In practice, we found that using an SVM with the
learned features performed slightly better and we report
these results.



Learning Deep Energy Models

Figure 5. Samples from SPoT M12 model trained on the
NORB dataset.

beyond the dataset. We also performed a control ex-
periment where we used random initializations as net-
work parameters, as suggested by Saxe et al. (2011).
This gives a test accuracy of 74.4% ± 2.0%, showing
that the learning algorithm is responsible for the good
performance. We highlight that our model is a fully
connected model which does not assume any structure
in the input data, unlike convolution based approaches
which hold the current state-of-the-art performances
on classification (97.2%, Huang & LeCun (2006); Le
et al. (2010); Coates et al. (2011)).

8. Discussion

8.1. Evaluation of generative models

While AIS has had success in recent related work
(Salakhutdinov & Murray, 2008; Salakhutdinov &
Larochelle, 2010), it is typically hard to determine how
accurate AIS estimates are. Instead, it is common to
gauge the consistency of AIS estimation by finding the
variance of Ẑ across different AIS estimates. How-
ever, consistency does not necessarily imply accuracy
(Neal, 1998). Fortunately, our results (Fig. 2) sug-
gest that AIS estimation is functioning as intended.
First, the estimated data log-likelihood consistently
increases with the number of training iterations, and
converges reasonably well. Second, data likelihood in-
creases with the addition of a second layer, and with
the commencement of joint training of the first and
second layers. Third, the relative changes in AIS log-
likelihood estimates across models match up with the
visual quality of the filters (Fig. 6) and samples (Fig.
4) from each model.

Another evaluation method used in the literature is
Parzen window density estimation. We implemented
Parzen estimation using the protocol described by Des-
jardins et al. (2010), with 10,000 samples per model.
However, Parzen estimates for the average test log-
likelihood were lower than AIS estimates by ∼ 100
across all models. Moreover, while AIS returned log-
likelihoods that increased smoothly with training it-

Table 2. Classification test accuracies using fully-
connected methods on the NORB object recognition dat-
set.

Method Accuracy
SPoT M123 Discriminative Only 85.7%
SPoT M123 Hybrid Training 93.8%

3D DBNs (Nair & Hinton, 2009) 93.5%
DBMs (Salakhutdinov & Hinton, 2009) 92.8%
SVMs (Bengio & LeCun, 2007) 88.4%

erations, Parzen estimates were largely inconsistent
across iterations. These discrepancies can be at-
tributed to the fact that accurate Parzen estimation
in this high-dimensional space needs a prohibitively
large number of samples.

8.2. Scaling up

One obstacle to scaling the SPoT model to realistic
datasets is the computational cost involved in using
the HMC sampler. HMC allows us to sample from ar-
bitrary energy functions. However, the HMC sampler
can be considerably slower than Gibbs sampling meth-
ods (e.g., for training RBMs) since the HMC sampler
has to evaluate the gradient of the energy function
multiple times for a single Monte Carlo step. For-
tunately, we were able to use GPUs with Jacket6 to
speed up our computations significantly. The use of
GPUs for training deep models was proposed by Raina
et al. (2009). A potential alternative to sampling-
based learning is to use score matching to train our
models; for example, Kingma & LeCun (2010) showed
how score matching can be applied to arbitary energy
functions while Köster & Hyvärinen (2010) showed
how to train both layers of a two layer ICA-based
model.

8.3. Effect of Joint Training

In our quantitative results, we found that joint train-
ing of multiple layers significantly improved the per-
formance of the model. To examine the qualitative
aspects of training, we first trained a single layer
Sigmoid-DEM and visualized the learned representa-
tions (Fig. 6-Left). We then used the single layer
model to initialize a two layer model, which was
trained jointly. By stacking another layer and learning
both layers together, we see a dramatic change in the
first layer weights of the model (Fig. 6-Right). The
first layer weights appear to be blob-like initially but
change to Gabor-like filters when jointly trained with
a second layer. This indicates that generative training
for multiple layers at a time can be crucial for learning
meaningful representations in all layers.

6http://www.accelereyes.com/



Learning Deep Energy Models

Figure 6. Left-Layer 1 filters from a single layer Sigmoid-
DEM model (equivalent to an RBM). Right-Same filters
after joint training as part of a two layer model. While
the initial filters from the single layer model appear to be
mostly blob-like, learning two layers jointly result in filters
that appear more Gabor-like. Training the single layer
model for more iterations did not significantly change the
qualitative appearance of the filters.

Our results suggest that it is possible to obtain sig-
nificantly better models by jointly training all layers
for deep models, instead of only relying on greedy-
layerwise stacking.

Acknowledgments
This work was supported by the DARPA Deep Learning
program under contract number FA8650-10-C-7020.

References

Bengio, Y. Learning deep architectures for AI. Technical
report, Université de Montréal, 2007.

Bengio, Y. and LeCun, Y. Scaling learning algorithms to-
wards ai. In Large-Scale Kernel Machines, 2007.

Coates, A., Lee, H., and Ng, A. Y. An analysis of single-
layer networks in unsupervised feature learning. In AIS-
TATS, 2011.

Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E.
Phone recognition with the mean-covariance restricted
Boltzmann machine. In NIPS. 2010.

Desjardins, G., Courville, A., and Bengio, Y. Parallel tem-
pering for training of restricted boltzmann machines. In
AISTATS, 2010.

Hinton, G. E., Welling, M., and Mnih, A. Wormholes im-
prove contrastive divergence. In NIPS, 2004.

Hinton, G. E., Osindero, S., and Teh, Y. W. A Fast Learn-
ing Algorithm for Deep Belief Nets. Neural Computa-
tion, 18(7):1527–1554, July 2006a.

Hinton, G. E., Osindero, S., Welling, M., and Teh, Y. W.
Unsupervised Discovery of Non-linear Structure using
Contrastive Backpropagation. Cognitive Science, 30(4):
725–731, 2006b.

Huang, F. J. and LeCun, Y. Large-Scale Learning with
SVM and Convolutional Nets for Generic Object Cate-
gorization. In CVPR, 2006.

Kingma, D. P. and LeCun, Y. Regularized estimation of
image statistics by score matching. In NIPS, 2010.

Köster, U. and Hyvärinen, A. A two-layer model of natural
stimuli estimated with score matching. Neural Compu-
tation, 22(9):2308–2333, 2010.

Larochelle, H. and Bengio, Y. Classification using discrim-
inative restricted boltzmann machines. In ICML, 2008.

Le, Q. V., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., and
Ng, A. Y. Tiled convolutional neural networks. In NIPS,
2010.

LeCun, Y., Huang, F.J., and Bottou, L. Learning methods
for generic object recognition with invariance to pose
and lighting. In CVPR, 2004.

Mnih, A. and Hinton, G. E. Learning nonlinear constraints
with contrastive backpropagation. In IJCNN, 2005.

Nair, V. and Hinton, G. E. Implicit mixtures of restricted
boltzmann machines. In NIPS, 2008.

Nair, V. and Hinton, G. E. 3-d object recognition with
deep belief nets. In NIPS, 2009.

Neal, R. M. Probabilistic inference using markov chain
Monte Carlo methods. Technical report, University of
Toronto, 1993.

Neal, R. M. Annealed Importance Sampling. Statistics and
Computing, 11:125–139, 1998.

Raina, R., Madhavan, A., and Ng, A. Y. Largescale
deep unsupervised learning using graphics processors. In
ICML, 2009.

Ranzato, M. and Hinton, G. E. Modeling Pixel Means and
Covariances Using Factorized Third-Order Boltzmann
Machines. In CVPR, 2010.

Ranzato, M., Mnih, V., and Hinton, G. E. Generating
more realistic images using gated mrf’s. In NIPS. 2010.

Salakhutdinov, R. and Hinton, G. E. Deep Boltzmann
machines. In AISTATS, 2009.

Salakhutdinov, R. and Larochelle, H. Efficient learning of
deep boltzmann machines. In AISTATS, 2010.

Salakhutdinov, R. and Murray, I. On the quantitative anal-
ysis of deep belief networks. In ICML, 2008.

Saxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., and
Ng, A. On random weights and unsupervised feature
learning. In ICML, 2011.

Teh, Y., Welling, M., and Osindero, S. Energy-based mod-
els for sparse overcomplete representations. JMLR, 4:
1235–1260, 2003.

Tieleman, T. Training Restricted Boltzmann Machines
using Approximations to the Likelihood Gradient. In
ICML, 2008.

Tieleman, T. and Hinton, G. E. Using fast weights to im-
prove persistent contrastive divergence. In ICML, 2009.

van Hateren, J. H. and van der Schaaf, A. Independent
component filters of natural images compared with sim-
ple cells in primary visual cortex. Proceedings: Biological
Sciences, 265(1394):359–366, 1998.

Welling, M., Hinton, G. E., and Osindero, S. Learn-
ing sparse topographic representations with products of
student-t distributions. In NIPS, 2003.


