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Abstract

We consider the problem of online selection of
a bundle of items when the cost of each item
changes arbitrarily from round to round and
the valuation function is initially unknown
and revealed only through the noisy values
of selected bundles (the bandit feedback set-
ting). We are interested in learning schemes
that have a small regret compared to an agent
who knows the true valuation function. Since
there are exponentially many bundles, fur-
ther assumptions on the valuation functions
are needed. We make the assumption that
the valuation function is supermodular and
has non-linear interactions that are of low de-
gree in a certain sense. We develop efficient
learning algorithms that balance exploration
and exploitation to achieve low regret in this
setting.

1. Introduction

A player takes part in the following repeated game:
on each round, the player purchases a set of items,
bundles them together, and offers the bundle for sale.
The price of each item is announced at the beginning
of the round and the player pays the sum of the prices
of the items he purchased. The bundle sells for its
intrinsic market value, which is assumed to be a fixed
but unknown monotone supermodular function, plus
stochastic noise. In other words, the synergy between
the items in a bundle may increase the bundle’s value
beyond the cost of the items, and the player can profit.
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The player may not know the value of a bundle when
he offers it for sale. For example, he may offer the
bundle for sale by an auction. Although the valua-
tion function is not known to the player in advance,
his goal is to asymptotically profit as if the valuation
function was known in advance. To achieve this goal,
the player must incrementally construct an estimate
of the valuation function while constructing profitable
bundles. The player constructs this estimate based on
his experience from past sales. This form of learning
with partial feedback is commonly known as learning
with bandit feedback.

Supermodular valuation functions capture the idea
that the whole is worth more than the sum of its parts.
They are commonly used in economics and game the-
ory to model the phenomenon of synergy; see Topkis
(1998) for a detailed discussion. The repeated game
described above is a simplified version of a typical sce-
nario that occurs in the real world. For example, a real
estate developer will purchase small adjacent lots from
individual homeowners, and sell the combined land to
a contractor who wants to build an apartment com-
plex. A virtual wireless operator will purchase bands
of spectrum at different locations; once enough bands
are acquired, the operator can sell these bands with the
guarantee of uninterrupted wireless service. A patent
firm will purchase individual patents from small failing
companies, and then sell the entire portfolio of patents
to one of the industry giants. A stamp collector will
purchase individual stamps and then sell a complete
stamp series with a significant price markup. In all
of these examples, the price of the individual items is
known at the time of purchase but the intrinsic value
of the bundle must be estimated from past experience.
In all of these examples, the player acts as the middle-
man, and hopes to make a handsome profit from the
transaction.
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If the player has access to n different items, he can
construct 2n different bundles. This exponential deci-
sion space leads to both computational and statistical
problems, which we detail in the next section. The
supermodularity assumption goes a long way to solve
the computational aspect, but does not make the valu-
ation function easy to learn in the statistical sense. For
example, Balcan & Harvey (2010) prove that the set
of supermodular (equivalently, submodular) functions
is not learnable, even in an easier noise free setting. To
facilitate the statistical learning difficulties, we require
an additional assumption. Intuitively, we assume that
the synergies that increase the value of a bundle only
occur within small sets of items. That is, we assume
that the valuation function can be written as a sum of
functions that each depends on a small number of ele-
ments. In some sense, our assumption is analogous to
assuming that a multivariate polynomial has a small
degree. We formalize this intuitive notion in Section 2
and use our formalization to derive an algorithm in
Section 3.

As noted above, we assume that the price of each
item is arbitrarily determined by the environment on
each round. In fact, the environment can choose a
sequence of cost functions that does not allow the
same bundle to be optimal twice in less than expo-
nential time. Therefore, finding a strategy that makes
profits consistently seems to require learning the en-
tire valuation function. This sets our problem apart
from the simpler problem of finding a minimum or a
maximum of a submodular function in an online set-
ting (Streeter & Golovin, 2009; Hazan & Kale, 2009).

The price of each item is announced at the begin-
ning of each round, and can therefore be thought
of as a special case of linear “context” (Auer,
2003; Li et al., 2010) in the framework of contex-
tual bandits (Wang et al., 2005; Langford & Zhang,
2008). Efficient algorithms for bandit prob-
lems with exponentially many arms exist in the
context-free setting (Awerbuch & Kleinberg, 2004;
Cesa-Bianchi & Lugosi, 2006) and for some special
cases of contextual bandits (Dani et al., 2008). To the
best of our knowledge, none of these algorithms effi-
ciently solves our problem.

The problem of learning valuations or preferences of
an agent has been studied in different contexts. A
few difficulties common to them include high dimen-
sions (Chajewska & Koller, 1999), inconsistent obser-
vations (Nielsen & Jensen, 2004) and partial observa-
tions (for example, the difficulties due to observing
a dynamic process; see Chajewska et al., 2001). The
approach we present in this paper mitigates these dif-

ficulties, and we believe that our techniques may be
relevant in other contexts as well.

This paper is organized as follows. We describe the
problem and assumptions more formally in Section 2
and present our solution to the problem in Section 3.
We demonstrate some characteristics of our algorithm
with a set of preliminary experiments in Section 4,
followed by conclusions and future work. Some proofs
are omitted for lack of space, and may be found in the
full version of this paper (Vainsencher et al., 2011).

2. Setup

Let E be a set of n items. At the beginning of round t,
the environment announces a cost function ct that as-
signs a non-negative cost to each item e ∈ E. The
cost function ct may be any function that satisfies
∑

s∈E ct(s) ≤ 1. The environment also draws a val-
uation function ft from a fixed but unknown distribu-
tion µ. We assume that the distribution µ is such that
Eft is a supermodular function into [0, 1]. ft assigns a
value to each bundle S ⊂ E, but is not revealed to the
player. The player then chooses a bundle St ⊂ E and
receives a profit equal to the valuation of St, minus
the sum of costs of the items in St:

rt(St) = ft(St)−
∑

e∈St

ct(e) .

We recall the definition of a supermodular set-function
f . A function f is supermodular if for every two sets
X , Y we have that:

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ) .

We say that f is submodular iff −f is supermodular.
Intuitively, a supermodular function has increasing re-
turns and a submodular function has diminishing re-
turns.

Our goal is to find a polynomial time computable
strategy for the player that achieves essentially the
same profit as would be possible if µ were known in
advance. More formally, let S∗

t denote the bundle
with the highest expected profit on round t: S∗

t =
argmaxS⊆E

{

Eft(S)−
∑

e∈S ct(e)
}

, then our goal is
to minimize the expected regret:

RT = E

T
∑

t=1

rt(S
∗
t )− rt(St) .

2.1. Modeling limited interaction

If we do not restrict the valuation function and allow
it to be completely arbitrary, we would have an in-
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tractable learning problem. We provide a representa-
tion of the valuation function that allows us to express
modeling assumptions about the complexity of inter-
actions among sets of items. The goal is to reduce
the number of variables that need to be learned from
exponential in n to exponential in some constant k
that represents the complexity of the reduced function
class. Below we offer an alternative representation of
valuation functions that facilitates such a reduction.

Valuation functions are real-valued set-functions of the
form f : 2E 7→ R that satisfy f(∅) = 0. Define the
interaction function of a set-function f as the function
g : 2E\ {∅} 7→ R that satisfies

∀b ∈ 2E f(b) =
∑

s∈2E :s∩b6=∅
g(s) .

A graph-based interpretation of g takes E as the nodes
of a hypergraph. The function g assigns weights to all
possible hyperedges in the graph. Then f(S) corre-
sponds to the sum of the weights of edges covered by
S.

Proposition 1. Every valuation function f has a
unique interaction function g such that g(∅) = 0.

See Appendix A for the proof.

We denote the indicator of a set intersecting with S in
the 2n − 1 dimensional real space by

φ(S) = 1T⊂E :T∩S 6=∅.

We can now define our profit from a bundle S on round
t as

rt(S) = 〈φ(S), gt − ct〉 , (1)

where we lift ct to be a set-function that attains a value
of zero on non-singletons. While the above notation
is convenient, it requires exponential dimensionality
without additional assumptions.

We now define a nested family of set-function classes
of increasing complexity. Intuitively, a set-function
of degree k is capable of expressing nonlinear inter-
actions within subsets of size at most k. Formally, a
set-function f has degree k if its interaction function
g satisfies

∀b ∈ 2E with |b| > k g(b) = 0 .

In words, f has degree k if g equals zero on all sets
whose size is larger than k. We define Fk to be the set
of set-functions of degree k. Note that F1 is the set
of linear (modular) set-functions and Fn includes all
set-functions that equal zero on ∅.

A low degree set-function has less expressive power
than a high degree set-function. The natural anal-
ogy is a multivariate polynomial of degree k: a linear
combination of monomials, each of which captures the
nonlinear interaction within a small set of k or less
variables. The restriction to Fk reduces the statistical
and space complexity of the problem from 2n inde-
pendent parameters that need to be learned to only
O
(

nk
)

.

An application domain where a restriction to Fk seems
natural is that of selecting sensors to cover an area. In
such a problem, each sensor comes with a cost and the
player’s objective is determined by the amount of area
covered. If at most k sensors cover each point, it is not
hard to show that the valuation function is in Fk.

We note that the structure of Eq. (1) makes it
amenable to linear contextual bandits algorithms such
as SupLinRel and LinRel (Auer, 2003; Dani et al.,
2008) with regret O

(

T 1/2
)

by a simple reduction; un-
fortunately the reduction is not computationally effi-
cient.

2.2. Efficient selection via supermodularity

An agent that knows Ef needs to find an optimal bun-
dle under the current costs. Even when f ∈ F2 this
search is NP hard without additional assumptions (see
the full version for a simple reduction from minimum
vertex cover pointed out by Gadi Aleksandrowicz).

We therefore assume that Ef is supermodular, and
we note that the problem of maximizing a supermod-
ular function (or equivalently, minimizing a submod-
ular function) has been extensively studied, and sev-
eral efficient algorithms exist; we refer the reader to
McCormick (2006) for a detailed survey. The next
section considers the gap between Ef needed for op-
timal play and the information available from playing
the bundling game.

3. A general algorithm and conditions

for efficiency

In this section we describe a generic bundle selection
algorithm for online learning of supermodular func-
tions; see Algorithm 1. This algorithm calls three
“black boxes”, denoted by A.1, A.2, and A.3. Before
the game begins, the algorithm selects a set of bundles
called the exploration set (see A.1). After the game be-
gins, the algorithm devotes some rounds to exploration
and others to exploitation. On exploration rounds, the
algorithm obtains independent unbiased estimates of
the interaction function g that corresponds to Ef (see
A.2). It then approximates the mean of these esti-
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Algorithm 1 Bundle selection algorithm A

Input: # of rounds T , interaction size bound k
A.1: Choose the exploration set B ⊂ P(E)
for τ = 1 to LT do

Let t = tτ
Observe ct
Play random bundle bτ from B
Receive profit rt = 〈φ (bτ ) , gt − ct〉
A.2: Estimate valuations f̄τ of B
A.3: Find supermodular g̃τ almost consistent with
τ−1

∑τ
j=1 f̄τ

for t ∈ Xτ (exploitation stage) do
Observe ct.
Play S∗

t = argmaxS 〈φ (S) , g̃τ − ct〉.
end for

end for

mates with an interaction function g̃ that corresponds
to a supermodular function in Fk (see A.3). On ex-
ploitation rounds, the algorithm uses g̃ and the cost
function ct to choose its bundles, by solving

argmax
S

〈φ (S) , g̃ − ct〉 .

The implementation and analysis of these steps form
the bulk of this section and its subsections.

The exploration and exploitation steps are combined
by Algorithm 1 according to a well known sched-
ule (Langford & Zhang, 2008). The algorithm par-
titions the available T time steps into LT epochs.
Epoch τ begins with an exploration round at time
tτ , followed by multiple exploitation rounds at times
Xτ ⊂ {tτ+1, . . . , T }. The number of exploitation
rounds in each epoch will be specified later. Our objec-
tive is to make sure that each round of the algorithm
can be completed in time polynomial in n and that the
expected regret increases sub-linearly.

Theorem 2. When the expected valuation is super-
modular and every valuation is in F2, steps A.1, A.2
and A.3 in Algorithm 1 can be specified so that each
step is completed in polynomial time and the total ex-
pected regret is Õ

(

T 2/3n2
)

.

Efficient exploration is crucial in bandit problems in
which the number of arms is exponential in the num-
ber of independent parameters. For example, when
the arms are paths from a source to a target through
a known graph, and the cost of an arm is the sum of
weights of edges along the path. Exploring by trying
paths from the full set at random is inefficient com-
pared to finding a polynomial subset of paths from
which the parameters can be estimated. A general
theoretical framework for such problems uses so-called

approximate barycentric spanners, but these are not
always easy to find; see Awerbuch & Kleinberg (2004).
Instead, in A.1 we choose an exploration set B that in-
cludes all the bundles of size at least n−k; we show in
Section 3.1 that estimating the valuations of bundles
in B induces an estimate of all possible bundles.

Using a standard estimator given in Section 3.1, the
algorithm (see A.2) obtains an unbiased estimate of
the valuations of bundles in B. The variance of this
estimate is O(nk), and therefore the empirical mean
of a sequence of estimates converges to its expectation
at a rate that is polynomial in n, for fixed k.

In A.3 our goal is to find a sequence of supermodu-
lar interaction functions g̃τ that similarly converges to
Egt, since we assume the corresponding expected valu-
ation is itself supermodular. Efficiently projecting the
estimated valuation function onto Fk is difficult be-
cause the class of supermodular functions (thus also
of interaction functions) is defined by an exponential
number of linear constraints. In the special case where
k = 2 there exist tractable representations of the su-
permodular polytope. In fact, the following theorem
shows that in this case A.3 can be implemented sim-
ply by zeroing the positive outputs of g̃τ . Efficiently
projecting onto Fk, for arbitrary k, remains an open
question.

Theorem 3. Let P denote the set of all pairs in E.
The function f is supermodular and has degree 2 if and
only if its interaction function g fulfills the following:

(i) ∀S ∈ P g(S) ≤ 0, and

(ii) ∀S ∈ 2E s.t. |S| > 2 g(S) = 0.

3.1. Expected regret bound

In this section we assume the algorithm is specified as
follows. The exploration set B is defined to be

B = {E\S : |S| ≤ k}

and we denote d = |B|.
In A.2 we use the observation that

rt = 〈φ (bτ ) , gt − ct〉

and the knowledge of ct to compute

fτ = 〈φ (bτ ) , gt〉

and define the vector

f̄τ (S) =

{

dfτ if bτ = S ,

0 otherwise
.
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Lemma 4. The vector f̄τ is an unbiased estimator of
valuations of all items in B with regard to the choice
of bτ .

To specify A.3 we first define

ḡτ (S) = f̄ (E)− f̄ (E\S)−
∑

∅6=T(S

ḡ (T )

inductively in |S| and project to obtain

g̃τ = argmin
g∈S

∥

∥

∥

∥

∥

g − 1

τ

τ
∑

i=1

ḡi

∥

∥

∥

∥

∥

1

,

where S is the polytope of interaction functions that
correspond to supermodular valuation functions in F2.

This is motivated by the following result.

Lemma 5. For any S ⊂ E, we have

〈φ (S) , (g̃τ − ct)− (Egt − ct)〉 ≤ 2

∥

∥

∥

∥

∥

1

τ

τ
∑

i=1

ḡi − Eḡ

∥

∥

∥

∥

∥

1

.

The lemma follows from the Hölder and triangle in-
equalities, and the definition of g̃τ .

Lemma 5 shows that precise estimates of g lead to pre-
cise valuations of all bundles. The next result quan-
tifies the rate at which exploration leads to precise
estimates of g.

Lemma 6. After τ exploration rounds, for
r ∈ (0, 1), we have with probability at least
exp

{

log (d)− r2τ/
(

72d3
)}

that

2

∥

∥

∥

∥

∥

1

τ

τ
∑

i=1

ḡi − Eḡ

∥

∥

∥

∥

∥

1

≤ r.

The probabilistic analysis for Lemma 6 and the further
derivation required to produce the following proposi-
tion are deferred to Appendix B.

Proposition 7. Algorithm 1, when run with

|Xτ | =
√

τ

1152d3
(

log τ1/2 + log d
) ,

for at least 60 epochs and with n > 4, achieves a regret
of

RT ≤ 15
(

8T
√

2d3 log (d)
)2/3

ln
(

8T
√

2d3 log (d)
)

.

Proposition 7 implies Theorem 2 for n > 4, and the
same result holds with different constants for n ∈
{2, 3, 4}.

4. Experiments

We implemented our algorithm and conducted prelim-
inary experiments on simulated data. The goals of our
empirical study are to observe the algorithm’s perfor-
mance in practice, and to see the effect of different set
sizes n and different levels of noise.

Recall that our algorithm begins by selecting an ap-
propriate set of exploration bundles B, and that for F2

this set can include 1 + n +
(

n
2

)

bundles: The bundle
E, E \ {a} for every a ∈ E, and E \ {a, b} for every
a, b ∈ E. Rather than the randomized exploration pre-
scribed in Algorithm 1 (play a random element from
B), we found it easier to implement a deterministic
round-robin exploration of each bundle in B. In other
words, the algorithm periodically goes into exploration
mode, and plays each bundle in B once. The theoret-
ical guarantees still hold in this case. The explore-
exploit schedule is still maintained, as the exploration
mode occurs less frequently with time.

We ran experiments with sets of size n = 8, 16, 32, 64.
We note that from a computational standpoint, our
näıve algorithm implementation could have easily
scaled to larger sets. In each experiment, we began
by generating a random supermodular function in F2

by selecting each value of the interaction function in-
dependently. The values that correspond to singletons
were chosen uniformly in [0, 1], while the values that
correspond to pairs were chosen uniformly in [− 1

2n , 0].
As noted above, setting the singletons to positive val-
ues and the pairs to negative values ensures that the
resulting valuation function is indeed supermodular.
Note that if we had set the values that correspond to
pairs in [−1, 0], the resulting supermodular function
would almost always attain its maximum valuation at
0, which is an uninteresting case.

On each round, we chose a random cost function,
with values independently chosen in [0, 1]. We also
added random Gaussian noise to the valuation func-
tion before applying it to the selected bundle. We
experimented with three different noise levels, σ =
0.001, 0.01, 0.1. We observed that higher levels of noise
disrupted the algorithm to the extent that we could not
see any learning progress even after 10K rounds. Since
we had the valuation function explicitly, we were able
to compute the optimal bundle on each round, and
to calculate regret. We repeated each experiment 8
times, and averaged results are presented in Figure 1.

Several observations can be made from the figure.
First, the empirical regret curves indeed look like t2/3,
as predicted by the theory. Second, as expected in-
creased noise causes more regret. Third, we notice
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Figure 1. Regret as a function of number of rounds, with different set sizes (n = 8, 16, 32, 64) and noise levels (Gaussian
noise with a standard deviation of 0.001, 0.01, 0.1)).

the anticipated step pattern that results from our de-
terministic exploration mode, which occurs once in a
while (according to the Epoch-Greedy schedule) and
lasts exactly 1 + n+

(

n
2

)

rounds.

Interestingly, different set sizes react differently to the
different levels of noise. For example, for n = 8, in-
creasing the noise level by a factor of ten (from 0.001
to 0.01) had almost no effect on regret, while the same
cannot be said for n = 16. When the number of items
was relatively large (n = 64) half of the 10K rounds
were spent in exploration mode, and the asymptotic
regret guaranteed by our theory has not yet kicked
in. Overall, there are no surprises, and our algorithm
performs just as the theory predicts.

5. Conclusions and future work

Learning a supermodular valuation function is in gen-
eral a difficult problem (Balcan & Harvey, 2010). Un-
der the assumption that only pair-wise interactions af-
fect the valuation, we showed that the valuation func-
tion can not only be elicited offline, but learned online
from noisy data. Our assumptions do not require prior
knowledge about independence of particular item sets.

Our work solves a special type of the contextual multi-
armed bandit problem with exponentially many arms.
Such problems are made tractable by controlling the
time and learning complexity by the “degree” of the
model, in this case the valuation function, rather than
the number of arms. Our definition of degree allowed
us also to perform the projection of the valuation func-
tion to the set of supermodular (low degree) functions
efficiently.

Our analysis focuses on F2: the set of supermodular
functions with interactions in pairs. The main chal-
lenge we have is to extend our results to more complex
interaction structures. The major obstacle in meeting
this challenge is the projection step of our algorithm.
The projection is needed for two reasons. First, the
true valuation function may not be supermodular and

in this case we need to find the closest supermodular
function in an appropriate sense. Second, the esti-
mated valuation function may not be supermodular
even if the true valuation is (due to the noise). The
polytope of possible parameters for F2 requires only a
polynomial subset of the generally exponentially many
constraints, but this does not hold for higher degrees.
It is not yet clear whether efficient projections can be
extended to more complex interaction structure such
as F3 or interactions that are described by a given set
of possible interactions whose size is small.

Supermodularity and submodularity have found many
applications in machine learning in recent years. Our
work is novel in that it addresses the contextual prob-
lem where there is a cost that is associated with each
item that changes from round to round. It is clear that
the general problem is hard, but the question that re-
mains is when are such problems solvable effectively?
Our work provides a partial answer to that question,
but a more general answer remains to be found.
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A. Proof of interaction function

properties

Proof. (Of Proposition 1) Recall that E is the set
of all possible items (“the ground set”). Let S de-
note a subset of E, and consider f (N) − f (N\S) =
∑

T∩N 6=∅ g (T )−
∑

T∩(N\S) 6=∅ g (T ). Since T∩(N\S) 6=
∅ ⇒ T ∩ N 6= ∅, it follows that T appears in the
second sum only if it appears in the first. Then
f (N) − f (N\S) =

∑

T∩N 6=∅∧T∩(N\S)=∅ g (T ). So

that f (N) − f (N\S) =
∑

∅6=T⊆S g (T ) = g (S) +
∑

∅6=T(S g (T ).

Now given a set-function f , we can define g (S) by
induction on |S|:
g (S) = f (N)− f (N\S)−∑∅6=T(S g (T ).

We conclude that g is determined linearly by f .

Let A,B be sets, then we write A ⊥ B if they are
disjoint.

Lemma 8. The function f is supermodular if and
only if for all A ⊆ E and B ⊆ E it holds that
∑

S∈DA,B
g(S) ≤ 0, where DA,B =

{

S ∈ 2E : S 6⊥
A , S 6⊥B , S⊥(A ∩B)

}

.

This lemma is proved in the full version. Equipped
with Lemma 8, we can prove Theorem 3.

Proof. (Of Theorem 3) The constraint (ii) is necessary
and sufficient for f to have degree 2. Next, we prove
that the constraint (i) is both necessary and sufficient
for supermodularity.

Let {a, b} be an item of P . Define the sets

A = E \ {b} and B = E \ {a} .

Using Lemma 8, we know that a necessary condition
for supermodularity is

∑

S∈DA,B

g(S) ≤ 0 .

Note that DA,B does not contain any singletons, and
that the only pair in DA,B is {a, b}. Since all other
sets in DA,B have g(S) = 0, we conclude that

∑

S∈DA,B

g(S) = g({a, b}) .

This proves that the constraints of (i) are necessary.

Next, note that (i) and (ii) imply that
∑

S∈D g(S) ≤ 0
for any D ⊆ 2E , and specifically for DA,B (where A
and B are arbitrary subsets of E). This proves that
the sufficient conditions for supermodularity given by
Lemma 8 are satisfied.
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B. Proofs of regret results

Proof. (Of Lemma 6) We begin by analyzing the sup-
port and variance of XS

i = |ḡi (S)− Eḡ (S)|. Then an
application of Bernstein inequality bounds the prob-
ability of a deviation of the average of the estimates
from their expected value. A union bound completes
the proof of the lemma.

The estimates ḡi for different exploration times i are
IID vector variables. It follows that ḡi (s) = f̄i (E) −
f̄i (E\ {s}) ∈ d [−1, 1] because f (S) ∈ [0, 1]. Similarly,
ḡi ({s, t}) = −f̄i (E) − f̄i (E\ {s, t}) + ḡi (s) + ḡi (t) ∈
2 (d+ 1) [−1, 1]. Then each scalar quantity in each
vector is supported on 3d [−1, 1].

The bound on the variance takes some effort be-
cause values of ḡ on different subsets S are depen-
dent through the choice of bτ . But since the choice
of bτ is independent of ft, we have Var

(

f̄ (S)
)

=

(Ef (S))
2
(d− 1) + d · Var (f (S)) ≤ 2d using the as-

sumption that ft(S) ∈ [0, 1]. It is easy to verify that
Cov

(

f̄ (E) , f̄ (E\S)
)

≤ 0, so we conclude that for
a set S that is either a singleton or a pair we have
Var (ḡ (S)) ≤ 8|B|.
Applying Bernstein with the bounds obtained so far,

we have P
(

1
τ

∑n
i=1 X

S
i > q

)

≤ exp
{

− q2τ
2d(8+q)

}

.

A union bound over the sets in B, leads to

P

((

max
S∈B

1

τ

n
∑

i=1

XS
i

)

> q

)

≤ exp

{

ln d− q2τ

2d (8 + q)

}

.

To achieve a bound on
∥

∥

1
τ

∑τ
i=1 ḡi − Eḡ

∥

∥

1
, it is enough

to require that
∥

∥

1
τ

∑τ
i=1 ḡi − Eḡ

∥

∥

∞ ≤ r
2d , which corre-

sponds to the condition in the lemma.

Proof. (Of Proposition 7) Our proof consists of the
following steps. We first bound the regret in an ex-
ploitation step; we then determine the number of ex-
ploitation steps that may be taken in an epoch with-
out exceeding a contribution of the exploitation to the
regret that exceeds 1. This implies that each epoch
causes a regret of at most 3. We finally compute how
many epochs might be started in T time steps.

We first note the regret of an exploitation step in epoch
τ is at most

√

288d3 (x+ ln d) /τ with probability at
least 1 − exp (−x). Algebraic manipulation implies
that exp

{

ln d− r2τ/
(

72d3
)}

≤ exp {−x} ⇐⇒ r ≥
√

72d3(x+ln d)
τ . If the RHS is greater than 1, then twice

as much is trivially greater than the regret of any step.
Otherwise, we choose r with equality there. From ear-
lier results we conclude with probability at least 1 −

exp (−x), that
∣

∣

〈

φ (S) ,
(

Φ−1γτ − ct
)

− (Egt − ct)
〉
∣

∣ ≤
√

72d3 (x+ ln d) /τ . At worst we will choose a bundle
that is worse than the best by twice that much. For
compactness, we denote below a = 288d3.

The regret of a single exploration step is at most 2
(the difference between maximal valuation and max-
imal cost). The expected regret of an exploitation

step is bounded by
√

a(x+ln d)
τ + 2 exp (−x), we take

exp (−x) = τ−1/2 ⇐⇒ x = ln τ1/2, then the bound

on the expected regret is

√

a(ln τ1/2+ln d)
τ + 2τ−1/2 ≤

√

a(ln τ1/2+ln d)+2
√
τ

≤
√

4a(ln τ1/2+ln d)√
τ

.

Choosing |X (τ)| as in the proposition implies that the
expected total regret of an epoch is upper bounded by
3. Having determined the length and total regret of an
epoch, we turn to inverting the relationship to bound
the number of epochs and therefore the total regret up
to some particular time.

At time T , we have expected regret bounded by 3q,
where q is the number of epochs that cover T : the min-
imal q such that t(q) = q+

∑q
τ=1

√

τ

4a(ln τ1/2+ln d)
≥ T .

t(q) ≥
√

1

4a
(

ln q1/2 + ln d
)

q
∑

τ=1

√
τ

≥
√

1

4a
(

ln q1/2 + ln d
)

3

2
q3/2

and q1/2, d > e2 so

≥
√

1

4a ln (d) ln
(

q1/2
)

3

2
q3/2

≥
√

1

4a ln (d)

3

2

(

q

ln q

)3/2

.

We now choose q such that
√

1
4a ln(d)

3
2

(

q
ln q

)3/2

≥

T ⇐⇒ q
ln q ≥

(

4T
3

√

a ln (d)
)2/3

. From

Lemma 9, it is enough to take q =

5
(

4T
3

√

a ln (d)
)2/3

ln
(

4T
3

√

a ln (d)
)

. Combining

the results, it follows that the regret at time T is no

more than 15
(

4T
3

√

a ln (d)
)2/3

ln
(

4T
3

√

a ln (d)
)

∈
Õ
(

T 2/3a1/3
)

.

Lemma 9. Let x ≥ 2 and q = 5x2/3 lnx. Then
q/ ln q ≥ x2/3.

The proof is included in the full version.


