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Abstract

In game theory, a Correlated Equilibrium
(CE) is an equilibrium concept that general-
izes the more well-known Nash Equilibrium.
If the game is represented as a graphical
game, the computational complexity of com-
puting an optimum CE is exponential in the
tree-width of the graph. In settings where
this exact computation is not feasible, it is
desirable to approximate the properties of the
CE, such as its expected social utility and
marginal probabilities.

We study outer relaxations of this problem
that yield approximate marginal strategies
for the players under a variety of utility func-
tions. Results on simulated games and in a
real problem involving drug design indicate
that our approximations can be highly accu-
rate and can be successfully used when exact
computation of CE is infeasible.

1. Introduction

Game theory is the study of strategic scenarios wherein
the utility of each individual’s actions depends on the
actions made by the other players. One of the pri-
mary interests in game theory is computing equilib-
rium strategies for specific games. An equilibrium
strategy is a joint probability distribution over actions
where no player has an incentive to deviate from the
distribution. There are a number of different kinds
of equilibrium strategies. A Nash Equilibrium (NE),
for example, corresponds to a strategy that factorizes
completely over the set of players. A Correlated Equi-
librium (Aumann, 1974) generalizes the NE by allow-
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ing for arbitrary joint distributions over actions. The
goal of this paper is to introduce a new algorithm for
computing approximate Correlated Equilibria in large
multi-player games.

Correlated Equilibria (CE) are of practical and the-
oretical importance because they have a number of
attractive properties. For example, they can lead to
higher expected utilities than NE, and are also easier
to compute. CE can also be viewed as a Bayesian al-
ternative to NE (Aumann, 1987). Finally, there exist
natural algorithms that allow the players to iteratively
converge to a CE (Foster & Vohra, 1997); no such al-
gorithms are known to exist for NE, in general.

There are, however, a number of challenges associated
when computing CE, especially for games with many
players and/or where each player has many actions
from which to choose. The first challenge is represent-
ing the game itself. In this paper, we address this prob-
lem using graphical games (Kearns et al., 2001). A
graphical game is a compact representation of a multi-
player game. By analogy to the way in which a proba-
bilistic graphical model exploits the conditional inde-
pendencies in a multi-variate distribution, a graphical
game exploits the structure of the interactions between
the players to compactly represent the payoffs in multi-
player games.

While graphical games significantly reduce the cost of
representation, analyzing the CE of such games can be
computationally expensive, even if the graph structure
is sparse. In particular, while there is a polynomial-
time algorithm for finding some equilibrium strategy
in such games, determining an equilibrium strategy
with specific properties is PPAD-complete (Papadim-
itriou & Roughgarden, 2008). This isn’t surprising be-
cause finding such an equilibrium involves optimizing
an objective function over the marginal polytope. For
most realistic graph topologies, this problem can be
computationally demanding and even infeasible.
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Motivated by the success of outer relaxations in prob-
abilistic inference, we study the accuracy of analogous
relaxations to the problem of approximating marginal
strategy profiles of the CE. We study a relaxations to
the original problem that are easier to compute. These
relaxations facilitate approximating the CE of graph-
ical games in time polynomial to its cost of represen-
tation. Such relaxations provide an approximate pic-
ture of the equilibrium strategy. In addition, they also
provide useful bounds (e.g., bounds on the expected
payoff, bounds on the social utility of the game). We
note that this problem also has natural applications in
learning graphical games from data, and in designing
games with desired outcomes.

Using randomly generated games, we show that outer
relaxations are surprisingly accurate: the median ab-
solute error in the strategy profile of two-action games
even when using the weakest approximation on very
dense graphs is less then 0.2, with the best approxi-
mations giving near-zero error at a marginally higher
computational cost. The corresponding bounds are of-
ten less than 2% away from the exact value. We then
analyze the CE of a game motivated by computer-
aided drug design. By computing a lower bound on the
binding affinity of a drug, our method is able to quickly
determine whether the drug is prone to resistance-
conferring mutations.

2. Introduction to Game Theory

Definition 1 (Normal form Game) An n-person
normal-form game G is a tuple (X,A, u) where

• X is a finite set of n players;

• A =
�

Ai where Ai is the set of actions available
to player i;

• u = (u1, . . . ui, . . . un) where ui : A → R is a
utility function that player i seeks to maximize.

Given the set of possible actions available, a player’s
strategy µi : Ai → [0, 1] is a probability distribution
over choice of action. Actions are sampled from this
distribution and independently of the other players. A
strategy that puts all the probability mass on a single
action is called a pure strategy, otherwise it is called a
mixed strategy.

The n player normal form game is commonly repre-
sented as n, n dimensional matrices, one for each ui.
In subsequent subsections, we will use structured rep-
resentations that exploit sparsity to efficiently store
the game more compactly and develop algorithms that
compute equilibria.

Table 1. The Game of Chicken. Two individuals challenge
each other to either Dare or Chicken out. Each individual
has an incentive to dare, but only if the other chickens out.
This game has 3 NE and one additional CE.

D C
D (0,0) (7,2)
C (2,7) (6,6)

2.1. Equilibria

A strategy profile µ encodes the strategies for all play-
ers. A strategy profile is said to be a Nash Equilibrium
(NE) of a game if no player has an incentive to uni-
laterally deviate from this profile. A seminal theorem
of Nash (Nash, 1950) proved that every game with a
finite number of players and action profiles has at least
one Nash Equilibrium, such that ∀i, ∀ai, a�i ∈ Ai:

�

a−i

µ(ai)µ(a−i)(ui(a
i
, a

−i)− ui(a
�i
, a

−i)) ≥ 0,

where µ(a−i) = µ(a1) × . . . µ(ai−1)µ(ai+1) . . . µ(an),
since the definition of a mixed strategy profile specifies
that each player samples from µi independent of other
players.

Relaxing this requirement of independence re-
sults in equilibrium called Correlated Equilibria
(CE)(Aumann, 1974). A CE is any joint distribution
µ over the player’s actions such that ∀i, ∀ai, a�i ∈ Ai:

�

a−i

µ(ai, a−i)(ui(a
i
, a

−i)− ui(a
�i
, a

−i)) ≥ 0

Tab. 1 shows the utilities of a classic two-player non-
zero sum game, “Chicken”, and Fig. 1 illustrates the
NE and CE for this game. Each point in the green
polytope corresponds to a valid CE. The hyperbolic
surface represents the points that satisfy the constraint
µ = µ1µ2. Any point that is both a CE and on the
hyperbolic surface is a NE.

Note that for an n-player game where each player
has m actions an explicit matrix representation of the
game requires O(n×mn) space. However, some games
can be represented far more efficiently as graphical
games, which are discussed in the following section.

2.2. Graphical Games

A Graphical Game (G,M) is a tuple consisting of
a graph G and a set of local utility functions M =
(M1, ...,Mn) that compactly represents a multi-player
game. Each player is represented by a vertex in the
graph G and edges are drawn between vertices i and
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Figure 1. The constraints on NE and CE illustrated for the
game “Chicken”. The yellow linear polytope is the set of
valid distributions. The green linear polytope is the set of
CE. The constraints for a NE form a non-convex surface
in dark green.

j if the utility function of either depends on the ac-
tions of the other. If Mi depends on the actions of all
remaining players, this representation offers no advan-
tages; however, when Mi only depends on a subset of
players, the graphical game representation can be more
compact than the matrix form representation. In par-
ticular, the graphical game requires space exponential
in the largest degree d of the graph.

This representation is evocative of a Markov Random
Field. While MRFs represent probabilistic interac-
tions, the graphical game represents strategic interac-
tions. An important result due to (Kakade et al., 2003)
shows that there is a natural relationship between the
structure of the graphical game and the probabilistic
relations of a subset of its CE. To describe this result,
we first need the following definition:

Definition 2 (Expected Payoff-Equivalence)

For a graph G, two distributions P , Q are equivalent
up to expected payoff if for all players i, and actions
�ai over ∆i, Ea∼Pui(�ai) = Ea∼Qui(�ai).

Here, ∆i refers to the set containing i and its neighbors
N(i) in G, and �ai refers to an assignment of actions to
∆i.

(Kakade et al., 2003) show that any CE of the game
that does not factorize according to G is equivalent
(up to expected payoff) to some CE of the game that
does. The rest of this work therefore limits itself to
the CE that factorize according to G.

3. CE in Graphical Games

Before we discuss algorithms, it will be useful to de-
fine some notation and sets of interest. We use in-
dexed superscripts to denote components of these as-
signments: �ai

j corresponds to the assignment of an
action to player j according to �ai. We use the nota-
tion �ai[i : a�] to denote the vector that is obtained by
replacing the ith component of �ai with action a�. {µi}
will refer to the set of marginals, that each store the
marginal probability over variable i and its neighbors.

3.1. Exact Correlated Equilibria

If G has no cycles, computing a CE of the graphi-
cal game can be solved satisfying a set of linear con-
straints. An important departure from the standard
MRF treatment is that the potentials of a graphical
game are usually not pairwise. This is due to the fact
that the utility is a function from an assignment �ai

of actions to all neighbors of i. Thus, in general, the
smallest region over i that would allow incorporation
of the CE constraints would need to include all neigh-
bors of i.

The marginal polytope M∆ is defined to be the set of
marginals µi(�ai) (over sets of variables of size ∆i) that
are realizable by a joint distribution. This is analo-
gous to the common definition of a marginal polytope
over pair-wise marginals commonly used in approxi-
mate inference (Wainwright & Jordan, 2008), a set we
shall refer to as M2.

M∆(G) = {µ ∈ �d|∃p with marginals µi(�ai)}
M2(G) = {µ ∈ �d|∃p with marginals µi(ai, aj),

∀(i, j) ∈ E}

For an acyclic graph, the marginal polytope M∆ can
be expressed using the following linear constraints over
each ∆i and their pair-wise intersections:

Positivity: ∀i, ∀�ai, µi(�ai) ≥ 0

Local Normalization: ∀i,
�

µi(�ai) = 1

Local consistency: ∀i, j, ∀Nij ∈ ∆i ∩∆j ,

and assignments yNij

�

�ai:�ai
Nij=yNij

µi(�ai) =
�

�aj : �aj
Nij=yNij

µj(�aj)

Since these constraints involve variables that are ad-
jacent to each other in G, the set of marginals that
satisfy them are referred to as LOCAL∆(G). In a
graph without cycles, LOCAL∆(G) = M∆(G), since
the joint can always be uniquely reconstructed from
the µi’s in such graphs.
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Since the definition of a CE only imposes constraints
on the solution, it is common to determine a CE that
optimizes some objective function, for example, the ex-
pected social utility

�
i

�
�ai
µ(�ai)ui(�ai). We will use

f(µ) to refer to any such objective function. While
we assume that f is linear, our approach can be nat-
urally extended to any class of functions as long as
we can efficiently perform optimization, for example,
minimizing convex functions.

The LP for computing a CE that maximizes some func-
tion f can be expressed as:

max f(µ)

s.t.

∀i,∀a, a� ∈ A
i
,

�

�ai:�ai
i=a

µi(�ai)(ui(�ai)− ui(�ai[i : a
�])) ≥ 0

(CE constraints)

µ = [µ1 . . . µn] ∈ M∆

3.2. Relaxations to outer marginal polytopes

If G has cycles, LOCAL∆(G) �= M∆(G). In such
cases, one option is to run the algorithm on the junc-
tion tree JT (G) instead of the original graph. Since
by the junction tree property, LOCAL∆(JT (G)) =
M∆(JT (G)) (Wainwright & Jordan, 2008) this pro-
cess is guaranteed to give the exact CE. However, the
algorithm has to maintain marginals over the size of
tree-width of the graph which can be prohibitively ex-
pensive in games with many players or actions even if
each vertex of the graph has a small degree. For ex-
ample, a grid-structured graphical game of size n× n

with k actions for each player has a maximum degree
of 4 resulting in representation cost of O(nk4) but its
tree-width is n.

If we are primarily interested in the value of the ob-
jective function f(µ) or in the marginal distribution
induced by a CE, we can trade-off accuracy for time
by approximating M∆(G) with LOCAL∆(G). This
is analogous to a Generalized Belief Propagation ap-
proach to inference on an MRF. Since LOCAL∆(G) ⊃
M∆(G), this is an outer relaxation of the problem.
Solving it will therefore give a lower bound on the ob-
jective function.

The CE constraints require all marginals of size ∆i

implying that a relaxation looser than LOCAL∆ is not
possible for general games. However, in cases where
the utility function additional structure, it is possible
to construct further relaxations.

3.3. Pair-wise additive utility functions

Consider a setting where the utility of a particular
player ui(�ai) can be expressed as the sum of pair-wise
functions over the actions of the player’s neighbors

ui(�ai) =
�

j∈N(i)

gi,j(�ai
i
, �ai

j)

The expression in the CE constraint can then be ex-
pressed as
�

�ai:�ai
i=a

µi(�ai)ui(�ai) =
�

�ai:�ai
i=a

µi(�ai)
�

j∈N(i)

gi,j(�ai
i
, �ai

j)

=
�

j∈N(i)

�

�ai:�ai
i=a

µi(�ai)gi,j(�ai
i
, �ai

j)

=
�

j∈N(i)

�

aj

µi(a, aj)gi,j(a, aj)

Thus, if the utility can be expressed as a sum of pair-
wise functions, the constraint µ ∈ M∆ in the LP for
the exact CE can be replaced with µ ∈ M2. It is
possible to then construct an outer relaxation to M2

using local constraints over edges and vertices of the
graph. We will therefore refer to this relaxation as
LOCAL2.

3.4. Cycle Inequalities

Cycle inequalities are among the constraints that
are satisfied by M2 and not explicitly enforced by
LOCAL2. They arise from the following simple ob-
servation on a graph with binary variables: if we start
from a node in a cycle and traverse the cycle to come
back to the node this traversal must have seen an even
number of edges where adjacent variables had different
values (if not, the value at the end of the traversal must
be different from at the beginning, a contradiction).
The advantage of these constraints is that their vio-
lation can be detected and a violated constraint iden-
tified in graphs in polytime (Barahona & Mahjoub,
1986) by computing shortest paths in a related graph.
Violated cycle inequalities are incorporated incremen-
tally into the constraint set and the LP is re-solved
until no more violations occur. (Sontag & Jaakkola,
2007) devise an extension of this idea for graphs over
variables with k values that first constructs differ-
ent binary instantiations of these variables and identi-
fies violated constraints on these instantiations. Since
there are 2k possible instantiations for each variable
in the graph, we restrict ourselves to the k-projection
graph(Sontag & Jaakkola, 2007) that considers k dif-
ferent binary instantiations for a variable with k val-
ues.
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We will refer to the set of solutions that satisfy these
constraints as Cycle − Ineq. LOCAL2 + Cycle −
Ineq will therefore refer to solutions that are in both
LOCAL2 and CY CLE − Ineq.

4. Simulation Results

We generated 16-node graphs corresponding to games
with 16 players. Each player had two actions, and an
edge was included between any pair of vertices with
probability ρ. We generated graphs with the value
of ρ varying from 0.01 and 0.5 (corresponding to a
graph with half the density of a completely connected
graph). We generated 10 graphs for each setting for ρ
resulting in a total of 70 graphs. For each player, each
element in the utility matrix was randomly generated
from U(−1, 1). We note that our choice of values was
limited by a need to be able to compute CE exactly so
as to compare the accuracy of our relaxations. The re-
laxations themselves can be used on games with many
more players and actions.

For each of these graphs, we computed exact Corre-
lated Equilibria while optimizing for social utility and
computed the marginal distributions of the CE strat-
egy for each player. We then computed approximate
marginal distributions that optimized the same objec-
tive function but made progressively looser outer re-
laxations: the first relaxation stored marginal distri-
butions over a player and all its neighbors, for each
player while the second relaxation only stored pair-
wise marginal distributions, one for each edge in graph.

Fig. 2-A shows a boxplot of the error induced in the
individual marginal distributions of each player due to
approximate inference as ρ, the density of the graph,
increases. In each group, the first box shows the error
when using the LOCAL∆ relaxation, the second box
shows the errors when using LOCAL2 and the third,
when using LOCAL2+Cycle−Ineq. Increasing ρ has
marginal effect on the error of LOCAL∆ but increases
the error of LOCAL2 . Remarkably, adding the cycle
inequality constraints drastically improves the accu-
racy of LOCAL2 : the error is nearly zero across all
settings of ρ.

To test the sensitivity of these results to the choice of
utility and objective function, we generated 100, 16-
node graphs with ρ = 0.3. For each of these graphs, we
then generated graphical games where the utilities for
each action-pair on each edge were sampled from a bi-
variate normal distribution N ([0, 0], [1,σ;σ, 1]) where
−1 ≤ σ ≤ 1 resulting in a total of 700 graphical games
with wide variety of utilities. At σ = −1, for exam-
ple, the utilities for any action pair on each edge sum

(A)

(B)

Figure 2. Boxplot showing L2 error of marginal distribu-
tions on randomly generated graphs with utilities sampled
from U(−1, 1) as the density, ρ, increases (A) and from a
coupled distribution as the correlation between utilities, σ,
increases(B). In each group, the first boxplot corresponds
to LOCAL∆, the second to LOCAL2 and the third to
LOCAL2 + Cycle− Ineq.

to zero, while for σ = 1, the utilities on a particular
edge are the same for both players. Instead of the so-
cial utility, we optimized a random linear function of
the marginals. Fig. 2-B shows the error in marginals
using the outer relaxations as σ increased. LOCAL∆

still has consistently low error while the spread of the
distribution of errors for LOCAL2 appears to increase
as utilities become more coupled. Again incorporating
the cycle inequalities to LOCAL2 drastically improves
the accuracy to near zero error.

Fig. 3-A shows a boxplot of the error induced in
the individual marginal distributions of each player
due to approximate inference as ρ, the density of
the graph, increases. As previously, LOCAL∆ and
LOCAL2 + Cycle − Ineq are accurate in all settings
while LOCAL2’s error increases as the degree of the
vertex increases.

Fig. 3-B shows the CDF of the percentage gap between
the upper bound as computed by an outer relaxation
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(A)

(B)

Figure 3. (A) Boxplot showing absolute error of the
marginal distribution at a variable across all simulated
graphs as a function of the degree of the position. As the
degree increases, the error tends to increase although the
median error remains very low. Order within each group:
LOCAL∆, LOCAL2, LOCAL2 + Cycle − Ineq. (B) His-
togram of the percentage gap between the upper bound of
the objective function using an outer approximation and
the exact value. Both LOCAL2 and LOCAL∆ relaxations
produce bounds that are remarkably close to the actual
value of the objective function.

and the exact value using the marginal polytope. The
bounds provided by all relaxations are < 10% away
from the optimal value for all graphs with the maxi-
mum error of LOCAL2+Cycle−Ineq being less than
1%.

The running time of the exact algorithm on our simu-
lated graphs is a few hours even for moderately dense
graphs. The LOCAL2 and LOCAL2 + Cycle − Ineq

takes less than ten minutes on the protein-drug game
and is even faster on the simulated graphs.

5. Application to Drug Design

Rational drug-design is the process of engineering a
drug to selectively bind to target molecules and mod-
ify their behavior. Traditionally, the target molecule,

usually a protein, is assumed to have a fixed, known
chemical composition. This assumption is valid for
some targets (e.g., asthma drugs), but not others. In
particular, some diseases are associated with rapid evo-
lution of the target through mutations (e.g., in cancer,
HIV, and bacterial infections). Such mutations can
decrease the efficacy of the drug, leading to a phe-
nomenon known as resistance.

To address this problem, we are developing a game-
theoretic approach to drug design. Here, the game
models the interactions between the drug designer and
the target protein: the target makes “moves” by intro-
ducing mutations, and the drug designer makes moves
by choosing one of several candidate drugs. The util-
ity of any given set of moves is the binding affinity of
the drug to the (mutated) protein. If these moves re-
sult in a protein-drug pair that has high affinity, the
drug designer wins; else, the protein wins. The aim
of the drug designer, therefore, is to find a drug (or
drug cocktail) that binds well against all moves of the
protein.

PDZ

The PDZ domain is a family of related structural mo-
tifs found in many signaling proteins. Biologically, it
mediates protein-protein interactions. Since some of
these interactions are affected in cancerous cells, mem-
bers of this family are being studied as targets for anti-
cancer drugs.

Along with our collaborators, we have developed a
sparse linear model that accurately predicts the bind-
ing affinity of PDZ domains to short peptides. In our
game, these peptides are the drugs and the binding
affinities are the utilities. The model (Fig. 4) was
learnt using block sparse linear regression from exper-
imental data and consists of thirty eight blocks (cor-
responding to edges here) and twenty one variable po-
sitions (corresponding to sixteen ‘protein’ players and
five ‘drug’ players). Each protein player has five ac-
tions corresponding to the wild-type and the four other
most likely amino acid positions at this position, as ob-
served in nature. This restricts the game to mutations
that are energetically favorable.

The maximum degree of this graph was 10; neither
exact computation of the CE nor the LOCAL∆ ap-
proximation had sufficient memory to complete this
computation on a standard desktop machine with
4GB RAM. We therefore only report the results of
LOCAL2 + Cycle.

In the drug-design game, a CE encodes a distribution
over drugs (known as a drug cocktail) and a distribu-



Approximating Correlated Equilibria using Relaxations on the Marginal Polytope

Figure 4. The graphical game describing the pdz-drug
game is shown overlaid on a protein structure. The players
are labeled with spheres (pdz in blue, drug in red) and the
edges of the game are shown with dashed lines. The game
has 21 players and 38 edges.

tion over PDZ sequences. The distribution over PDZ
mutations can be interpreted as the set of mutations
that are likely to arise in response to the cocktail. The
key question is whether the expected binding energy of
the cocktail and the PDZs is negative (i.e., favorable)
or positive (i.e., unfavorable). If positive, then the
PDZ is resistant to the cocktail. Thus, it is sufficient
to determine whether the expected binding energy is
guaranteed to be negative. Therefore, we computed
the (approximate) CE that would maximize the bind-
ing energy (i.e a “pessimistic” CE) and thus obtained
an upper bound on the maximum binding energy. Nat-
urally, if this upper bound is negative then the true
worst-case expected binding energy is also negative
which, in turn, implies that the cocktail is successful
at any CE of the game.

The expected binding energy was negative (-5.83
kcal/mol) indicating that this cocktail-drug is pre-
dicted to successfully bind to all viable mutants of the
PDZ. Fig. 5-A shows the marginal profile for each po-
sition across its five actions. It is interesting to note
that compared to the PDZ, the profile of the drug is
limited to a few actions per position, possibly due to
the pessimistic nature of our prediction.

Fig. 5-B shows the breakdown of this total binding
energy across the 38 edges. Only eleven of the 38 edges
had a non-zero contribution to the binding energy. In
contrast, the “optimistic” CE of this game (obtained
by minimizing binding energy) had 20 edges that had
non-zero contribution to the binding energy.

(A)

(B)

Figure 5. (A) The marginal profile of each player for the
worst-case equilibrium scenario. The 16 positions corre-
sponding to the PDZ and the 5 positions corresponding to
drug are shown in separate groups. (B) The expected bind-
ing energy for each edge in. By choosing mutations that
maximize disruption to binding, PDZ is able to shut off
interactions on all but eleven edges. However, these eleven
edges together ensure that the overall binding energy is
negative indicating that the cocktail is successful.

6. Discussion and Conclusion

We demonstrated an approach to approximate the
properties of a CE in graphical games. Our approach,
based on outer relaxations to the marginal polytope
computes these approximations efficiently. On a large
set of games with different types of utilities, we demon-
strated that these relaxations are also remarkably ac-
curate, often giving the exact solution. In addition,
our approach bounds the objective function. When
used with the social utility for example, our approach
can be used to bound the price of anarchy of the game
(Koutsoupias & Papadimitriou, 2009).

The main aim of the protein-drug study is to deter-
mine if a set of drugs (drug cocktail) has good worst-
case binding properties. Our relaxations are quick and
accurate implying that we can determine such a set
rapidly. Thus in this application, our main interest
is in determining the worst-cast binding energy. We
showed the resulting approximate strategy profile to
aid in understanding of the game and provide insights
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into interactions. While our method produces approx-
imate strategies, we note that the cost of sequencing
continues to drop. Thus, it is relatively easy to “ob-
serve” the adversarial disease’s strategy in the popu-
lation, or even in a patient-specific fashion. Such in-
formation could be incorporated to adapt the cocktail
to combat resistance.

In our application of game-theory to a biological prob-
lem, we follow a rich body of prior work that model
evolutionary behavior in this manner, starting with
the pioneering work of (Hamilton, 1964a;b) and (Smith
& Price, 1973). Indeed, it can be argued that the pro-
cess of evolution is best modeled in such a strategic
manner: organisms adapt to the behavior of other
organisms and the environment to maximize their
chances of survival. While these adaptations by them-
selves are not the output of strategic behavior, the
combination of random mutations with non-random
selective pressures can, and is often modeled as such.

In (Pérez-Breva et al., 2007), the authors develop a
game theoretic model of Protein-DNA binding. The
focus of their model is to determine accurately the
configuration used by various proteins to bind to DNA
and the effects of space and resource constraints on the
equilibrium configurations. While our model is also
used in a biological setting, the focus of our model is
on protein-drug binding and the composition of these
molecules. Thus our model enables understanding of
evolutionary changes and equilibria in contrast to spa-
tial changes and is thus fundamentally different.

By modeling the smallest unit of evolutionary change
(the mutation of an amino acid) this paper consid-
ers strategic behaviors at a much higher-resolution
than previous applications of game-theory to the study
of evolution. In the future, we hope to extend this
promising approach to learning the structure and util-
ities of graphical games from data and in applying such
models to the design of new drugs.
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