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Abstract

Determinantal point processes (DPPs) have
recently been proposed as models for set
selection problems where diversity is pre-
ferred. For example, they can be used to
select diverse sets of sentences to form doc-
ument summaries, or to find multiple non-
overlapping human poses in an image. How-
ever, DPPs conflate the modeling of two dis-
tinct characteristics: the size of the set, and
its content. For many realistic tasks, the size
of the desired set is known up front; e.g.,
in search we may want to show the user ex-
actly ten results. In these situations the effort
spent by DPPs modeling set size is not only
wasteful, but actually introduces unwanted
bias into the modeling of content. Instead, we
propose the k-DPP, a conditional DPP that
models only sets of cardinality k. In exchange
for this restriction, k-DPPs offer greater ex-
pressiveness and control over content, and
simplified integration into applications like
search. We derive algorithms for efficiently
normalizing, sampling, and marginalizing k-
DPPs, and propose an experts-style algo-
rithm for learning combinations of k-DPPs.
We demonstrate the usefulness of the model
on an image search task, where k-DPPs sig-
nificantly outperform MMR as judged by hu-
man annotators.

1. Introduction

Determinantal point processes (DPPs) have recently
been proposed as models for set selection problems
where diversity is an important characteristic of the
predicted sets. For example, in extractive document
summarization, the goal is to choose a set of sentences
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from a document that are not only high-quality but
also diverse, so as to avoid redundancy in the sum-
mary. Kulesza & Taskar (2010) applied DPPs to struc-
tured objects, and used them to select multiple poses
of people in an image, where the poses are “diverse”
in the sense that they tend not to overlap.

However, DPPs conflate the modeling of two distinct
characteristics: the size of the set, and its content. For
example, a DPP would predict not only which sen-
tences to include in a summary, but also how many.
In some cases this can be beneficial; for instance, pre-
dicting the number of people in an image might be an
important part of the pose identification task. How-
ever, for other applications the size of the desired set
is often known in advance, or even adjusted on-the-fly
at test time. For example, search systems frequently
return a fixed number of results to the user, and that
number might vary depending on the target platform.

In such situations, the effort spent by DPPs model-
ing the size of the set is wasteful. More importantly,
because DPPs inextricably link size and content—
essentially all degrees of freedom in the model affect
both considerations—the need to consider set size can
actually bias the modeling of content in a negative way.
Finally, at test time there is no simple and justifiable
way to control the size of predicted sets. This can be
a serious limitation to practical use.

To address these problems, we introduce the k-DPP,
which conditions a standard DPP on the event that
the modeled set is of size k. This conditionaliza-
tion, though simple in theory, necessitates new algo-
rithms for model normalization and sampling. Naively,
these tasks require exponential time, but we show that
through an application of Newton’s identities we can
solve them exactly in time quadratic in k. Because
k-DPPs focus all of their modeling capacity on con-
tent, they can be significantly more expressive than
DPPs. Furthermore, because the underlying DPP can
be re-conditionalized for different k, k-DPPs greatly
simplify integration in applications that require test
time control of set size.
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DPP Independent

Figure 1. A set of points in the plane drawn from a DPP
(left), and the same number of points sampled indepen-
dently (right).

In Section 2 we give an overview of DPPs, and we
introduce k-DPPs in Section 3. In Section 4 we show
how to learn a mixture of k-DPPs from a labeled train-
ing set, and finally in Section 5 we apply our methods
to a real-world image search problem. We show sig-
nificant improvements in performance compared with
Maximal Marginal Relevance (MMR), a popular tech-
nique for generating diverse result sets (Carbonell &
Goldstein, 1998).

2. Determinantal point processes

A point process P on a discrete set Y = {1, . . . , N}
(for example, a collection of documents or images) is
a probability measure on 2Y , the set of all subsets of
Y. P is called a determinantal point process (DPP)
if, when Y is a random set drawn according to P, we
have, for every A ⊆ Y:

P(A ⊆ Y ) = det(KA) , (1)

for some positive semidefinite matrix K � I (all eigen-
values of K are less then or equal to 1) indexed by the
elements of Y. KA ≡ [Kij ]i,j∈A denotes the restric-
tion of K to the entries indexed by elements of A,
and we adopt det(K∅) = 1. We will refer to K as
the marginal kernel, as it contains all the information
needed to compute the probability of any subset A be-
ing included in Y . A few simple observations follow
from Equation (1):

P(i ∈ Y ) = Kii (2)
P(i, j ∈ Y ) = KiiKjj −KijKji (3)

= P(i ∈ Y )P(j ∈ Y )−K2
ij .

That is, the diagonal of K gives the marginal proba-
bilities of inclusion for individual elements of Y, and
the off-diagonal elements determine the (anti-) corre-
lations between pairs of elements: large values of Kij

imply that i and j tend not to co-occur. A DPP might
therefore be used naturally to model diverse sets of

items, for example in response to a search query. Note
that DPPs cannot represent distributions where ele-
ments are more likely to co-occur than if they were
independent; correlations are always negative.

Figure 1 shows the difference between sampling a set
of points in the plane using a DPP (with Kij in-
versely related to the distance between points i and j),
which leads to a widely spread set with good coverage,
and sampling points independently, where the points
exhibit random clumping. Determinantal point pro-
cesses, introduced to model fermions (Macchi, 1975),
also arise in studies of non-intersecting random paths,
random spanning trees, and eigenvalues of random ma-
trices (Daley & Vere-Jones, 2003; Borodin & Sosh-
nikov, 2003; Hough et al., 2006).

For the purposes of modeling real data, however, the
most relevant construction of DPPs is not through K
but via L-ensembles (Borodin, 2009). An L-ensemble
defines a DPP via a positive semidefinite matrix L
indexed by the elements of Y:

PL(Y = Y ) =
det(LY )

det(L + I)
, (4)

where I is the N×N identity matrix. As a shorthand,
we will write PL(Y ) instead of PL(Y = Y ) when the
meaning is clear. Note that PL is normalized due to
the identity ∑

Y⊆Y

det(LY ) = det(L + I) . (5)

K and L offer alternative representations of DPPs,
and we can easily translate between the two; for ex-
ample, we can compute the marginal kernel K for an
L-ensemble:

K = (L + I)−1L. (6)

Note that K can be computed from an eigen-
decomposition of L =

∑N
n=1 λnvnv>n by a simple

rescaling of eigenvalues:

K =
N∑

n=1

λn

λn + 1
vnv>n . (7)

We can also similarly compute L = K(I − K)−1, as
long as the inverse exists.

Under both K and L representations, subsets that
have higher diversity, as measured by the correspond-
ing kernel, have higher likelihood. However, while K
gives rise to marginal probabilities, L-ensembles di-
rectly model the probabilities of (exactly) observing
each subset of Y, which offers a convenient target for
optimization. Furthermore, L need only be positive
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Algorithm 1 Sampling from a DPP
Input: eigenvector/value pairs {(vn, λn)}
J ← ∅
for n = 1, . . . , N do

J ← J ∪ {n} with prob. λn

λn+1
end for
V ← {vn}n∈J

Y ← ∅
while |V | > 0 do

Select yi from Y with Pr(yi) = 1
|V |

∑
v∈V (v>ei)2

Y ← Y ∪ yi

V ← V⊥, an orthonormal basis for the subspace
of V orthogonal to ei

end while
Output: Y

semidefinite, while the eigenvalues of K are bounded
above. For these reasons we focus our modeling efforts
on DPPs represented as L-ensembles.

2.1. Inference

In addition to computing marginals (Equation (1)) and
the normalizing constant (Equation (5)), a suprising
number of other DPP inference operations are also ef-
ficient, despite the fact that we are modeling an expo-
nential number of possible subsets Y .

For example, we can compute conditional probabili-
ties:

P(Y = A ∪B | A ⊆ Y ) =
det(LA∪B)

det(L + IY\A)
, (8)

where IY\A is the matrix with ones in the diago-
nal entries indexed by elements of Y \ A and zeros
everywhere else. Conditional marginal probabilities
P(B ⊆ Y | A ⊆ Y ) as well as inclusion/exclusion
probabilities P(A ⊆ Y ∧B ∩Y = ∅) can also be com-
puted efficiently using eigen-decompositions of L and
related matrices (Borodin, 2009).

Of particular interest here is the fact that we can effi-
ciently sample from a DPP (Hough et al., 2006; Tao,
2009).

Theorem 1. Let L =
∑N

n=1 λnvnv>n be an orthonor-
mal eigen-decomposition of a positive semidefinite ma-
trix L, and let ei be the ith standard basis N -vector (all
zeros except for a 1 in the ith position). Then Algo-
rithm 1 samples Y ∼ PL.

Algorithm 1 offers some additional insights. Because
the dimension of V is reduced by one on each iteration
of the second loop, and because the initial dimension of
V is simply the number of selected eigenvectors (|J |),

the size of the subset Y is distributed as the number of
successes in N Bernoulli trials where trial n succeeds
with probability λn

λn+1 . In particular, |Y | cannot be
larger than rank(L), and we have:

E[|Y |] =
N∑

n=1

λn

λn + 1
(9)

Var(|Y |) =
N∑

n=1

λn

(λn + 1)2
. (10)

While a full proof of Theorem 1 is beyond the scope
of this paper, we will state a few of the important
lemmas. First we need some terminology.

Definition 1. A DPP is called elementary if ev-
ery eigenvalue of its marginal kernel is in {0, 1}. We
write PV , where V is a set of orthonormal vectors,
to denote an elementary DPP with marginal kernel
KV =

∑
v∈V vv>.

Note that, due to Equation (7), elementary DPPs gen-
erally cannot be written as finite L-ensembles, since an
eigenvalue of K is equal to 1 only if an eigenvalue of
L is infinite.

Lemma 1. If Y is drawn according to an elementary
DPP PV , then |Y | = |V | with probability 1.

Lemma 2. An L-ensemble with kernel L =∑N
n=1 λnvnv>n is a mixture of elementary DPPs:

PL =
1

det(L + I)

∑
J⊆{1,...,N}

PVJ

∏
n∈J

λn , (11)

where VJ denotes the set {vn}n∈J .

Lemma 2 says that the mixture weight of PVJ is
given by the product of the eigenvalues λn corre-
sponding to the eigenvectors vn ∈ VJ , normalized by
det(L + I) =

∏N
n=1(λn + 1). This shows that the first

loop of Algorithm 1 selects an elementary DPP PV

with probability equal to its mixture component. The
remainder of the proof of Theorem 1 (omitted) shows
that the second loop of the algorithm correctly samples
PV . For full proofs of these lemmas and Theorem 1,
see Tao (2009); Hough et al. (2006).

2.2. Size vs. content

As Algorithm 1 makes clear, a DPP models both the
size of Y , determined by the number of initially se-
lected eigenvectors, and its content, determined by the
span of those eigenvectors. In some instances this is
a valuable property; for example, we may not know
in advance how large Y should be, and we want the
model to guess, as in multiple pose detection (Kulesza
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& Taskar, 2010). However, for many applications, such
as search, we want to select sets of fixed size, or to vary
the size at test time. In these cases DPPs are modeling
set size unnecessarily.

Furthermore, the burden of modeling set size actually
interferes with the useful modeling of content. For
example, an elementary DPP enforces a fixed set size
k, but cannot even define a uniform distribution over
the sets of size k (Tao, 2009). In the next section we
introduce k-DPPs, which do not have this limitation.

3. k-DPPs

A k-DPP on a discrete set Y is a distribution over all
subsets Y ∈ Y with cardinality k. In contrast to the
standard DPP, which models both the size and con-
tent of Y , the k-DPP models only content. In doing
so, it sacrifices the ability to distinguish between sets
of varying size, but gains additional flexibility in mod-
eling the content of k-sets. In practice, this can be a
worthwhile tradeoff.

A k-DPP is obtained simply by conditioning a stan-
dard DPP on the event that the set Y has cardinality
k. Formally, a k-DPP Pk

L gives probabilities

P k
L(Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

, (12)

where |Y | = k and the parameter L is any positive
semi-definite kernel.

While the normalizing constant for a DPP can be writ-
ten in closed form, for k-DPPs the situation is some-
what more complicated. Naively, the sum in Equa-
tion (12) takes exponential time. However, it turns
out the normalization is given by the kth elementary
symmetric polynomial evaluated at λ. One way to
see this is to examine the characteristic polynomial
det(L − λI) (see page 88, Gel’fand (1989)). We can
also show it directly. Using Equation (5), we have:∑

|Y ′|=k

det(LY ′) = det(L + I)
∑

|Y ′|=k

PL(Y ′) . (13)

Applying Lemma 2,

det(L + I)
∑

|Y ′|=k

PL(Y ′)

=
∑

|Y ′|=k

∑
J⊆{1,...,N}

PVJ (Y ′)
∏
n∈J

λn (14)

=
∑
|J|=k

∑
|Y ′|=k

PVJ (Y ′)
∏
n∈J

λn (15)

=
∑
|J|=k

∏
n∈J

λn , (16)

where we use Lemma 1 to conclude that PVJ (Y ′) = 0
unless |J | = |Y ′|.

Define the kth power sum and kth elementary sym-
metric polynomial as follows:

pk(λ1, . . . , λN ) =
N∑

n=1

λk
n (17)

ek(λ1, . . . , λN ) =
∑
|J|=k

∏
n∈J

λn . (18)

Then Equation (16) is just ek(λ1, . . . , λN ). Newton’s
identities provide a recursion:

kek = ek−1p1 − ek−2p2 + ek−2p3 − · · · ± pk . (19)

We can compute the values of p1, . . . , pk in O(Nk)
time. The recursion for ek is k levels deep, and each
level takes O(k) time. Thus we can efficiently normal-
ize a k-DPP in O(Nk + k2) time, assuming an eigen-
decomposition of L is available.

3.1. Sampling from k-DPPs

Let eN
k be a shorthand for ek(λ1, . . . , λN ). Substitut-

ing Equation (16) back into Equation (12), we get

Pk
L =

1
eN
k

det(L + I)PL , (20)

and applying Lemma 2 and Lemma 1 yields

Pk
L =

1
eN
k

∑
|J|=k

PVJ

∏
n∈J

λn . (21)

Therefore a k-DPP is also a mixture of elementary
DPPs, but it only gives nonzero weight to those of di-
mension k. Since the second loop of Algorithm 1 pro-
vides a means for sampling from any given elementary
DPP, we can sample from a k-DPP if we can sample
index sets J according to the corresponding mixture
components. Again this is naively an exponential task,
but we can do it efficiently using Newton’s identities.

Let J be the desired random variable, so that Pr(J =
J) = 1

eN
k

∏
n∈J λn for |J | = k. The marginal probabil-

ity of index N is given by

Pr(N ∈ J) =
λN

eN
k

∑
J′⊆{1,...,N−1}

|J′|=k−1

∏
n∈J′

λn = λN

eN−1
k−1

eN
k

.

(22)

Furthermore, the conditional distribution for J given
the decision to include or exclude N is of the same
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Algorithm 2 Sampling from a k-DPP
Input: eigenvector/value pairs {(vn, λn)}, size k
J ← ∅
for n = N, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1

k−1
en

k
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
end if

end if
end for
Proceed with the second loop of Algorithm 1
Output: Y

form:

Pr(J = {N} ∪ J ′|N ∈ J) =
1

eN−1
k−1

∏
n∈J′

λn (23)

Pr(J = J |N 6∈ J) =
1

eN−1
k

∏
n∈J

λn (24)

By induction, we get a simple algorithm for sampling
from a k-DPP, given in Algorithm 2. The algorithm
requires precomputing the values of e1

1, . . . , e
N
k , which

in turn requires computing the corresponding power
sums. Computing the power sums takes O(Nk) time,
and N Newton’s identity recursions require an addi-
tional O(Nk2) time. Since the loop in Algorithm 2
executes at most N times and requires only a con-
stant number of operations, sampling from a k-DPP
requires O(Nk2) time overall, assuming an eigende-
composition of L. Furthermore, because the choice of
k in the sampling algorithm is arbitrary, we can set
it at test time, e.g., to sample sets of varying size as
required by our application.

4. Learning

Because k-DPPs (and DPPs in general) give set prob-
abilities as ratios of determinants (Equation (4)), like-
lihood is not convex in the kernel matrix L. This
makes traditional likelihood-based learning objectives
very unstable and difficult to optimize. Instead, we
propose a simple method for learning a combination
of k-DPPs that is convex and works well in practice.

Given a set L1, . . . , LD of available “expert” kernel
matrices, we define the combination model

Pk
α =

D∑
d=1

αdPk
Ld

, (25)

where
∑

d αd = 1.

Because absolute human judgments of diversity tend
to be extremely noisy, we assume that our la-
beled training data comprises comparative pairs
{(Y +

t , Y −
t )}Tt=1, where Y +

t is preferred over Y −
t ,

|Y +
t | = |Y −

t | = k. We choose α to optimize a logistic
loss measure:

min
α

L(α) =
T∑

t=1

log
(
1 + eγ[Pk

α(Y −
t )−Pk

α(Y +
t )]

)
s.t.

D∑
d=1

αd = 1 , (26)

where γ is a hyperparameter that controls how aggres-
sively we penalize mistakes.

We optimize Equation (26) using projected gradient
descent:

∇L =
T∑

t=1

eα>δt

1 + eα>δt δt (27)

δt
d = γ(Pk

Ld
(Y −

t )− Pk
Ld

(Y +
t )) . (28)

Projection onto the simplex is achieved using standard
algorithms (Bertsekas, 1999).

5. Experiments

We study the performance of k-DPPs on a real-
world image search task, building on a wealth of
work on creating diversity in search results, including
the diversity heuristic Maximal Marginal Relevance
(MMR) (Carbonell & Goldstein, 1998), diversity in-
ducing metrics for simple probabilistic models of rele-
vance (Chen & Karger, 2006), multi-armed bandit ex-
ploration/exploitation models (Radlinski et al., 2008),
structured prediction models learned using structural
SVMs (Yue & Joachims, 2008), and submodular opti-
mization for blog search (El-Arini et al., 2009).

In order to evaluate our model, we define the task in a
manner that allows us to directly evaluate it using in-
expensive human supervision via Amazon Mechanical
Turk. The goal is to choose, given two possible sets
of image search results, the set that is more diverse.
For comparison with MMR, which selects results iter-
atively and does not directly score entire sets, the two
sets always differ by a single element. (Equivalently,
we ask the algorithms to choose which of two images
is a less redundant addition to a partial result set.)
This setup defines a straightforward binary decision
problem, and we measure performance using the zero-
one loss. We use human judgments of diversity for our
labeled training and testing data.
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Table 1. Queries used for data collection.

cars cities dogs

chrysler baltimore beagle
ford barcelona bernese

honda london blue heeler
mercedes los angeles cocker spaniel
mitsubishi miami collie

nissan new york city great dane
porsche paris labrador
toyota philadelphia pomeranian

san francisco poodle
shanghai pug

tokyo schnauzer
toronto shih tzu

5.1. Data

By hand, we chose three image search categories and
8–12 queries for each category. (See Table 1.) For
each query, we retrieved the top 64 results from Google
Image Search, restricting the search to JPEG files that
passed the strictest level of Safe Search filtering. Of
those 64 results, we eliminated any that were no longer
available for download. On average this left us with
63.0 images per query, with a range of 59–64.

We generated 960 instances for each category, spread
evenly across the different queries. Each instance com-
prised a partial result set of five images plus two addi-
tional candidate images. The partial result sets were
sampled using a k-DPP with a SIFT-based kernel (de-
tails below) to encourage diversity. The candidates
were selected uniformly at random from the remain-
ing images, except for 10% of the instances, which we
reserved for measuring the performance of our human
judges. For those instances, one of the candidates was
identical to an image from the partial result set, mak-
ing it the obviously more redundant choice.

We collected human diversity judgments using Ama-
zon’s Mechanical Turk. Annotators came from the
general pool of Turk workers, and could label as many
instances as they wished. Annotators were paid $0.01
USD for each instance that they labeled. We presented
all images at reduced scale; the larger dimension of
each image was 250 pixels. The annotators were in-
structed to choose the candidate that they felt was
less similar to the partial result set. We did not of-
fer any specific guidance on how to judge similarity.
Figure 2 shows a sample instance from each category.

Overall, workers chose the correct image for 80.8%
of the calibration instances, suggesting only moderate
levels of noise due to misunderstanding, inattention,

etc. However, for non-calibration instances the task
is inherently difficult and subjective. To keep noise in
check, we had each instance labeled by five judges, and
kept only those instances where four or more judges
agreed. This left us with 408–482 labeled instances
per category, or about half of the original instances.

5.2. Kernels

We built a set of 55 similarity kernels for the collected
images. These kernels were used to define L-ensemble
k-DPPs and to provide similarity measurements for
MMR, discussed further below. Each kernel Lf is the
Gram matrix of some feature function f ; that is, Lf

ij =
f(i) · f(j) for images i and j. We therefore specify the
kernels through the feature functions used to generate
them. All of our feature functions are normalized so
that ‖f(i)‖22 = 1 for all i; this ensures that no image
is a priori more likely than any other. Implicitly, we
assume that all of the images in our set are equally
relevant in order to isolate the modeling of diversity—
our main focus in this work.

We use the following feature functions:

• Color (2 variants): Each pixel is assigned a coor-
dinate in three-dimensional Lab color space. The
colors are then sorted into axis-aligned bins, pro-
ducing a histogram of either 8 or 64 dimensions.

• SIFT (2 variants): The images are processed
with the vlfeat toolbox to obtain sets of
128-dimensional SIFT descriptors (Lowe, 1999;
Vedaldi & Fulkerson, 2008). The descriptors for
a given category are combined, subsampled to a
set of 25,000, and then clustered using k-means
into either 256 or 512 clusters. The feature vector
for an image is the normalized histogram of the
nearest clusters to the descriptors in the image.

• GIST: The images are processed using code from
Oliva & Torralba (2006) to yield 960-dimensional
GIST feature vectors characterizing properties
like “openness,” “roughness,” “naturalness,” etc.

In addition to these five feature functions, we include
another five that are identical but consider only the
center of the image, defined as the centered rectangle
with dimensions half those of the original image. This
gives ten basic kernels. We then create 45 pairwise
combination kernels by concatenating every possible
pair of the 10 basic feature vectors. This technique
produces kernels that synthesize more than one source
of information, offering greater flexibility.

Finally, we augment our kernels by adding a constant
hyperparameter ρ to each entry. ρ acts a knob for
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Figure 2. Sample labeling instances from each search category. The five images on the left form the partial result set, and
the two candidates are shown on the right. The candidate receiving the majority of annotator votes has a blue border.

controlling the overall preference for diversity; as ρ in-
creases, all images appear more similar, thus increasing
repulsion. In our experiments, ρ was chosen indepen-
dently for each method and each category to optimize
performance on the training set.

5.3. Methods

We tested four different methods. For all of the meth-
ods, a training set consisting of 75% of the available
labeled data (selected at random) was used to set hy-
perparameters, and evaluation was performed on the
remaining 25%. In the following we use Yt to denote
the five-image partial result set for instance t, and
Ct = {i+t , i−t } to denote the set of two candidates,
where i+t is the candidate preferred by judges.

Best k-DPP:. Given a single kernel L, the k-DPP
prediction is

kDPPt = arg max
i∈Ct

P6
L(Yt ∪ {i}) . (29)

We select the kernel with the best zero-one accuracy
on the training set, and apply it to the test set.

Mixture of k-DPPs:. We apply our learning method
to the full set of 55 kernels. We map training instances
to the form given in Section 4 as follows:

Y +
t =Yt ∪ {i+t } (30)

Y −
t =Yt ∪ {i−t } . (31)

Optimizing Equation (26) on the training set yields a
55-dimensional mixture vector α, which is then used

to make predictions on the test set:

kDPPmixt = arg max
i∈Ct

55∑
d=1

αdP6
Ld

(Yt ∪ {i}) . (32)

Best MMR: Maximal Marginal Relevance is a stan-
dard technique for generating diverse sets of search
results (Carbonell & Goldstein, 1998). The idea is to
build a set iteratively by adding on each round a result
that maximizes a weighted combination of relevance
(with respect to the query) and diversity, measured
as the maximum similarity to any of the previously
selected results. For our experiments, we assume rele-
vance is uniform; hence we merely need to decide which
of the two candidates has the smaller maximum sim-
ilarity to the partial result set. For a given kernel L,
the MMR prediction is

MMRt = arg min
i∈Ct

[
max
j∈Yt

Lij

]
. (33)

As with k-DPPs, we select the single best kernel on
the training set, and apply it to the test set.

Mixture MMR: We also test MMR using a mix-
ture of similarity kernels. We use the same training
approach as for k-DPPs, but replace the probability
score P k

α(Yt ∪ {i}) with the negative cost

− cα(Yt, i) = −max
j∈Yt

D∑
d=1

αd(Ld)ij . (34)

Significantly, this substitution makes the optimization
non-smooth and non-convex, unlike the k-DPP opti-
mization. In practice this means the global optimum is
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Table 2. Percentage of real-world image search examples
judged the same way as the majority of human annotators.
Bold results are significantly higher than others in the same
row with 99% confidence.

Best Best Mixture Mixture
Cat. MMR k-DPP MMR k-DPP

cars 55.95 57.98 59.59 64.58
cities 56.48 56.31 60.99 61.29
dogs 56.23 57.70 57.39 59.84

Table 3. Kernels receiving the highest average weights for
each category (shown in parentheses). Ampersands indi-
cate kernels generated from pairs of feature functions.

cars
color-8-center & sift-256 (0.13)
color-8-center & sift-512 (0.11)

color-8-center (0.07)

cities
sift-512-center (0.85)

gist (0.08)
color-8-center & gist (0.03)

dogs
color-8-center (0.39)

color-8-center & sift-512 (0.21)
color-8-center & sift-256 (0.20)

not easily found, and local optima may perform incon-
sistently. In our experiments we use the local optimum
found by projected gradient descent.

5.4. Results

Table 2 shows the mean zero-one accuracy of each
method for each query category, averaged over 100
random train/test splits. Statistical significance was
computed by bootstrapping. With and without learn-
ing a mixture, k-DPPs outperform MMR on two of the
three categories, significant at 99% confidence.

Table 3 shows, for the k-DPP mixture model, the
kernels receiving the highest weights for each search
category (on average over 100 train/test splits).
Combined-feature kernels appear to be useful, the
three categories exhibit significant differences in what
annotators deem diverse.

6. Conclusion

We introduced k-DPPs, conditionalized DPPs that di-
rectly model sets of fixed size, showing how to effi-
ciently normalize and sample from them. We found
that k-DPPs significantly outperformed MMR for

identifying diverse image search results. Future work
includes the study of alternative learning formulations
that directly optimize the kernel of a k-DPP.
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