
Suggesting (More) Friends Using the Implicit Social Graph
∗

Maayan Roth MROTH@GOOGLE.COM
Tzvika Barenholz TZVIKAB@GOOGLE.COM
Assaf Ben-David ABENDA@GOOGLE.COM
David Deutscher DUDO@GOOGLE.COM
Guy Flysher GUYFL@GOOGLE.COM
Avinatan Hassidim AVINATAN@GOOGLE.COM
Ilan Horn ILAN@GOOGLE.COM
Ari Leichtberg ARIL@GOOGLE.COM
Naty Leiser NATY@GOOGLE.COM
Yossi Matias YOSSI@GOOGLE.COM
Ron Merom RONME@GOOGLE.COM

Google Inc, Israel R&D Center

Abstract

Although users of online communication tools
rarely categorize their contacts into groups such
as ”family”, ”co-workers”, or ”jogging buddies”,
they nonetheless implicitly cluster contacts, by
virtue of their interactions with them, forming
implicit groups. In this paper, we describe the
implicit social graph which is formed by users’
interactions with contacts and groups of con-
tacts, and which is distinct from explicit social
graphs in which users explicitly add other in-
dividuals as their ”friends”. We introduce an
interaction-based metric for estimating a user’s
affinity to his contacts and groups. We then de-
scribe a novel friend suggestion algorithm that
uses a user’s implicit social graph to generate a
friend group, given a small seed set of contacts
which the user has already labeled as friends. We
show experimental results that demonstrate the
importance of both implicit group relationships
and interaction-based affinity ranking in suggest-
ing friends. Finally, we discuss two applications
of the Friend Suggest algorithm that have been
released as Gmail Labs features.

∗ This is an updated version of Roth et al. ”Suggest-
ing Friends Using the Implicit Social Graph” that appeared in
SIGKDD, 2010. Please see that paper for all references.

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

1. Introduction

One benefit of many online communication channels over
offline methods is that they enable communication among
groups of people, rather than restricting communication
to be peer-to-peer. Email is just one format that supports
group conversations, but there are many others, such as
photo- and link-sharing, and collaborative document edit-
ing. In fact, group communication is so prevalent that our
analysis of the Google Mail email network shows that over
10% of emails are sent to more than one recipient, and over
4% of emails are sent to 5 or more recipients. Within en-
terprise domains, group communication is even more criti-
cal. An analysis of the email network of Google employees
showed that over 40% of emails are sent to more than one
recipient, and nearly 10% are sent to 5 or more recipients.

As opposed to broadcast-style media, such as blogs1 and
micro-blogging platforms like Twitter2, the information
communicated by an individual to a limited group is gen-
erally carefully targeted, and may be private. The recip-
ient lists for small-group communications such as emails
are selectively constructed by the message senders. We
have observed that users tend to communicate repeatedly
with the same groups of contacts. This observation has
prompted many online communication platforms to pro-
vide their users with tools for creating and saving groups
of contacts. Some examples are the Google Mail Contact
Manager3, or custom friends lists on Facebook4.

1e.g. www.blogger.com, www.wordpress.com
2www.twitter.com
3http://mail.google.com/support/bin/answer.py?

hl=en&answer=30970
4www.facebook.com/help/#/help.php?page=768

Suggesting Friends

Despite the prevalence of group communication, users do
not often take the time to create and maintain custom con-
tact groups. One survey of mobile phone users in Europe
showed that only 16% of users have created custom contact
groups on their mobile phones (Kuhn & Wirz, 2009). In
our user studies, users explain that group-creation is time
consuming and tedious. Additionally, groups change dy-
namically, with new individuals being added to multi-party
communication threads and others being removed. Static,
custom-created groups can quickly become stale, and lose
their utility.

In this paper, we present a friend-suggestion algorithm that
assists users in the creation of custom contact groups, either
implicit or explicit. This algorithm is based on analysis of
the implicit social graph, which is the social network that
is defined by interactions between users and their contacts
and groups of contacts. We differentiate the implicit social
graph from explicit social graphs that are formed by users
explicitly adding other individuals as ”Friends”. The im-
plicit social graph is a weighted graph, where edge weights
are determined by the frequency, recency, and direction of
interactions between users and their contacts and groups.
Our measure of tie strength differs from previous work in
that we consider group interactions, as well as peer-to-peer.

We use the implicit social graph to identify clusters of con-
tacts who form groups that are meaningful and useful to
each user. Unlike some previous research on contact clus-
tering, we do not consider the content of interactions. Ad-
ditionally, because the email network that we have studied
is private, we do not consider any friend-of-friend ties, ei-
ther when computing edge weights for the graph, or when
computing contact clusters.

Given a user’s social network with weighted edges and an
initial seed of a few contacts, our friend-suggest algorithm
builds a custom contact group that accurately expands the
seed. We evaluate the efficacy of our algorithm by com-
paring to baseline approaches via precision-recall measure-
ments. We show two applications of this algorithm, imple-
mented as Gmail Labs features, called ”Don’t forget Bob!”
and ”Got the wrong Bob?” Although our discussion cen-
ters around an email network, the network analysis that we
have done is applicable to any social graph that is formed
by interactions between users and their contacts.

This paper is an extended and revised version of a paper
that appeared in KDD 2010. This paper provides additional
experimental results about the performance of our seed ex-
pansion algorithm. We also provide preliminary empirical
results about the performance of the ”Don’t Forget Bob!”
and ”Got the Wrong Bob?” Gmail features, along with ad-
ditional discussion.

2. Characteristics of the Email

Implicit Social Graph

The Google Mail implicit social graph is composed of bil-
lions of distinct nodes, where each node is an email ad-
dress. Edges are formed by the sending and receiving of
email messages. For the purpose of our work, we consider
a message sent from a user to a group of several contacts
as forming a single edge, thereby constructing a directed
hypergraph. We call the hypergraph composed of all of the
edges leading into or out of a single user node that user’s
egocentric network. We call each hyperedge an implicit
group, even though it may consist of a single contact. On
average, a typical 7-day active user has 350 implicit groups
in his egocentric network, with groups containing an aver-
age of 6 contacts. Note that this does not imply that the av-
erage user has thousands of distinct contacts. Rather, each
implicit group is a unique combination of one or more con-
tacts with whom the user has interacted.

Edges in the implicit social graph have both direction and
weight. The direction of an edge is determined by whether
it was formed by an outgoing email sent by the user, or an
incoming email received by the user. There may be both
outgoing and incoming edges joining a user and an implicit
group, if the user has both sent and received email from
the group. We consider a user to have received mail from
a group by joining the sender of the mail and the other co-
recipients into an implicit group. Thus, if a contact c1 sent
mail to the user u and contacts c2 and c3, this is represented
in u’s egocentric network as an incoming edge from the
group {c1, c2, c3} to u.

The weight of an edge is determined by the recency and
frequency of email interactions between the user and the
group. In Section 3.1, we propose one metric for com-
puting edge weight, which we call Interactions Rank. We
claim that edge weight is an important indicator of the
strength of the relationship between the user and a par-
ticular group. In the remainder of this paper, we use the
terms edge weight, group weight, and group importance
interchangeably.

In our work, we draw a sharp distinction between each
user’s egocentric network and the global or sociocentric
network that is formed by combining the networks of all
users. Although other researchers have found value in clus-
tering contact groups by looking at friend-of-friend edges
(e.g. (Kahanda & Neville, 2009)), we restrict our algorithm
to look only at a single user’s egocentric network during
friend suggestion. By showing users suggestions based
only on their local data, we are able to protect user pri-
vacy and avoid exposing connections between the user’s
contacts that might not otherwise have been known to him.

The social graph studied in this paper is constructed using
the metadata (i.e. timestamp, sender, and recipients) of out-
going and incoming messages set or received via Google

Suggesting Friends

Mail; message content is not included or examined. For
the purposes of this research, we used a random sample
of the metadata from thousands of interactions, and data
was looked at exclusively in aggregate. The experimen-
tal results in Section 4 were gathered with the same pri-
vacy protections that are used in all Google software devel-
opment5 to ensure that developers do not intentionally or
unintentionally access contact information about specific
users without their explicit consent.

3. Friend Suggest

Our algorithm is inspired by the observation that, although
users are reluctant to expend the effort to create explicit
contact groups, they nonetheless implicitly cluster their
contacts into groups via their interactions with them. For
example, while a user may have multiple, possibly over-
lapping, subgroups of coworkers with whom he exchanges
emails, he is unlikely to include his family members in
those interactions. The Friend Suggest algorithm, de-
scribed in this section, detects the presence of implicit clus-
tering in a user’s egocentric network by observing groups
of contacts who are frequently present as co-recipients in
the same email threads. The input to Friend Suggest is a
seed, which is a small set of one or more contacts that be-
long to a particular group. This seed could be labeled by
the user selecting a few contacts, e.g., as an initial list in
the ”To:” field of an email. Given this seed, Friend Suggest
finds other contacts in the user’s egocentric network who
are related to the seed, meaning that they are present in the
same implicit clusters. Friend Suggest also returns a score
for each suggested contact, indicating the goodness of its
fit to the existing seed.

The algorithm described in this section is applicable to the
problem of group clustering in any interaction-based social
graph. For clarity and convenience, we describe it in terms
of email interactions.

3.1. Interactions Rank

The first requirement of the Friend Suggest algorithm is an
implicit social graph with edges whose weights represent
the relationship strength between a user and his implicit
groups. We wish to compute edge weights that satisfy the
following three criteria:

1. Frequency: Groups with which a user interacts fre-
quently are more important to the user than groups
with which he interacts infrequently.

2. Recency: Group importance is dynamic over time.

3. Direction: Interactions that the user initiates are more
significant than those he did not initiate.

5http://mail.google.com/mail/help/privacy.html

Regarding recency, we observe that a group with which the
user is actively interacting now is more important than one
with which the user last interacted a year ago. Overall,
recent interactions should contribute more to group impor-
tance than interactions in the past. We also note that re-
ceiving an email from a contact, a passive interaction, is
a weaker signal of closeness than the active interaction of
sending an email to that contact. In the most extreme case,
we want to be able to rank spammer contacts, from whom
the user receives many emails but to whom he sends none,
very low in importance.

To satisfy these criteria, we propose Interactions Rank, a
metric computed by summing the number of emails ex-
changed between a user and a particular implicit group,
weighting each email interaction as a function of its re-
cency. Interaction weights decay exponentially over time,
with the half-life, λ, serving as a tunable parameter. An ad-
ditional parameter that can be tuned in Interactions Rank is
ωout, the relative importance of outgoing versus incoming
emails.

Interactions Rank (sometimes abbreviated IR) is com-
puted over a set of email interactions I = {Iout, Iin}, ac-
cording to the following equation:

IR ← ωout

�

i∈Iout

�
1

2

� tnow − t(i)

λ +
�

i∈Iin

�
1

2

� tnow − t(i)

λ

where Iout is the set of outgoing interactions between a
user and a group, and Iin is the set of incoming interactions,
tnow is the current time, and t(i) is the timestamp of an
interaction i ∈ I . Note that according to this equation, an
interaction from the current time has a contribution of 1 to
a group’s Interactions Rank, whereas an interaction from
one half-life λ ago contributes 1

2 and so on.

Interactions Rank is related to the Recency metric proposed
by Carvalho and Cohen (Carvalho & Cohen, 2008). How-
ever, Interactions Rank calculates the weight of each in-
teraction according to its timestamp, while Recency sorts
interactions in chronological order, and weights them on
an exponentially decaying scale computed over their ordi-
nal rank. Additionally, Recency does not take into account
the direction of each interaction. Ting et al. propose an
edge-weight metric that considers the role of the interac-
tion participant, but does not take into account the time of
the interaction (Ting et al., 2009).

It should be noted that Interactions Ranks do not easily
allow for comparisons across several users. A very ac-
tive user, who sends and receives many emails per day,
will have overall higher Interactions Ranks for his implicit
groups than a relatively inactive user. However, within
a single user’s egocentric network, Interactions Rank al-
lows for a clean ordering of the user’s implicit groups by

Suggesting Friends

estimated relationship strength. We are actively working
on incorporating other signals of importance, such as the
percentage of emails received from a contact that the user
chooses to read.

3.2. Core Routine

The core routine of the Friend Suggest algorithm, EX-
PANDSEED is shown in Table 1.

function EXPANDSEED(u, S):
input: u, the user

S , the seed
returns: F , the friend suggestions

1. G ← GETGROUPS(u)
2. F ← ∅
3. for each group g ∈ G:
4. for each contact c ∈ g, c /∈ S:
5. if c /∈ F :
6. F[c] ← 0
7. F[c] +← UPDATESCORE(c, S , g)

Table 1. Core algorithm for suggesting contacts that expand a par-
ticular seed, given a user’s contact groups.

The EXPANDSEED function takes as inputs a user, u, who
is the mailbox owner of a single egocentric network in the
implicit social graph, and a seed, S , consisting of a set of
contacts that make up the group to be expanded. EXPAND-
SEED returns a set of friend suggestions, F , which maps
each suggested contact to a score. Each contact’s score in-
dicates the algorithm’s prediction for how well that given
contact expands the seed, relative to the other contacts in
u’s network. Note that not all contacts from u’s network
are guaranteed to be returned in F .

Friend suggestions are computed as follows: The user u’s
egocentric network is extracted from the implicit social
graph. The network, G, is represented as a set of contact
groups, where each group g ∈ G is a set of contacts with
whom u has exchanged emails. Each group g has an Inter-
actions Rank, computed as described in Section 3.1, indi-
cating the strength of u’s connection to the group g. The
goal of EXPANDSEED is to find, among all the contacts in
G, those whose interactions with u are most similar to u’s
interactions with the contacts in the seed S .

EXPANDSEED iterates over each group g in G, computing
a score for each contact c that is a member of g. The algo-
rithm does not suggest contacts that are already members of
the seed S . Scores for each contact are computed iteratively
via a helper function, UPDATESCORE, which takes the con-
tact being considered, the contact’s score so far, F[c], the
seed S , and the group g. In the following section, we dis-

cuss several possible scoring heuristics that were consid-
ered for UPDATESCORE.

3.3. Scoring Functions

UPDATESCORE is a function template that takes a single
contact, c, from a user u’s egocentric network and an im-
plicit group g to which c belongs, and returns an incremen-
tal score based on the group g’s similarity to the seed group,
S . The sum of UPDATESCORE for a contact c over all of
the implicit groups to which it belongs is an estimate of c’s
fitness to expand the seed. Because both the implicit groups
making up an egocentric network and the seed group that
is the input to Friend Suggest are unordered sets of con-
tacts, they can be compared via standard measures of set
similarity (Tulloss, 1997). In this work, we look only at set
member intersection, leaving more complex metrics for fu-
ture exploration. We define below several implementations
of UPDATESCORE. In the next section, we evaluate their
relative merits.

The most basic instantiation of UPDATESCORE is INTER-
SECTINGGROUPSCORE (IGS), which simply returns a
group g’s Interactions Rank if the group has a non-empty
intersection with the seed set:

IGS =

�
IR if g ∩ S �= ∅
0 otherwise

Intuitively, INTERSECTINGGROUPSCORE finds all the
contexts in which the proposed contact c exchanged emails
or was a co-recipient with at least one seed group mem-
ber. However, a larger intersection between the members
of the seed group and the members of a given implicit
group seems to indicate a higher degree of similarity. IN-
TERSECTIONWEIGHTEDSCORE (IWS) takes this into
account:

IWS = IR(g)× k |g ∩ S|

We investigate the contribution of group importance to
friend suggestion by comparing against a metric, INTER-
SECTINGGROUPCOUNT (IGC), that simply counts the
number of groups a contact c belongs to that have some
intersection with the seed S . This metric ignores Interac-
tions Rank entirely, and treats all implicit groups as having
equal value to the user:

IGC =

�
1 if g ∩ S �= ∅
0 otherwise

Finally, to highlight the importance of using a seed of con-
tacts that characterize a distinct friend group, we com-
pare against an UPDATESCORE instantiation, TOPCON-
TACTSCORE (T CS), that ignores the seed and always sug-
gests the top-ranked contacts. Contact ranks are computed

Suggesting Friends

by summing the Interactions Ranks of the implicit groups
containing each contact:

T CS = IR(g)

In each metric, the final friend suggestion scores are nor-
malized with respect to the highest-ranked contact, so that
a single threshold can be used across all users, to cut off the
list of suggested contacts.

4. Evaluation

In this section, we evaluate the quality of the Friend Sug-
gest algorithm on real user data. We compare the different
scoring functions discussed in the previous section, and ex-
plore the impact of seed size of friend prediction.

4.1. Methodology

Evaluation is one of the major challenges of developing al-
gorithms that make predictions based on online social net-
work data. Often, researchers build their data sets by sur-
veying a small set of users who are willing to provide the
ground truth about their online social relationships (Gilbert
& Karahalios, 2009; Kahanda & Neville, 2009; Yoo et al.,
2009). By asking users to categorize their contacts into
groups, or rate contacts as ”close to me” or ”not close to
me”, researchers can build a labeled data set that serves for
both training and testing. However, the nature of this type
of survey necessarily limits the number and variety of users
who can be included in an experiment. Small sample size
and user selection bias can harm the accuracy of the evalu-
ation.

We therefore propose a novel evaluation methodology.
From a stream of real email traffic, we randomly sampled
10000 email interactions with between 3 and 25 recipients.
Each recipient list is, in essence, a group of contacts that
was implicitly clustered by the user. We can test the ac-
curacy of the Friend Suggest algorithm, and compare the
relative success of different scoring functions, by sampling
a few recipients from each group, and measuring how well
Friend Suggest is able to recreate the remaining recipient
list. Our approach is similar to the evaluation methodol-
ogy used by Pal and McCallum (Pal & McCallum, 2006),
but whereas they removed one recipient from each interac-
tion and verified whether their algorithm could restore him,
we begin with small seeds and attempt to generate multiple
additional recipients per email.

To generate the 10000 random test interactions, we first
sampled 100000 interactions, and then defined rules that
aggressively filtered this set to produce a set of email in-
teractions likely to have been generated by active human
users. We define an active user as a user with a minimum
of 5 implict groups in his social network, who has sent at

least one other email in the 7 days prior to the sampled in-
teraction. We attempt to limit our data set to human users
by excluding, via regular expression matching, bots and
auto-reply addresses such as ”info@domain”, and ”nore-
ply@domain”.

Our experiment tests the ability of our algorithm to use a
user’s existing social graph to predict his future group in-
teractions. Therefore, when testing our algorithm’s ability
to predict the remaining recipients in a given email interac-
tion, we use a snapshot of the user’s egocentric network
based only on interactions that occurred earlier than the
sampled interaction.

4.2. Results

The graph below shows a precision-recall curve for the
Friend Suggest algorithm using the different scoring func-
tions defined in Section 3.3, with seed groups of size 3.
(Precision-recall curves for seed groups of other sizes can
be found in (Roth et al., 2010).) For the purposes of our
evaluation, we measure precision as the percent of correct
suggestions out of the total number of contacts suggested
for each seed group, and recall as the percent of correct
suggestions out of the total number of email recipients who
were not already members of the seed group. A correct
suggestion is any contact who was a recipient of the email
being evaluated.

Note that the scoring functions that take into account both
group membership and relative group importance, INTER-
SECTINGGROUPSCORE and INTERSECTIONWEIGHTED-
SCORE, significantly out-perform TOPCONTACT-SCORE,
which ignores the similarity of the seed contacts to the im-
plicit groups and always suggests the top-ranked contacts,
and INTERSECTINGGROUPCOUNT, which ignores the In-
teractions Ranks of the groups and simply counts the num-
ber of groups in which a contact was a co-recipient with at
least one seed contact.

Overall, the scoring function with the best performance
is INTERSECTIONWEIGHTEDSCORE. For small seed
sizes, its performance is similar to INTERSECTINGGROUP-
SCORE. However, as the size of the seed contact group in-
creases, INTERSECTIONWEIGHTEDSCORE’s performance
remains fairly constant, while INTERSECTINGGROUP-
SCORE’s ability to correctly predict email recipients de-
creases. Because it includes in each contact’s score the
score of every implicit group that contains at least one
member of the seed group, INTERSECTIONGROUPSCORE
is noisy and prone to false positives. By taking into account
the size of the intersection between each implicit group and
the seed group, INTERSECTIONWEIGHTEDSCORE is able
to discount the impact of spurious implicit groups that have
low similarity to the seed group.

These experimental results demonstrate that the Friend

Suggesting Friends

Figure 1. Precision/recall curves for the Friend Suggest algorithm
with a seed of 3 contacts, run over the four different scoring func-
tions defined in Section 3.3.

Suggest algorithm, with a correctly chosen scoring func-
tion, is able to predict the remaining recipients of an email
with high accuracy, given the first few contacts who were
added by the user.

4.3. Seed Size Effect

Our experiments showed that for every seed size between
1 and 5, INTERSECTIONWEIGHTEDSCORE outperforms
the other three scores. In this subsection we focus on this
score, and analyze the effect of different seed sizes. Figure
2 shows the precision/recall curve for different seed sizes.
The size of a seed, with the exception of a seed consisting
of a single recipient, has negligible effect on the perfor-
mance of the algorithm. The high success rates, leads us to
believe that given the names of the first two email recipi-
ents, one can guess a small set of people, and the email will
be sent to a subset of them. For example, if Snow White
sends an email to Dopey and Grumpy, it is likely that the
rest of the recipient list will only contain dwarfs. However,
since she is likely to send messages to different subsets of
the dwarves, it is hard to know whether the email be ex-
clusive (for example she may add just one other dwarf), or
inclusive, containing most of the dwarves or all of them.
Further study is required to address this, perhaps by using
better thresholding.

5. Applications

We use the Friend Suggest algorithm in two Gmail Labs
features, ”Don’t forget Bob!”, and ”Got the wrong Bob?”

Figure 2. Precision/recall curves for Intersection Weighted Score
with seeds of different size.

5.1. Don’t Forget Bob!

”Don’t forget Bob” is a straightforward user interface on
top of the Friend Suggest algorithm. As seen in Figure 3,
”Don’t forget Bob” operates when a user is composing an
email message. The lab treats the first contacts added by
the user as the seed set, and uses them to generate a set of
possible suggested recipients that the user may wish to add
to the email. Once the user has added at least two contacts,
the application queries the implicit social graph to fetch the
user’s egocentric network, and uses Friend Suggest to gen-
erate up to four contacts who best expand the seed set of
existing contacts. These contacts are displayed as clickable
links below the ”To:” input field. If the user clicks on a sug-
gestion, or types in another email address, it is added to the
list of recipients, and a new set of suggestions is generated.

”Don’t forget Bob” has been enabled and used by mil-
lions of users, and overall, the user response has been posi-
tive. One user posted to the lab’s feedback group6, ”This is
incredibly helpful for work/school/family groups without
having to create contact groups.”

Coming up with a good quantitative measure for the perfor-
mance of ”Don’t forget Bob” is non-trivial. One possible
metric is to count the number of times users clicked a sug-
gestion, and normalize it by the number of suggestions (or
the number of times a suggestion was shown). However,
since most users do not click on the suggestions but rather
use the keyboard to generate the recipient list, this does not
capture the effect of the product. Another alternative is to
take the final recipient list, and consider the ratio between
the number of recipients who appeared in a suggestion, and
the number of suggestions (or the number of times a sug-
gestion was shown). The problem with this type of metric
is that over 80% of the email messages are sent to a single

6http://groups.google.com/group/gmail-labs-help-suggest-
more-recipients

Suggesting Friends

Figure 3. Example screenshot of the ”Don’t forget Bob!” lab in action. Given the user’s initial seed contacts, ”Dopey”, ”Grumpy”, and
”Doc”, the Friend Suggest algorithm suggests additional recipients ”Happy”, ”Sneezy”, and ”Sleepy”.

recipient, and at every stage it is more likely that the user
will hit the send button, than add another name. Thus, to
improve the algorithm in this metric, one might be tempted
not to show suggestions after the first recipient.

The main metric we use to evaluate the lab counts the num-
ber of suggestions accepted, over the number of times at
least one suggestion was shown, except in the last step,
where the user hits the send button. Suggestions shown
at this point do not increase the denominator. Note that
when the algorithm shows suggestions it can show up to
three suggestions, and still it is only charged once in this
benchmark. The results for this metric are very good - the
ratio between the number of accepted suggestions and the
number of times a suggestion was shown (ignoring the last
recipient) is above 0.8. Moreover, this precision comes at
a good coverage, and suggestions are shown for more than
half the email messages.

5.2. Got the Wrong Bob?

A more complex use of the Friend Suggest algorithm can
be found in the ”Got the wrong Bob?” lab, shown in Fig-
ure 4. ”Got the wrong Bob” addresses the known problem
of email autocompletion errors (Carvalho & Cohen, 2007).
While previous approaches have relied heavily on message
content, ”Got the wrong Bob” uses the Friend Suggest al-
gorithm to detect the inclusion of contacts in a message
who are unlikely to be related to the other recipients.

The WRONGBOB algorithm, shown in Table 2, works as
follows: From the current recipients of an email that have
been entered by the user, the algorithm attempts to find
a single contact whose removal and replacement with an-
other contact from the user u’s egocentric network would
lead to a more coherent recipient list. For each contact ci
in the current recipient list L, WRONGBOB builds a seed
set that includes all of the members of L except ci (lines
4-5). This seed is expanded via EXPANDSEED to generate
a set of contacts that are similar to the current members of

the seed. If the excluded contact ci is a member of the sug-
gestion set, it is considered to be related to the other recipi-
ents and unlikely to be a mistake (lines 7-8). WRONGBOB
therefore stops searching for a replacement for ci.

If, however, ci is not returned as a suggestion from
EXPANDSEED, it is a potential mistake. WRONGBOB
searches for another contact that could replace ci. Each
contact cj in the result set returned by EXPANDSEED is
compared to the error candidate ci via a helper function IS-
SIMILAR. In our implementation, we measured similarity
by checking to see if cj was listed as an autocomplete sug-
gestion at the time that the user entered the contact ci. If ci
and cj are similar, and cj’s score as a member of the seed
expansion is higher than the current maximum, ci and cj
are saved as the current candidate pair (lines 10-13). Af-
ter examining all contacts in L, the candidate pair with the
highest score is returned and displayed to the used as ”Did
you mean Contact A instead of Contact B”?

For example, consider the recipient list L = {a, b, c}. As-
sume that when removing a to create the seed list {b, c},
EXPANDSEED generates the suggestion set {a, d}. In this
case, because the excluded contact a is a member of the
suggestion set, WRONGBOB determines that it is not a mis-
take. Then, when removing b, if the algorithm observes
{b�, d}, where b� is similar to b but d is not, the algorithm
will consider {b, b�} as candidates for replacement. If, after
removing c, the algorithm generates another candidate pair
{c, c�}, then it will return the pair with the highest score.

Like ”Don’t forget Bob”, the ”Got the wrong Bob?” lab
has been enabled and used by millions of users. However,
as in the previous lab, measuring the true performance is
challenging. While some users do click on many sugges-
tions, others prefer to edit email recipient lists via the input
textbox after being notified by the lab that they may have
made a mistake. As we do in the “Don’t forget Bob“ lab,
we consider both actions as a success for the algorithm. In
addition, some users only delete the extra recipient, or only

Suggesting Friends

Figure 4. Example screenshot of ”Got the wrong Bob?” In the context of an email to recipients ”Tim” and ”Angela”, the Wrong Bob
algorithm detects that the user may have intended to include ”Bob Smith” instead of ”Bob Jones”.

function WRONGBOB(u, L):
input: u, the user

L, a list of the recipients of an email
returns: a pair {c,s} where

c is a contact ∈ L
s is a suggested contact to replace c

1. scoremax ← 0
2. wrongRecipient ← null

3. suggestedContact ← null

4. for each contact ci ∈ L:
5. seed ← L \ ci
6. results ← EXPANDSEED(u, seed)
7. if ci ∈ results:
8. continue

9. for each contact cj ∈ results:
10. if ISSIMILAR(ci, cj)

and score(cj) > scoremax:
11. scoremax ← score(cj)
12. wrongRecipient ← ci
13. suggestedContact ← cj
14. return {wrongRecipient, suggestedContact}

Table 2. The WRONGBOB algorithm which, based on the user’s
egocentric network, checks if one of the existing recipients would
be a good candidate for replacement with another contact.

add the proposed recipient. In almost 70% of the time, the
users accept both suggestions, deleting the wrong Bob and
adding the correct one. In almost 90% of the cases, the
user accepts at least one suggestion (usually adding the ex-
tra Bob). These metrics reflect high precision, but low oc-
currence, as only about 1% of the messages trigger the lab.
This infrequent triggering is unsurprising, as over 80% of
messages are sent to only one recipient, and thus should not
trigger the lab. Out of messages which are sent to two or
more recipients, almost all the messages have the correct
list of recipients and again should not trigger the lab. We
therefore believe the overall recall of the feature to be high.

6. Related Work

Please see related work in (Roth et al., 2010).

7. Conclusions

In this paper, we studied the implicit social graph, a so-
cial network that is constructed by the interactions between
users and their groups. We proposed an interaction-based
metric for computing the relative importance of the con-
tacts and groups in a user’s egocentric network, that takes
into account the recency, frequency, and direction of in-
teractions. We then defined the Friend Suggest algorithm
which, given a single user’s egocentric network with com-
puted edge weights and a seed set of a few labeled contacts,
finds other contacts who are related to the seed contacts,
and therefore form a semantically meaningful group. We
demonstrated the effectiveness of the Friend Suggest algo-
rithm via a novel experimental methodology. Finally, we
showed two applications of the Friend Suggest algorithm,
the Gmail Labs ”Don’t forget Bob!” and ”Got the wrong
Bob?”, and presented some data on their performance.

Although the experimental results described in this paper
were performed by examining email interactions from the
Google Mail system, the algorithms and approaches de-
scribed in this paper apply to any interaction-based social
network. Some other interaction types that could form sim-
ilar implicit networks are photo and document sharing, in-
stant messenger chatting, online calendar meeting invita-
tions, or comments on blog posts. Even offline interactions,
such as mobile text messages or telephone calls, form an
implicit social graph between individuals and groups. Our
future research is intended to study the relative importance
of different interaction types in determining the social rela-
tionships between individuals. We are also interested in ex-
ploring other applications of the Friend Suggest algorithm,
such as identifying trusted recommenders for online rec-
ommendation systems, or improving content sharing be-
tween users in various online contents.

